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1. Introduction

We devote this section to relevant definitions, basic facts about nse, and a brief history
of this problem. Throughout this paper, G is a finite group. We express by π(G) the set
of prime divisors of |G|, and by ω(G), we introduce the set of order of elements from G.
Set mk = mk(G) = |{g ∈ G|the order o f g is k}| and nse(G)={mk|k ∈ ω(G)}. In fact, mk is the number
of elements of order k in G and nse(G) is the set of sizes of elements with the same order in G.

One of the important problems in group theory is characterization of a group by a given
property, that is, to prove there exist only one group with a given property (up to isomorphism).
A finite nonabelian simple group H is called characterizable by nse if every finite group G with
nse(G) = nse(H) implies that G ∼= H.

After the monumental attempt to classify the finite simple groups, a huge amount of information
about these groups has been collected. It has been noticed that some of the known simple groups are
characterizable by some of their properties. Until now, different characterization are considered for
some simple groups.

The twentieth century mathematician J.G. Thompson posed very interesting problem [1] .
Thompson Problem. Let T(G)={(k, mk)|k ∈ ω(G), mk ∈ nse(G)} where mk is the number of

elements with order k. Suppose that T(G) = T(H). If G is a finite solvable group, is it true that H is
also necessary solvable?

Characterization of a group G by nse(G) and |G|, for short, deals with the number of elements
of order k in the group G and |G|, where one must answer the question “is a finite group G, can be
characterized by the set nse(G) and |G|?” While mathematicians might undoubtedly give many
answers to such a question, the answer in Shao et al. [2,3] would probably rank near the top of most
responses. They proved that if G is a simple ki (i = 3, 4) group, then G is characterizable by nse(G)

and |G|. Several groups were characterized by nse and order. For example, in [4,5], it is proved that the
Suzuki group, and sporadic groups are characterizable by nse and order. We remark here that not all
groups can be characterized by their group orders and the set nse. For example, let H1 = C4 × C4 and
H2 = C2 ×Q8, where C2 and C4 are cyclic groups of order 2 and 4, respectively, and Q8 is a quaternion
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group of order 8. It is easy to see that nse(H1) = nse(H2) = {1, 3, 12} and |H1| = |H2| = 16 but
H1 6∼= H2.

We know that the set of sizes of conjugacy classes has an essential role in determining the
structure of a finite group. Hence, one might ask whether the set of sizes of elements with the
same order has an essential role in determining the structure of a finite group. It is claimed that
some simple groups could be characterized by exactly the set nse, without considering the order of
group. In [6–12], it is proved that the alternating groups An, where n ∈ {7, 8}, the symmetric groups
Sn where n ∈ {3, 4, 5, 6, 7}, M12, L2(27), L2(q) where q ∈ {16, 17, 19, 23}, L2(q) where q ∈ {7, 8, 11, 13},
L2(q) where q ∈ {17, 27, 29}, are uniquely determined by nse(G). Besides, in [13–16], it is proved that
U3(4), L3(4), U3(5), and L3(5) are uniquely determined by nse(G). Recently, in [17–19], it is proved
that the simple groups G2(4), L2(3n), where |π(L2(3n))| = 4, and L2(2m), where |π(L2(2m))| = 4,
are uniquely determined by nse(G). Therefore, it is natural to ask what happens with other kinds of
simple groups.

The purpose of this paper is to continue this work by considering the following theorems:

Theorem 1. Let G be a group such that nse(G) = nse(PSU(3, 3)). Then G is isomorphic to PSU(3, 3).

Theorem 2. Let G be a group such that nse(G) = nse(PSL(3, 3)). Then G is isomorphic to PSL(3, 3).

2. Notation and Preliminaries

Before we get started, let us fix some notations that will be used throughout the paper. For a natural
number n, by π(n), we mean the set of all prime divisors of n, so it is obvious that if G is a finite group,
then π(G) = π(|G|). A Sylow r-subgroup of G is denoted by Pr and by nr(G), we mean the number of
Sylow r- subgroup of G. Also the largest element order of Pr is signified by exp(Pr). In addition, G is
called a simple Kn group if G is a simple group with |π(G)| = n. Moreover, we denote by φ, the Euler
function. In the following, we bring some useful lemmas which be used in the proof of main results.

Remark 1. If G is a simple K1- group, then G is a cyclic of prime order.

Remark 2. If |G| = paqb, with p and q distinct primes, and a, b non-negative integers, then by Burnside’s
pq-theorem, G is solvable. In particular, there is no simple K2-groups [20].

Lemma 1. Let G be a group containing more than two elements. If the maximal number s of elements of the
same order in G is finite, then G is finite and |G| ≤ s(s2 − 1) [21].

Lemma 2. Let G be a group. If 1 6= n ∈ nse(G) and 2 6| n, then the following statements hold [12]:

(1) 2||G|;
(2) m2 = n;
(3) for any 2 < t ∈ ω(G), mt 6= n.

Lemma 3. Let G be a finite group and m be a positive integer dividing |G|. If Lm(G) = {g ∈ G|gm = 1},
then m||Lm(G)| [22].

Lemma 4. Let G be a group and P be a cyclic Sylow p-group of G of order pα. If there is a prime r such that
pαr ∈ ω(G), then mpαr = mr(CG(P))mpα . In particular, φ(r)mpα |mpαr, where φ(r) is the Euler function of
r [23].

Lemma 5. Let G be a finite group and p ∈ π(G) be odd. Suppose that P is a Sylow p-subgroup of G and
n = psm, where (p, m) = 1. If P is not cyclic group and s > 1, then the number of elements of order n is always
a multiple of ps [24].
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Lemma 6. Let G be a finite group, P ∈ Sylp(G), where p ∈ π(G). Let G have a normal series 1EK E LE G.
If P ≤ L and p 6| |K|, then the following hold [3]:

(1) NG
K
( PK

K ) = NG(P)K
K ;

(2) |G : NG(P)| = |L : NL(P)|, that is, np(G) = np(L);
(3) | LK : N L

K
( PK

K )|t = |G : NG(P)| = |L : NL(P)|, that is, np(
L
K )t = np(G) = np(L) for some positive

integer t, and |NK(P)|t = |K|.

Lemma 7. Let G be a finite solvable group and |G| = mn, where m = pα1
1 · · · pαr

r , (m, n) = 1. Let π =

{p1, · · · , pr} and let hm be the number of π-Hall subgroups of G. Then hm = qβ1
1 · · · q

βs
s satisfies the following

conditions for all i ∈ {1, 2, · · · , s} [25]:

(1) qβi
i = 1 (modpj) for some pj;

(2) The order of some chief factor of G is divisible by qβi
i .

Lemma 8. Let the finite group G act on the finite set X. If the action is semi regular, then |G| | |X| [26].

Let us mention the structure of simple K3-groups, which will be needed in Section 3.

Lemma 9. If G is a simple K3-group, then G is isomorphic to one of the following groups [27]: A5, A6, L2(7),
L2(8), L2(17), L3(3), U3(3), U4(2).

3. Main Results

Suppose G is a group such that nse(G) = nse(H), where H = PSU(3, 3), or PSL(3, 3). By Lemma 1,
we can assume that G is finite. Let mn be the number of elements of order n. We notice that mn = kφ(n),
where k is the number of cyclic subgroups of order n in G. In addition, we notice that if n > 2, then
φ(n) is even. If n ∈ ω(G), then by Lemma 3 and the above discussion, we have{

φ(n)|mn

n|∑d|n md
(1)

In the proof of Theorem 1 and Theorem 2, we often apply formula (1) and the above comments.

Proof of Theorem 1. Let G be a group with

nse(G) = nse(PSU(3, 3)) = {1, 63, 504, 728, 1008, 1512, 1728},

where PSU(3, 3) is the projective special unitary group of degree 3 over field of order 3. The proof will
be divided into a sequence of lemmas.

Lemma 10. π(G) ⊆ {2, 3, 7}.

Proof. First, since 63 ∈ nse(G), by Lemma 2, 2 ∈ π(G) and m2 = 63. Let 2 6= p ∈ π(G),
by formula (1), p|(1 + mp) and (p− 1)|mp, which implies that p ∈ {3, 5, 7, 13, 19, 1009}. Now, we
prove that 13 /∈ π(G). Conversely, suppose that 13 ∈ π(G). Then formula (1), implies m13 = 1728. On
the other hand, by formula (1), we conclude that if 2.13 ∈ ω(G), then m2.13 ∈ {504, 1008, 1512, 1728}
and 2.13|1+ m2 + m13 + m2.13(= 2296, 2800, 3304, 3520). Hence, (2.13|2296), (2.13|2800), (2.13|3304), or
(2.13|3520), which is a contradiction, and hence 2.13 /∈ ω(G). Since 2.13 /∈ ω(G), the group P13 acts fixed
point freely on the set of elements of order 2, and so, by Lemma 8, |P13||m2, which is a contradiction.
Hence 13 /∈ π(G). Similarly, we can prove that the prime numbers 19 and 1009 do not belong to
π(G). Now, we prove 5 /∈ π(G). Conversely, suppose that 5 ∈ π(G). Then formula (1), implies
m5 = 504. From the formula (1), we conclude that if 3.5 ∈ ω(G), then m15 = 1512. On the other hand,
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if 3.5 ∈ ω(G), then by Lemma 4, m3.5 = m5.φ(3).t for some integer t. Hence 1512 = (504)(2)t, which is
a contradiction and hence 3.5 /∈ ω(G). Since 3.5 /∈ ω(G), the group P5 acts fixed point freely on the set
of elements of order 3, and so |P5||m3, which is a contradiction. From what has already been proved,
we conclude that π(G) ⊆ {2, 3, 7}.

Remark 3. If 3 , 7∈ π(G), then, by formula (1), m3 = 728 and m7 = 1728. If 7a ∈ ω(G), since m72 /∈ nse(G),
then a = 1. By Lemma 3, |P7||(1+ m7) and so |P7||7. Suppose 7 ∈ π(G). Then since |P7| = 7, n7 = m7

φ(7) =

32.25||G|. Therefore, if 7 ∈ π(G), then 3, 2 ∈ π(G). Hence, we only have to consider two proper sets {2},
{2, 3}, and finally the whole set {2, 3, 7}.

Now, we will show that π(G) is not equal {2} and {2, 3}. For this purpose at first, we need obtain
some information about elements of ω(G).

If 2a ∈ ω(G), then φ(2a) = 2a−1|m2a and so 0 ≤ a ≤ 7.
By Lemma 3, |P2||(1+ m2 + m22 + · · ·+ m27) and so |P2||210.
If 3a ∈ ω(G), then 1 ≤ a ≤ 4.

Lemma 11. π(G) 6= {2} and π(G) 6= {2, 3}.

Proof. We claim that π(G) 6= {2}. Assume the contrary, that is, let π(G) = {2}. Since 28 /∈ ω(G), we have
ω(G) ⊆ {1, 2, 22, 23, 24, 25, 26, 27}. Hence |G| = 2m = 5544+ 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5,
where k1, k2, k3, k4, k5 and m are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 1.
Since 5544 ≤ |G| = 2m ≤ 5544+ (k1 + k2 + k3 + k4 + k5)1728, we have 5544 ≤ |G| = 2m ≤ 5544+ 1728.
Now, it is easy to check that the equation has no solution, which is a contradiction. Hence π(G) 6= {2}.
Our next claim is that π(G) 6= {2, 3}. Suppose, contrary to our claim, that π(G) = {2, 3}.
Since 35 /∈ ω(G), exp(P3) = 3, 32, 33, 34.

• Let exp(P3) = 3. Then by Lemma 3, |P3||(1 + m3) and so |P3||36. We will consider six cases for |P3|.

Case 1. If |P3| = 3, then since n3 = m3
φ(3) = 22.7.13||G|, 13 ∈ π(G), which is a contradiction.

Case 2. If |P3| = 32, then since exp(P3) = 3 and 27.3 /∈ ω(G), we have ω(G) ⊆
{1, 2, 22, 23, 24, 25, 26, 27} ∪ {3, 3.2, 3.22, 3.23, 3.24, 3.25, 3.26}, and |ω(G)| ≤ 15. Therefore,
5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.9, where k1, k2, k3, k4, k5,
and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. Since 5544 ≤ 2a.9 ≤
5544 + 8.1728, we have a = 10 or a = 11.
If a = 11, then since |P2||210, we have a contradiction.
If a = 10, then 3672 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 + k2 + k3 +

k4 + k5 ≤ 8. By a computer calculation it is easily seen that the equation has no solution.
Case 3. If |P3| = 33, then 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.27,

where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8.
Since 5544 ≤ 2a.27 ≤ 5544 + 8.1728, we have a = 8 or a = 9 .
If a = 8, then 1368 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. By a computer calculation, it is easily seen that the equation
has no solution.
If a = 9, then 8280 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. In this case, the equation has nine solutions. For example,
(k1, k2, k3, k4, k5) = (1, 0, 3, 2, 1) is one of the solutions. We show this is impossible.
Since k2 = 0 and m3 = 728, it follows that m2i 6= 728 for 1 ≤ i ≤ 7. On the other
hand, since 28 /∈ ω(G), exp(P2) = 2, 22, 23, 24, 25, 26, 27. Hence, if exp(P2) = 2i where
1 ≤ i ≤ 7, then |P2||(1 + m2 + m22 + · · ·+ m2i) by Lemma 3. Since m2i 6= 728, for 1 ≤ i ≤ 7
by a computer calculation, we have |P2||27, which is a contradiction. The same conclusion
can be drawn for other solutions.
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Case 4. If |P3| = 34, then 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.81,
where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8.
Since 5544 ≤ 2a.81 ≤ 5544 + 8.1728, we have a = 7. If a = 7, then 4824 = 504k1 + 728k2 +

1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. One sees immediately that the
equation has no solution.

Case 5. If |P3| = 35, then 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.243 where
k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8.
Since 5544 ≤ 2a.243 ≤ 5544+ 8.1728, we have a = 5 or a = 6.
If a = 5, then 2232 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5. By a computer calculation
(1, 0, 0, 0, 1) is the only solution of this equation. Then |ω(G)| = 9, it is clear that exp(P2) = 24

or exp(P2) = 25. Also since k2 = 0 and m3 = 728, m2i 6= 728 for 1 ≤ i ≤ 7.
If exp(P2) = 25, then since |G| = 25.35, the number of Sylow 2-subgroups of G is
1, 3, 9, 27, 81, 243 and so the number of elements of order 2 is 1, 3, 9, 27, 81, 243 but none
of which belong to nse(G).
If exp(P2) = 24, then ω(G) = {1, 2, 22, 23, 24}∪ {3, 3.2, 3.22, 3.23}. Since 3.24 /∈ ω(G), it follows
that the group P3 acts fixed point freely on the set of elements of order 24. Hence, |P3||m24 ,
which is a contradiction (m24 ∈ {504, 1008, 1512, 1728}).
If a = 6, then 10, 008 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5. By a computer calculation,
(0, 0, 2, 3, 2), and (1, 0, 0, 4, 2) are solutions of this equation. Since |ω(G)| = 14, we have
ω(G) = {1, 2, 22, 23, 24, 25, 26} ∪ {3, 3.2, 3.22, 3.23, 3.24, 3.25, 3.26}. We know |G| = 26.35.
It follows that, the number of Sylow 2-subgroups of G is 1, 3, 9, 27, 81, 243 and so the number
of elements of order 2 is 1, 3, 9, 27, 81, 243 but none of which belong to nse(G).

Case 6. Similarly, we can rule out |P3| = 36.

• Let exp(P3) = 32. Then by Lemma 3, |P3||(1 + m3 + m32) and so |P3||33 (for example when
m9 = 1512 ). We will consider two cases for |P3|.

Case 1. If |P3| = 32, then n3 = m9
φ(9) , since m9 ∈ {504, 1008, 1512, 1728}, n3 = 22.3.7 or n3 = 22.7.32 or

n3 = 23.3.7, and so 7 ∈ π(G), which is a contradiction, and if n3 = 25.32, since a cyclic group
of order 9 has two elements of order 3, m3 ≤ 25.32.2 = 576, which is a contradiction.

Case 2. If |P3| = 33, then since 27.3 /∈ ω(G) and 27.32 /∈ ω(G), |ω(G)| ≤ 22.
Therefore, 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.27, where
k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 15.
Since 5544 ≤ 2a.27 ≤ 5544+ 15.1728, we have a = 8, a = 9, or a = 10.
If a = 8, then 1368 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 15. By a computer calculation, it is easily seen that the
equation has no solution.
If a = 9, then 8280 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 15. By a computer calculation, the equation has 22 solutions.
For example, (k1, k2, k3, k4, k5) = (1, 0, 0, 4, 1). We show this solution is impossible.
Since k2 = 0 and m3 = 728, it follows that m2i 6= 728, for 1 ≤ i ≤ 7. On the other hand,
if 2a ∈ ω(G), then 0 ≤ a ≤ 7. By Lemma 3, we have |P2||(1 + m2 + m22 + · · ·+ m27)

, since m2i 6= 728 for 1 ≤ i ≤ 7, by a computer calculation we have |P2||27, which is
a contradiction. Arguing as above, for other solutions, we have a contradiction.
Similarly, a = 10 can be ruled out as the above method.

• Let exp(P3) = 33. Then by Lemma 3, |P3||(1+ m3 + m32 + m33) and so |P3||34 (for example when
(m9 = 1512 and m27 = 1728)). We will consider two cases for |P3|.
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Case 1. If |P3| = 33, then n3 = m27
φ(27) , since m27 ∈ {504, 1008, 1512, 1728}, n3 = 23.7 or n3 = 22.7 or

n3 = 22.3.7, and so 7 ∈ π(G), which is a contradiction, and if n3 = 25.3, since a cyclic group
of order 27 has two elements of order 3, m3 ≤ 25.3.2 = 192, which is a contradiction.

Case 2. If |P3| = 34, and P3 is not cyclic subgroup, then by Lemma 5, 27|m27. Since (27 6| 504)
and (27 6| 1008), it is understood that m27 ∈ {1512, 1728}. Since 27.3 /∈ ω(G), 27.32 /∈
ω(G), and 27.33 /∈ ω(G), |ω(G)| ≤ 29. Therefore 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 +

1728k5 = |G| = 2a.81, where k1, k2, k3, k4, k5, and a are non-negative integers and
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 22. Since 5544 ≤ 2a.81 ≤ 5544 + 22.1728, we have a = 7 ,
a = 8, or a = 9.
If a = 7, then 4824 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 22. By a computer calculation, it is easily seen that the equation
has no solution.
If a = 8, then 15192 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 + k2 + k3 +

k4 + k5 ≤ 22. By a computer calculation, the equation has 22 solutions. For example,
(k1, k2, k3, k4, k5) = (0, 0, 2, 3, 5). We show this solution is impossible. Since k2 = 0 and
m3 = 728, it follows that m2i 6= 728, for 1 ≤ i ≤ 7. On the other hand, by Lemma 3,
we have |P2||(1 + m2 + m22 + · · ·+ m27), since m2i 6= 728 for 1 ≤ i ≤ 7, by a computer
calculation we have |P2||27, which is a contradiction. Assume (k1, k2, k3, k4, k5) = (0, 9, 0, 0, 5)
is a solution. Since |P2||(1 + m2 + m22 + · · ·+ m27) by Lemma 3. Indeed, |P2||(1 + 63 +

504t1 + 728t2 + 1008t3 + 1512t4 + 1728t5) where t1, t2, t3, t4, t5, are non-negative integers and
0 ≤ t1 + t2 + t3 + t4 + t5 ≤ 6. Since k1 = 0, k2 = 9, and k3 = 0, 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 10, and
0 ≤ t3 ≤ 1. Since k4 = 0 and m27 = 1512 or 1728, t4 = 0. Also k5 = 5, and thus 0 ≤ t5 ≤ 6.
By an easy calculation, this is impossible. Arguing as above, for other solutions, we have
a contradiction.
If a = 9, then 35928 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 + k2 + k3 +

k4 + k5 ≤ 22. By a computer calculation, it is easily seen that the equation has no solution.

• Let exp(P3) = 34. Then by Lemma 3, |P3||(1+ m3 + m32 + m33 + m34) and so |P3||34 (for example
when (m9 = 504, m27 = 1008, and m81 = 1728)).

If |P3| = 34, then n3 =
m81

φ(81) , since m81 ∈ {1512, 1728}, n3 = 3.7 or n3 = 25. If n3 = 3.7, then 7 ∈ π(G)

which is a contradiction. If n3 = 25, since a cyclic group of order 81 has two elements of order 3,
then m3 ≤ 25.2, which is a contradiction.

Remark 4. According to Lemmas 10 and 11, Remark 3 we have π(G) = {2, 3, 7}.

Lemma 12. G ∼= PSU(3, 3).

Proof. First, we show that |G| = |PSU(3, 3|. From the above arguments, we have |P7| = 7.
Since 3.7 /∈ ω(G), the group P3 acts fixed point freely on the set of elements of order 7, and so
|P3||m7. Hence |P3||33. Likewise, 2.7 /∈ ω(G), and so |P2||26. Hence, we have |G| = 2m.3n.7.
Since 5544 = 23.32.7.11 ≤ 2m.3n.7, we conclude that |G| = 26.33.7 or |G| = 25.33.7. The proof is
completed by showing that there is no group such that |G| = 26.33.7 and nse(G) = nse(PSU(3, 3)). First,
we claim that G is a non-solvable group. Suppose that G is solvable, since n7 =

m7
φ(7) = 25.32, by Lemma

7, 25 ≡ 1 (mod7), which is a contradiction. Therefore, G is a non-solvable group and 72 6| |G|. Hence, G
has a normal series 1E N E H E G, such that N is a maximal solvable normal subgroup of G and H

N
is a non-solvable minimal normal subgroup of G

N . Indeed, H
N is a non-abelian simple K3-group, and

so by Lemma 9, H
N is isomorphic to L2(7) or L2(8). Suppose that H

N
∼= L2(7). We know n7(L2(7)) = 8.

From Lemma 6, we have n7(
H
N )t = n7(G), and so, n7(G) = 8t for some integer t. On the other hand,

since n7(G)|26.33 and n7(G) = 1 + 7k, we have n7(G) = 1, n7(G) = 8, n7(G) = 36, n7(G) = 64, or
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n7(G) = 288. If n7(G) = 36, then since 36 = 8t has no integer solution, we have a contradiction.
Similarly, if H

N
∼= L2(8), we have a contradiction. As a result, |G| = 25.33.7 = |PSU(3, 3)|. Hence

|G| = |PSU(3, 3)|, and by assumption, nse(G) = nse(PSU(3, 3)) , so by [2], G ∼= PSU(3, 3) and the proof
is completed.

The remainder of this section will be devoted to the proof of Theorem 2.

Proof of Theorem 2. Let G be a group with

nse(G) = nse(PSL(3, 3)) = {1, 117, 702, 728, 936, 1404, 1728},

where PSL(3, 3) is the projective special linear group of degree 3 over field of order 3. The proof will be
divided into a sequence of lemmas.

Lemma 13. π(G) ⊆ {2, 3, 13}.

Proof. First, since 117 ∈ nse(G), by Lemma 2, 2 ∈ π(G) and m2 = 117. Applying formula (1), we
obtain π(G) ⊆ {3, 5, 7, 13, 19, 937}. Now, we prove that 7 /∈ π(G). Conversely, suppose that 7 ∈ π(G).
Then formula (1), implies m7 = 1728. From the formula (1), we conclude that if 2.7 ∈ ω(G), then
m14 = 702. On the other hand, if 2.7 ∈ ω(G), then by Lemma 4, m2.7 = m7.φ(2).t for some integer
t. Hence 702 = 1728t, which is a contradiction and hence 2.7 /∈ ω(G). Since 2.7 /∈ ω(G), the group
P7 acts fixed point freely on the set of elements of order 2 of G. Hence, by Lemma 8, |P7||m2, which
is a contradiction. In the same manner, we can see that 5 /∈ π(G). Now, we prove 19 /∈ π(G).
Conversely, suppose that 19 ∈ π(G). Then formula (1), implies m19 ∈ {702, 1728}. On the other hand,
by formula (1), we conclude that if 2.19 ∈ ω(G), then m2.19 ∈ {702, 936, 1404, 1728} . Now, if m19 = 702,
then 2.19|1 + m2 + m19 + m2.19(= 1522, 1756, 2224, 2548), which is a contradiction, and if m19 = 1728,
2.19|1+ m2 + m19 + m2.19(= 2548, 2782, 3250, 3574) which is a contradiction. Hence 2.19 /∈ ω(G). Since
2.19 /∈ ω(G), the group P19 acts fixed point freely on the set of elements of order 2 of G, and so |P19||m2.,
which is a contradiction. Similarly, we can prove that 937 /∈ π(G). From what has already been proved,
we conclude that π(G) ⊆ {2, 3, 13}.

Remark 5. If 3, 13 ∈ π(G), then m3 = 728 and m13 = 1728. If (13)a ∈ ω(G), since m
(13)2 /∈ nse(G),

then a = 1. By Lemma 3, |P13||1 + m13 and so |P13||13. Suppose 13 ∈ π(G). Then since |P13| = 13,
n13 = m13

φ(13) = 32.24||G|.Therefore, if 13 ∈ π(G), then 3, 2 ∈ π(G). Hence, we only have to consider two proper
sets {2}, {2, 3}, and finally the whole set {2, 3, 13}.

Now, we will show that π(G) is not equal {2} and {2, 3}. For this purpose at first, we need obtain
some information about elements of ω(G).

If 2a ∈ ω(G), then, by formula (1), we have 0 ≤ a ≤ 4.
By Lemma 3, |P2||(1+ m2 + m22 + · · ·+ m24) and so |P2||24.
If 3a ∈ ω(G), then 1 ≤ a ≤ 4.

Lemma 14. π(G) 6= {2} and π(G) 6= {2, 3}.

Proof. We claim that π(G) 6= {2}. Assume the contrary, that is, let π(G) = {2}. Then |ω(G)| ≤ 5.
Since, nse(G) has seven elements and |ω(G)| ≤ 5, we have a contradiction. Hence π(G) 6= {2}.
Our next claim is that π(G) 6= {2, 3}. Suppose, contrary to our claim, that π(G) = {2, 3}.
Since 35 /∈ ω(G), exp(P3) = 3, 32, 33, 34.

• Let exp(P3) = 3. Then by Lemma 3, |P3||(1+ m3) and so |P3||36. We will consider six cases for |P3|.

Case 1. If |P3| = 3, then since n3 = m3
φ(3) = 2.7.13||G|, 7 ∈ π(G), which is a contradiction.
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Case 2. If |P3| = 32, then since exp(P3) = 3 and 3.25 /∈ ω(G), |ω(G)| ≤ 10. Therefore 5616+ 702k1 +

728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.9 where k1, k2, k3, k4, k5, and a are non-negative
integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 3. Since 5616 ≤ 2a.9 ≤ 5616 + 3.1728, we have
a = 10.
If a = 10, then since |P2||24, we have a contradiction. Similarly, we can rule out other cases.

• Let exp(P3) = 32. Then by Lemma 3, |P3||(1+ m3 + m32) and |P3||33 (for example when m9 = 702).
We will consider two cases for |P3|.
Case1. If |P3| = 32, then n3 = m9

φ(9) ||G|, since m9 ∈ {702, 936, 1404, 1728}, n3 = 32.13, n3 = 22.13.3, or

n3 = 2.32.13, and so 13 ∈ π(G), which is a contradiction, and if n3 = 25.32, since a cyclic group of
order 9 has two elements of order 3, m3 ≤ 25.32.2 = 576, which is a contradiction.
Case 2. If |P3| = 33, then since exp(P3) = 32, 3.25 /∈ ω(G), and 32.25 /∈ ω(G), |ω(G)| ≤ 15.
Therefore 5616+ 702k1 + 728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.27 where k1, k2, k3, k4, k5, and
a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. Since 5616 ≤ 2a.27 ≤ 5616+ 8.1728,
we have a = 8 or a = 9, which is a contradiction.

• Let exp(P3) = 33. Then by Lemma 3, |P3||(1 + m3 + m32 + m33) and |P3||35 ( for example when
m9 = 702 and m27 = 1728). We will consider tree cases for |P3|.
Case 1. If |P3| = 33, then n3 = m27

φ(27) , since m27 ∈ {702, 1404, 1728}, n3 = 3.13, or n3 = 2.3.13, and so

13 ∈ π(G), which is a contradiction, and if n3 = 25.3, since a cyclic group of order 27 has two
elements of order 3, m3 ≤ 25.3.2 = 192, which is a contradiction.
Case 2. If |P3| = 34, then since exp(P3) = 33, 3.25 /∈ ω(G), 32.25 /∈ ω(G), and 33.25 /∈ ω(G),
|ω(G)| ≤ 20. Therefore 5616 + 702k1 + 728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.81
where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 13.
Since 5616 ≤ 2a.81 ≤ 5616+ 13.1728, we have a = 7 or a = 8, which is a contradiction. In the same
way, we can rule out the case |P3| = 35

• Let exp(P3) = 34. Then by Lemma 3, |P3||(1 + m3 + m32 + m33 + m34) and |P3||35 ( for example
when m9 = 1404, m27 = m81 = 1728).We will consider two cases for |P3|.
Case 1. If |P3| = 34, then n3 = m81

φ(81) , since m81 ∈ {702, 1404, 1728}, n3 = 13 or n3 = 13.2 and so

13 ∈ π(G), which is a contradiction. If n3 = 25, since a cyclic group of order 81 has two elements
of order 3, then m3 ≤ 25.2 which is a contradiction.
Case 2. If |P3| = 35, since exp(P3) = 34, 3.25 /∈ ω(G), 32.25 /∈ ω(G), 33.25 /∈ ω(G), and 34.25 /∈ ω(G),
|ω(G)| ≤ 25. Therefore, 5616 + 702k1 + 728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.243 where
k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 18. Since 5616 ≤
2a.243 ≤ 5616+ 18.1728, we have a = 5 or a = 6 or a = 7, which is a contradiction.

Remark 6. According to Lemmas 13 and 14, and Remark 5, we have π(G) = {2, 3, 13}.

Lemma 15. G ∼= PSL(3, 3).

Proof. We show that |G| = |PSL(3, 3|. From the above arguments, we have |P13| = 13.
Since 2.13 /∈ ω(G), it follows that, the group P2 acts fixed point freely on the set of elements of
order 13, and so |P2||m13. Hence, |P2||26. Likewise, 3.13 /∈ ω(G), and so |P3||33. and so |P2||m13. Hence,
|P2||26. Likewise, 3.13 /∈ ω(G), and so |P3||33. Hence we have |G| = 2m.3n.13.

Since 5616 = 24.33.13 ≤ 2m.3n.13, we conclude that |G| = 26.33.13, |G| = 26.32.13, |G| = 25.33.13,
or |G| = 24.33.13. The proof is completed by showing that there is no group such that |G| = 26.33.13,
|G| = 26.32.13, or |G| = 25.33.13, and nse(G) = nse(PSL(3, 3)). First, we show that there is no group
such that |G| = 26.33.13 and nse(G) = nse(PSL(3, 3)). We claim that G is a non-solvable group.
Suppose that G is a solvable group, since n13 = m13

φ(13) = 24.32, by Lemma 7, 24 ≡ 1 (mod13), which is

a contradiction. Therefore G is a non-solvable group and (13)2 6| |G|. Hence, G has a normal series
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1 E N E H E G, such that N is a maximal solvable normal subgroup of G and H
N is a non-solvable

minimal normal subgroup of G
N . Indeed, H

N is a non-abelian simple K3-group, and so by Lemma 9
H
N is isomorphic to one of the simple K3 groups. In fact, H

N
∼= L3(3). We know n13(L3(3)) = 144.

From Lemma 6, we have n13(
H
N )t = n13(G), and so n13(G) = 144t for some integer t. On the other

hand, since n13(G)|26.33 and n13(G) = 1 + 13k, we have n13(G) = 1, n13(G) = 27, or n13(G) = 144.
If n13(G) = 27, then since 27 = 144t has no integer solution, we have a contradiction. Similarly, we can
rule out the case |G| = 25.33.13 and nse(G) = nse(PSL(3, 3)). Finally, we have to show that there is
no group such that |G| = 26.32.13 and nse(G) = nse(PSL(3, 3)). By Lemma 7, it is easy to check that
G is a non-solvable group, and (13)2 6| |G|. Hence, G has a normal series 1 E N E H E G, such that
N is a maximal solvable normal subgroup of G and H

N is a non-solvable minimal normal subgroup
of G

N . Indeed, H
N is a non-abelian simple K3-group, and so by Lemma 9 H

N is isomorphic to L3(3).
Therefore |H| = |N|24.33.13, which is a contradiction. As a result, |G| = 24.33.13 = |PSL(3, 3)|.
Hence |G| = |PSL(3, 3)| and by assumption, nse(G) = nse(PSL(3, 3)) , so by [2], G ∼= PSL(3, 3) and the
proof is completed.

4. Conclusions

In this paper, we showed that the groups PSU(3, 3) and PSL(3, 3) are characterized by nse. Further
investigations are needed to answer “is a group G isomorphic to PSU(3, q) (q > 8 is a prime power)
if and only if nse(G) = nse(PSU(3, q))?” and “is a group G isomorphic to PSL(3, q) (q > 8 is a prime
power) if and only if nse(G) = nse(PSL(3, q))?”. In future work, these questions will be considered.

Author Contributions: All authors contributed equally on writing this paper. All authors have read and have
approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express their deep gratitude to the referees for their helpful
comments and valuable suggestion for improvment of this paper. Part of this research work was done while the
second author was spending his sabbatical leave at the Department of Mathematics of University of California,
Berkeley. This author expresses his thanks for the hospitality and facilities provided by Department of Mathematics
of UCB.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, W.. A new characterization of sporadic simple groups. In Group Theory, Proceedings of the 1987 Singapore
Conference on Group Theory, Singapore, 8–9 June 1987; Walter de Gruyter: Berlin, Germany, 1989; pp. 531–540.

2. Shoa, C.; Shi, W.; Jiang, Q. A characterization of simple K3-groups. Adv. Math. 2009, 38, 327–330.
3. Shoa, C.; Shi,W.; Jiang,Q. Characterization of simple K4-groups. Front. Math. China 2008, 3, 355–370.

[CrossRef]
4. Iranmanesh, A.; Parvizi Mosaed, H.; Tehranian, A. Characterization of Suzuki group by nse and order of

group. Bull. Korean Math. Soc. 2016, 53, 651–656. [CrossRef]
5. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A.; Tehranian, A. A characterization of sporadic simple

groups by nse and order. J. Algebra Appl. 2013, 12. [CrossRef]
6. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A.; Tehranian, A. A new characterization of A7, A8. An.

St. Univ. Ovidius Constanta 2013, 21, 43–50. [CrossRef]
7. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new characterization of Symmetric groups for some

n. Hacet. J. Math. Stat. 2013, 43, 715–723.
8. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new note on characterization of a Mathieu group of

degree 12. Southeast Asian Bull. Math. 2014, 38, 383–388.
9. Khalili Asboei, A. A new characterization of PSL(2, 27). Bol. Soc. Paran. Mat. 2014, 32, 43–50. [CrossRef]
10. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new characterization of PSL(2,q) for some q.

Ukr. Math. J. 2016, 67, 1297–1305. [CrossRef]

http://dx.doi.org/10.1007/s11464-008-0025-x
http://dx.doi.org/10.4134/BKMS.b140564
http://dx.doi.org/10.1142/S0219498812501587
http://dx.doi.org/10.2478/auom-2013-0041
http://dx.doi.org/10.5269/bspm.v32i1.15899
http://dx.doi.org/10.1007/s11253-016-1153-1


Mathematics 2018, 6, 120 10 of 10

11. Khatami, M.; Khosravi, B.; Akhlaghi, Z. A new characterization for some linear groups. Monatsh. Math. 2011,
163, 39–50. [CrossRef]

12. Shoa, C.; Jiang, Q. Characterization of groups L2(q) by nse where q ∈ {17, 27, 29}. Chin. Ann. Math.
2016, 37B, 103–110. [CrossRef]

13. Chen, D. A characterization of PSU(3,4) by nse. Int. J. Algebra Stat. 2013, 2, 51–56. [CrossRef]
14. Liu, S. A characterization of L3(4). Sci. Asia 2013, 39, 436–439. [CrossRef]
15. Liu, S. A characterization of projective special unitary group U3(5) by nse. Arab J. Math. Sci. 2014, 20, 133–140.

[CrossRef]
16. Liu, S. A characterization of projective special linear group L3(5) by nse. Ital. J. Pure Appl. Math. 2014, 32, 203–212.
17. Jahandideh Khangheshlaghi, M.; Darafsheh, M.R. Nse characterization of the Chevalley group G2(4).

Arabian J. Math. 2018, 7, 21–26. [CrossRef]
18. Parvizi Mosaed, H.; Iranmanesh, A.; Tehranian, A. Nse characterization of simple group L2(3n). Publ. Instit.

Math. Nouv. Ser. 2016, 99, 193–201. [CrossRef]
19. Parvizi Mosaed, H.; Iranmanesh, A.; Foroudi Ghasemabadi, M.; Tehranian, A. A new characterization of

simple group L2(2m). Hacet. J. Math. Stat. 2016, 44, 875–886.
20. Kurzweil, H.; Stellmacher, B. The Theory of Finite Groups an Introduction; Springer: New York, NY, USA, 2004 .
21. Shen, R.; Shoa, C.; Q. Jiang, Q.; Shi., W.; Mazurov, V. A new characterization of A5. Monatsh. Math.

2010, 160, 337–341. [CrossRef]
22. Frobenius, G. Verallgemeinerung der Sylowschen Satze. Berl. Ber. 1895, 2, 981–993.
23. Shoa, C.; Jiang, Q. A new characterization of some linear groups by nse. J. Algebra Its Appl. 2014, 13.

[CrossRef]
24. Miller, G.A. Addition to a theorem due to Frobenius. Bull. Am. Math. Soc. 1904, 11, 6–7. [CrossRef]
25. Hall, M. The Theory of Groups; Macmillan: New York, NY, USA, 1959.
26. Passman, D. Permutation Groups; W. A. Benjamin: New York, NY, USA, 1968.
27. Herzog, M. On finite simple groups of order divisible by three primes only. J. Algebra 1968, 10, 383–388.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00605-009-0168-1
http://dx.doi.org/10.1007/s11401-015-0953-1
http://dx.doi.org/10.20454/ijas.2013.652
http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39.436
http://dx.doi.org/10.1016/j.ajmsc.2013.05.004
http://dx.doi.org/10.1007/s40065-017-0182-4
http://dx.doi.org/10.2298/PIM141220015M
http://dx.doi.org/10.1007/s00605-008-0083-x
http://dx.doi.org/10.1142/S0219498813500941
http://dx.doi.org/10.1090/S0002-9904-1904-01179-9
http://dx.doi.org/10.1016/0021-8693(68)90088-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notation and Preliminaries 
	 Main Results
	Conclusions 
	References

