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Abstract: In this paper, we study the stability analysis of two within-host virus dynamics models
with antibody immune response. We assume that the virus infects n classes of target cells. The second
model considers two types of infected cells: (i) latently infected cells; and (ii) actively infected cells
that produce the virus particles. For each model, we derive a biological threshold numberR0. Using
the method of Lyapunov function, we establish the global stability of the steady states of the models.
The theoretical results are confirmed by numerical simulations.
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1. Introduction

Recently, many mathematicians have proposed several mathematical models to describe the
interaction between viruses (such as HIV, HCV, HBV, HTLV and CHIKV) and human target
cells (see, e.g., [1–36]). Mathematical models of human viruses can lead to the development of
efficient antiviral drugs and to understand the interaction of the viruses with target cells [2].
Studying the stability analysis of the models is also important to understand the behavior of the virus.
Immune response plays an important role in controlling the infection of several viruses. Cytotoxic T
Lymphocyte (CTL) and antibodies are the two effector responses of the immune system. CTL cells
attack and kill the infected cells. The B cell produces antibodies to neutralize the viruses. The antibody
immune response is more effective than CTL immune response in some infection processes [37].
The basic virus dynamics model with antibody immune response has been presented in [29,30] as:

Ṡ = µ− dS− bSV, (1)

İ = bSV − εI, (2)

V̇ = mI − rV − qBV, (3)

Ḃ = cBV − δB, (4)

where S, I, V, and B are the concentrations of uninfected target cells, infected cells, virus particles
and B cells, respectively. Parameters d and µ represent the death rate and birth rate constants of
the uninfected cells, respectively. The uninfected cells become infected at rate bSV, where b is rate
constant of the virus-target incidence. The infected cells and free virus particles die at rates εI and rV,
respectively. An actively infected cell produces an average number m of virus particles per unit time.
The virus particles are attacked by the B cells at rate qVB. The term cBV represents the growth rate of
B cells after encountering the virus. The B cells die at rate δB. In 2017, Wang and Liu [36] presented a
mathematical model for in host virus infection by considering a constant production rate of the B cells
in addition to their proliferation rate. Equation (4) has been modified as:
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Ḃ = η + cBV − δB, (5)

where η is the production rate of the B cells.
The model in Equations (1)–(4) assumes that the virus infects only one category of target cells.

There are several models for viral infections that have included two categories of target cells (see,
e.g., [38–47]). It has been reported in [48] that HIV infects vital cells in the human immune system such
as helper T cells (specifically CD4+ T cells), macrophages, and dendritic cells. In the case of CHIKV
infection, the CHIKV inoculates into the body via bites from infected mosquitoes and replicates in a
variety of cells, such as skeletal muscle satellite cells, fibroblasts, macrophages, monocytes and other
skin cells [49–52]. To model the virus dynamics with multiple categories of target cells, Elaiw [53]
proposed the following viral infection model:

Ṡi = µi − diSi − biSiV, i = 1, ..., n, (6)

İi = biSiV − εi Ii, i = 1, ..., n, (7)

V̇ =
n

∑
i=1

mi Ii − rV, (8)

where n is the number categories of target cells. This model was generalized by Xia et al. [54]
by considering general nonlinear rates for viral infection and cell death. In [53,54], the antibody
immune response has been neglected. Several mathematical models have been proposed which
take the antibody immune response into account (see, e.g., [29–35]). However, these models have
included one target cell population. Therefore, our aim in this paper is to introduce two virus infection
models to describe the dynamics of the virus with n classes of target cells. The antibody immune
response is considered where the population dynamics of the B cells is described by Equation (5).
In the second model, we incorporate both latently and actively infected cells. We investigate the
nonnegativity and boundedness of the solutions of the models. We establish the existence of the
steady states and analyze their global stability. We construct Lyapunov function using the method of
Korobeinikov [55].

2. Virus Dynamics Model

We consider a within-host virus dynamics model with n classes of uninfected target cells.

Ṡi = µi − diSi − biSiV, i = 1, ..., n, (9)

İi = biSiV − εi Ii, i = 1, ..., n, (10)

V̇ =
n

∑
i=1

mi Ii − rV − qBV, (11)

Ḃ = η + cBV − δB, (12)

where Si, Ii represent the concentrations of the uninfected target cells and infected cells of class i,
respectively.

2.1. Properties of Solutions

To show that the model in Equations (9)–(12) is biologically acceptable in the sense that no
population goes negative or infinity, we establish the nonnegativity and boundedness of solutions of
the model. Let S = (S1, S2, ..., Sn) and I = (I1, I2, ..., In).

Proposition 1. For the system in Equations (9)–(12), there exists a positively invariant compact set



Mathematics 2018, 6, 118 3 of 19

Ω =
{
(S, I, V, B) ∈ R2n+2

≥0 : 0 ≤ Si, Ii ≤ Ni, i = 1, ..., n. 0 ≤ V ≤ M1, 0 ≤ B ≤ M2

}
.

Proof. Since

Ṡi
∣∣
Si=0 = µi > 0, i = 1, ..., n, İi

∣∣
Ii=0 = biSiV ≥ 0 for all Si, V ≥ 0, i = 1, ..., n,

V̇
∣∣
V=0 =

n

∑
i=1

mi Ii ≥ 0 for all Ii ≥ 0, Ḃ
∣∣
B=0 = η > 0,

then, R2n+2
≥0 is positively invariant for the system in Equations (9)–(12).

Next, let Ti(t) = Si + Ii, i = 1, ..., n, then

Ṫi ≤ µi − σiTi,

where σi = min{di, εi}. Hence, 0 ≤ Ti(t) ≤
µi
σi

for all t ≥ 0 if Ti(0) ≤
µi
σi

. It follows
that 0 ≤ Si(t), Ii(t) ≤ Ni for all t ≥ 0, if 0 ≤ Si(0) + Ii(0) ≤ Ni, where, Ni = µi

σi
. Moreover,

let X(t) = V(t) + q
c B(t), then

Ẋ(t) =
n

∑
i=1

mi Ii − rV +
q
c

η − δq
c

B ≤
n

∑
i=1

mi Ni +
q
c

η − ρ1(V +
q
c

B) =
n

∑
i=1

mi Ni +
q
c

η − ρ1X(t),

where ρ1 = min{r, δ}. Hence, X(t) ≤ M1, where M1 =
n
∑

i=1

mi Ni+
q
c η

ρ1
. Since V(t) ≥ 0 and B(t) ≥ 0,

then 0 ≤ V(t) ≤ M1 and 0 ≤ B(t) ≤ M2 if 0 ≤ V(0) + q
c B(0) ≤ M1, where M2 = cM1

q .

2.2. Steady States

In this subsection, we show the existence of the steady states of the model in Equations (9)–(12).
The basic reproduction number of the system in Equations (9)–(12) is defined as:

R0 =
n

∑
i=1
R0i =

n

∑
i=1

mibiµiδ

diεi(rδ + qη)
.

Lemma 1. (i) IfR0 ≤ 1, then the virus-free steady state Q0 is the only steady state for the system; and (ii) if
R0 > 1, then the system has a unique endemic steady state Q1 and Q1 ∈ Ω̊, where Ω̊ is the interior of Ω.

Proof. Let the R.H.S of the system in Equations (9)–(12) equal zero; then, we get:

Si =
µi

di + biV
, i = 1, ..., n, (13)

Ii =
biSiV

εi
, i = 1, ..., n, (14)

n

∑
i=1

mi Ii = (r + qB)V, (15)

B =
η

δ− cV
. (16)
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Substituting Equations (13), (14) and (16) into Equation (15), we get

n

∑
i=1

mibiµiV
εi (di + biV)

− (r + qB)V = 0,(
n

∑
i=1

mibiµiδ

diεi (1 + αiV) (rδ + qη)
− (r + qB) δ

(rδ + qη)

)
V = 0,(

n

∑
i=1

R0i
1 + αiV

− δ (γ− rcV)

γ (δ− cV)

)
V = 0, (17)

where αi =
bi
di

and γ = rδ + qη. Equation (17) admits V = 0 as a solution. Substituting V = 0 in
Equations (13),(14) and (16), we get the virus-free steady state Q0 = (S0, I0, V0, B0), where S0

i = µi
di

,
I0
i = 0, V0 = 0, and B0 = η

δ . The other possibility of Equation (17) is

n

∑
i=1

R0iγ (δ− cV)

1 + αiV
− δ (γ− rcV) = 0, (18)

where V 6= δ
c .

Let us define a function F(V) as:

F(V) =
n

∑
i=1

R0iγ (δ− cV)

1 + αiV
− δ (γ− rcV)

Then, we get

F(0) = γδ (R0 − 1) ,

F
(

δ

c

)
= −qδη.

Thus, if R0 > 1, then F(0) > 0, F
(

δ
c

)
< 0 and there exists V∗ ∈

(
0, δ

c

)
such that

F(V∗) = 0. Moreover, from Equations (13), (14) and (16), we obtain S∗i > 0, I∗i > 0 and B∗ > 0.
Then, Q1 = (S∗, L∗, I∗, V∗, B∗) exists whenR0 > 1.

Clearly, Q0 ∈ Ω. Now, we show that if R0 > 1, then Q1 ∈ Ω̊. From Equations (13) and (14),
we have diS∗i + εi I∗i = µi, i = 1, ..., n. Since S∗i > 0 and I∗i > 0, then

diS∗i < µi ⇒ S∗i <
µi
di
≤ Ni,

εi I∗i < µi ⇒ I∗i <
µi
εi
≤ Ni.

Moreover, from Equations (15)–(16), we have

n

∑
i=1

mi I∗i − rV∗ − qV∗B∗ +
q
c
(η + cB∗V∗ − δB∗) = 0,

⇒ rV∗ +
δq
c

B∗ =
n

∑
i=1

mi I∗i +
q
c

η <
n

∑
i=1

mi Ni +
q
c

η

⇒ V∗ <
n

∑
i=1

mi Ni +
q
c η

r
≤ M1, B1 <

c
q

n

∑
i=1

mi Ni +
q
c η

δ
≤ cM1

q
= M2.

It follows that Q1 ∈ Ω̊.
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2.3. Global Stability

In the following theorems, we establish the global stability of the two steady states of
the system in Equations (9)–(12) by constructing suitable Lyapunov functions. Let us define

H(x) = x− ln x− 1.

Clearly, H(x) ≥ 0 for x > 0 and H(1) = 0.

Theorem 1. For the system in Equations (9)–(12), suppose thatR0 ≤ 1, then Q0 is globally asymptotically
stable in Ω.

Theorem 2. For the system in Equations (9)–(12), suppose thatR0 > 1, then Q1 is globally asymptotically
stable in Ω̊.

The proofs of these theorems are given in the Appendix A.
Biologically, whenR0 < 1, then each infected cell will produce less than one infected cell during

its life at the beginning of the infection. The virus will be decreased and eliminated from the body.
WhenR0 > 1, then, at the beginning of the infection, each infected cell will produce more than one
infected cell during its life. The viruses will be increased and the infection becomes chronic.

3. Virus Model with Latency

In this section, we study the mathematical model of virus infection with n classes of uninfected
target cells, taking into account the latently infected cells (such cells contain the viruses but are not
producing it) and the actively infected cells (such cells are producing the viruses).

Ṡi = µi − diSi − biSiV, i = 1, ..., n, (19)

L̇i = (1− pi)biSiV − (θi + λi)Li, i = 1, ..., n, (20)

İi = pibiSiV + λiLi − εi Ii, i = 1, ..., n, (21)

V̇ =
n

∑
i=1

mi Ii − rV − qBV, (22)

Ḃ = η + cBV − δB, (23)

where Li and Ii are the concentrations of latently infected and actively infected target cells of class i,
respectively. A fraction (1− pi) of infected target cells is assumed to be latently infected cells and the
remaining pi becomes actively infected cells, where 0 < pi < 1, i = 1, ..., n. The latently infected cells
are transmitted to actively infected cells at rate λiLi and die at rate θiLi.

3.1. Properties of Solutions

In the following, we establish the nonnegativity and boundedness of solutions of the model in
Equations (19)–(23). Let L = (L1, L2, ..., Ln).

Proposition 2. For the system in Equations (19)–(23), there exists a positively invariant compact set

ΩL =
{
(S, L, I, V, B) ∈ R3n+2

≥0 : 0 ≤ Si, Li, Ii ≤ NL
i , i = 1, ..., n. 0 ≤ V ≤ ML

1 , 0 ≤ B ≤ ML
2

}
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Proof. Since

Ṡi
∣∣
Si=0 = µi > 0, i = 1, ..., n,

L̇i
∣∣
Li=0 = (1− pi)biSiV ≥ 0 for all Si, V ≥ 0, i = 1, ..., n,

İi
∣∣

Ii=0 = pibiSiV + λiLi ≥ 0 for all Si, Li, V ≥ 0, i = 1, ..., n,

V̇
∣∣
V=0 =

n

∑
i=1

mi Ii ≥ 0 for all Ii ≥ 0,

Ḃ
∣∣
B=0 = η > 0,

then, R3n+2
≥0 is positively invariant for the system in Equations (19)–(23).

We consider Ti(t) = Si + Li + Ii, i = 1, ..., n, then

Ṫi(t) ≤ µi − σL
i Ti(t),

where σL
i = min{di, θi, εi}. Hence, 0 ≤ Ti(t) ≤

µi
σL

i
for all t ≥ 0 if Ti(0) ≤

µi
σL

i
. It follows that

0 ≤ Si(t), Li(t), Ii(t) ≤ NL
i for all t ≥ 0, if 0 ≤ Si(0) + Li(0) + Ii(0) ≤ NL

i , where NL
i = µi

σL
i

. On the

other hand, let X(t) = V(t) + q
c B(t), then

Ẋ(t) =
n

∑
i=1

mi Ii − rV +
q
c

η − δq
c

B ≤
n

∑
i=1

mi Ni +
q
c

η − ρ2(V +
q
c

B) =
n

∑
i=1

mi Ni +
q
c

η − ρ1X(t).

Hence, X(t) ≤ ML
1 , where ML

1 =
n
∑

i=1

mi Ni+
q
c η

ρ1
. Since V(t) ≥ 0 and B(t) ≥ 0, then 0 ≤ V(t) ≤ ML

1

and 0 ≤ B(t) ≤ ML
2 if 0 ≤ V(0) + q

c B(0) ≤ ML
1 , where ML

2 =
cML

1
q .

3.2. Steady States

In this subsection, we establish the existence of the steady states of the model in Equations (19)–(23).
The basic reproduction number of the system in Equations (19)–(23) is defined as:

RL
0 =

n

∑
i=1
RL

0i =
n

∑
i=1

mibiµiδ(θi pi + λi)

diεi(θi + λi)(rδ + qη)
.

Lemma 2. (i) IfRL
0 ≤ 1, then the virus-free steady state QL

0 is the only steady state for the system; and (ii) if
RL

0 > 1, then the system has a unique endemic steady state QL
1 and QL

1 ∈ Ω̊L.

Proof. Let the R.H.S of the system in Equations (19)–(23) equal zero; then, we get:

Si =
µi

di + biV
, i = 1, ..., n, (24)

Li =
(1− pi)biSiV

θi + λi
, i = 1, ..., n, (25)

Ii =
biSiV(θi pi + λi)

εi(θi + λi)
, i = 1, ..., n, (26)

n

∑
i=1

mi Ii = (r + qB)V, (27)

B =
η

δ− cV
. (28)

Substituting Equations (24)–(26) and (28) into Equation (27), we get
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n

∑
i=1

mibiµi(θi pi + λi)V
εi (di + biV) (θi + λi)

− (r + qB)V = 0,(
n

∑
i=1

mibiµiδ(θi pi + λi)

diεi (1 + αiV) (θi + λi)(rδ + qη)
− (r + qB) δ

(rδ + qη)

)
V = 0,(

n

∑
i=1

RL
0i

1 + αiV
− δ (γ− rcV)

γ (δ− cV)

)
V = 0, (29)

where αi =
bi
di

and γ = rδ + qη. Equation (29) gives two possible solutions. If V = 0, then we get
virus-free steady state QL

0 = (S0, L0, I0, V0, B0) = ( µi
di

, 0, 0, 0, η
δ ). If V 6= 0, then Equation (29) becomes

n

∑
i=1

RL
0iγ (δ− cV)

1 + αiV
− δ (γ− rcV) = 0. (30)

We define a function G(V) as:

G(V) =
n

∑
i=1

RL
0iγ (δ− cV)

1 + αiV
− δ (γ− rcV) .

IfRL
0 > 1, then

G(0) = γδ
(
RL

0 − 1
)
> 0,

G
(

δ

c

)
= −qδη < 0.

and there exists V∗ ∈
(

0, δ
c

)
such that G(V∗) = 0. Moreover, from Equations (24)–(26) and (28),

we obtain S∗i > 0, L∗i > 0, I∗i > 0 and B∗ > 0.
Similar to the proof of Lemma 1, one can easily show that QL

0 ∈ ΩL and QL
1 ∈ Ω̊L.

3.3. Global Stability

In this section, we use Lyapunov method to prove the global stability of the two steady states of
the system in Equations (19)–(23).

Theorem 3. For the system in Equations (19)–(23), suppose thatRL
0 ≤ 1, then QL

0 is globally asymptotically
stable in ΩL.

Theorem 4. For the system in Equations (19)–(23), suppose thatRL
0 > 1, then QL

1 is globally asymptotically
stable in Ω̊L.

The proofs of these theorems are given in the Appendix A.

4. Numerical Simulations

To illustrate our theoretical results, we perform numerical simulations for the systems in
Equations (9)–(12) and Equations (19)–(23). We consider the case n = 2.

4.1. Simulations for Virus Dynamics Model

Using the values of the parameters given in Table 1, we show the dynamical behavior of the
system states S, I, V and B, to confirm the theoretical results given in Theorems 1–2.
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Table 1. The values of the parameters of the model in Equations (9)–(12).

Parameter Value Parameter Value

µ1 1.826 d1 0.7979
µ2 3.198 d2 0.5
b1 varied q 0.5964
c 0.5 r 0.4418

m1 = m2 2.02 η 1.402
b2 varied δ 1.251

ε1 = ε2 0.4441

• Effect of b1 and b2 on the stability of steady states: To show the global stability results,
we consider three different initial values as:

IV1: S1(0) = 2.0, S2(0) = 6.0, I1(0) = 0.3, I2(0) = 0.4, V(0) = 0.4 and B(0) = 2.0,
IV2: S1(0) = 1.7, S2(0) = 5.5, I1(0) = 0.7, I2(0) = 0.7, V(0) = 0.6 and B(0) = 4.0,
IV3: S1(0) = 1.4, S2(0) = 5.0, I1(0) = 1.1, I2(0) = 1.0, V(0) = 0.8 and B(0) = 6.0.
We consider two sets of the parameters b1 and b2 as follows:
Set (I): We choose b1 = 0.005 and b2 = 0.02. Using these data, we compute R0 = 0.5710 < 1,

then the system has one steady state Q0. In Figure 1, we can see that the concentrations of the
uninfected target cells and B cells return to their normal values S0

1 = µ1
d1

= 2.2885, S0
2 = µ2

d2
= 6.3960,

and B0 = η
δ = 1.1207. On the other hand, the concentrations of infected target cells and virus particles

are decaying and approaching zero for all the three initial values IV1–IV3. It means that Q0 is globally
asymptotically stable and the virus will be cleared. This result confirms the result of Theorem 1.

t

0 5 10 15 20 25 30

S
1
(t

)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Set (II)

Set (I)

(a)

t

0 5 10 15 20 25 30

S
2
(t

)

4

4.5

5

5.5

6

6.5

Set (II)

Set (I)

(b)

t

0 5 10 15 20 25 30

I 1
(t

)

0

0.5

1

1.5

2

2.5

Set (II)

Set (I)

(c)

t

0 5 10 15 20 25 30

I 2
(t

)

0

0.5

1

1.5

2

2.5

Set (II)

Set (I)

(d)

Figure 1. Cont.
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t

0 5 10 15 20 25 30

V
(t

)

0

0.5

1

1.5

2

2.5

3

Set (I)

Set (II)

(e)

t

0 5 10 15 20 25 30

B
(t

)

1

2

3

4

5

6

7

Set (I)

Set (II)

(f)

Figure 1. The simulation of trajectories of the system in Equations (9)–(12) with IV1–IV3; (a) uninfected
target cells type-1; (b) uninfected target cells type-2; (c) infected target cells type-1; (d) infected target
cells type-2; (e) free virus particles; and (f) B cells.

Set (II): We take b1 = 0.5 and b2 = 0.1. Then, we calculateR0 = 7.3086 > 1. The system has two
steady states Q0 and Q1. It is clear in Figure 1 that both the numerical results and the theoretical results
of Theorem 2 are consistent. It is seen that the solutions of the system converge to the steady state
Q1 = (0.99595, 4.52267, 2.32229, 2.10913, 2.07104, 6.50639) for all the three initial values IV1–IV3.

4.2. Simulations for Virus Model with Latency

In this subsection, we show the numerical results for the system in Equations (19)–(23) with
parameters values given in Table 2. The effect of parameters pi and p2 on the qualitative behavior
of the system is discussed below. We take p = p1 = p2. The initial values are chosen as:
S1(0) = 2.25,S2(0) = 6.0,L1(0) = 0.1, L2(0) = 0.05, I1(0) = 0.1, I2(0) = 0.5, V(0) = 0.4 and B(0) = 1.4.
In Table 3, we have calculated the values of the steady states and RL

0 for different values of p. It is
clearly seen that, as p is increased,RL

0 is also increased. Let pcr be the value of p, such that

RL
0 =

2

∑
i=1

mibiµiδ(θi pcr + λi)

diεi(θi + λi)(rδ + qη)
= 1.

Table 2. The values of the parameters of the model in Equations (19)–(23).

Parameter Value Parameter Value

µ1 1.826 d1 0.7979
µ2 3.198 d2 0.5

le b1 = b2 0.04 q 0.5964
c 0.5 r 0.4418

m1=m2 2.02 η 1.402
λ1 = λ2 0.1 δ 1.251

ε1=ε2 0.4441 θ1 = θ2 0.5
p1=p2 varied

Using the data given in Table 2, we obtain pcr = 0.643144. In Figure 2, we can see that,
for p ≤ 0.643144, the trajectory of the system will converge to QL

0 and, for p > 0.643144, the trajectory
will converge to QL

1 . This shows that, the factor 1− p plays the role of a controller which can used to
stabilize the system around QL

0 . Biologically, the factor 1− p plays the role of an antiviral treatment
which can be applied to eradicate the virus from the body.
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Table 3. The values of steady states,RL
0 for the model in Equations (19)–(23) with different values of p.

p = p1 = p2 Steady States RL
0

0.1 Q0 = (2.26262, 6.28133, 0, 0, 0, 0, 0, 1.23318) 0.3558
0.2 Q0 = (2.26262, 6.28133, 0, 0, 0, 0, 0, 1.23318) 0.4744
0.3 Q0 = (2.26262, 6.28133, 0, 0, 0, 0, 0, 1.23318) 0.5930
0.4 Q0 = (2.26262, 6.28133, 0, 0, 0, 0, 0, 1.23318) 0.7116
0.5 Q0 = (2.26262, 6.28133, 0, 0, 0, 0, 0, 1.23318) 0.8302
0.6 Q0 = (2.26262, 6.28133, 0, 0, 0, 0, 0, 1.23318) 0.9488

0.643144 Q0 = (2.26262, 6.28133, 0, 0, 0, 0, 0, 1.23318) 1.0000
0.7 Q1 = (2.23995, 6.18216, 0.04480, 0.12364, 0.07115, 0.19637, 0.43238, 1.35484) 1.0674
0.8 Q1 = (2.22562, 6.12005, 0.02968, 0.08160, 0.09707, 0.26693, 0.56363, 1.44657) 1.1860
0.9 Q1 = (2.20775, 6.04324, 0.01472, 0.04029, 0.13390, 0.36652, 0.72967, 1.58210) 1.3046
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Figure 2. The simulation of trajectories of the system in Equations (19)–(23): (a) uninfected target cells
type-1; (b) uninfected target cells type-2; (c) latently infected target cells type-1; (d) latently infected
target cells type-2; (e) actively infected target cells type-1; (f) actively infected target cells type-2;
(g) free virus particles; and (h) B cells.

5. Conclusions and Discussion

Most of the existing mathematical models of viral infection study the viral infection and
production in one or two classes of target cells.However, HIV and CHIKV can infect three and five types
of target cells, respectively. In this paper, we have studied two within-host virus dynamics models with
antibody immune response and with n classes of target cells. In the second model, we have considered
two types of infected cells, latently infected cells (such cells contain the viruses but are not producing
it) and the actively infected cells (such cells are producing the viruses). We have shown that the
solutions of each model are nonnegative and bounded, which ensure the well-posedness of the models.
For each model, we have derived a biological threshold numberR0 (the basic reproduction number)
which fully determines the existence and stability of the two steady states of the model. We have
investigated the global stability of the steady states of the model by using Lyapunov method and
LaSalle’s invariance principle. We have proven that: (i) ifR0 ≤ 1 (RL

0 ≤ 1), then the virus-free steady
state Q0 (QL

0 ) is globally asymptotically stable and the virus is predicted to be completely cleared
from infected individuals; and (ii) if R0 > 1 (RL

0 > 1), then the endemic steady state Q1 (QL
1 ) is

globally asymptotically stable and a chronic virus infection is attained. We have conducted numerical
simulations and have shown that both the theoretical and numerical results are consistent. Our analysis
extends some existing results in the literature. For example, the global stability was analyzed for a
model with one target cell population [36].

The model in Equations (1)–(4) has three steady states virus-free steady state QH
0 , endemic

steady state without antibody immune response QH
1 and endemic steady state with antibody immune

response QH
2 . Moreover, the existence and stability of the steady states are determined by two threshold

parameters, the basic reproduction number RH
0 (which determines whether or not the disease will

progress) and the antibody immune response activation number RH
1 (which determines whether a

persistent antibody immune response can be established ) [30], where

RH
0 =

mbµ

dεr
, RH

1 =
RH

0

1 + bδ
dc

.

We note that the values of the parameters q, c and δ have no impact on the values ofRH
0 . Thus, the

model in Equations (1)–(4) implies that the antibody immune response do not play a role in clearing
the viruses but can play a significant role in reducing the infection progress.
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Our models have two steady states and their existence and stability are determined by one
threshold parameterR0. This is because of considering the production rate of the B cells η. The basic
reproduction number of the model in Equations (9)–(12) in the case of n = 1 is given by:

R0 =
m1b1µ1δ

d1ε1(rδ + qη)
.

We can see that R0 depends on the parameter η. Therefore, if the production rate of the B
cells η is increased such that R0 < 1, then Q0 is globally asymptotically stable. Thus, the model in
Equations (9)–(12) implies that the antibody immune response can clear the virus from body.

In our proposed models, we have only considered one arm of the immune system which is based
on the antibodies. CTL cells play a prominent role in achieving the best representation of the dynamics
of some types of viruses. The virus dynamics model with n categories of target cells and CTL immune
response can be given as:

Ṡi = µi − diSi − biSiV, i = 1, ..., n,

İi = biSiV − εi Ii − q̄i IiZ, i = 1, ..., n,

V̇ =
n

∑
i=1

mi Ii − rV,

Ż = η̄ +
n

∑
i=1

c̄i IiZ− δZ.

In addition to this model, one can formulate a virus dynamics model with n categories of target
cells and both antibodies and CTL immune response.

5.1. Effects of Latency on the Virus Dynamics

In this subsection, we show the effect of the presence of latently infected cells on the virus
dynamics. Let us incorporate an antiviral treatment with drug efficacy u where u ∈ [0, 1). The virus
dynamics model in Equations (9)–(12) under the effect of treatment is given by:

Ṡi = µi − diSi − (1− u)biSiV, i = 1, ..., n, (31)

İi = (1− u)biSiV − εi Ii, i = 1, ..., n, (32)

V̇ =
n

∑
i=1

mi Ii − rV − qBV, (33)

Ḃ = η + cBV − δB. (34)

Consequently, the parameterR0 for the system in Equations (31)–(34) is given by

R0(u) = (1− u)
n

∑
i=1

mibiµiδ

diεi(rδ + qη)
.

The model in Equations (19)–(23) under the effect of treatment is given by:

Ṡi = µi − diSi − (1− u)biSiV, i = 1, ..., n, (35)

L̇i = (1− u)(1− pi)biSiV − (θi + λi)Li, i = 1, ..., n, (36)

İi = (1− u)pibiSiV + λiLi − εi Ii, i = 1, ..., n, (37)

V̇ =
n

∑
i=1

mi Ii − rV − qBV, (38)

Ḃ = η + cBV − δB. (39)
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The parameterRL
0 for the system in Equations (35)–(39) is given by

RL
0 (u) = (1− u)

n

∑
i=1

mibiµiδ(θi pi + λi)

diεi(θi + λi)(rδ + qη)
.

Since 0 < pi < 1, then

RL
0 (u) = (1− u)

n

∑
i=1

mibiµiδ(θi pi + λi)

diεi(θi + λi)(rδ + qη)
< (1− u)

n

∑
i=1

mibiµiδ

diεi(rδ + qη)
= R0(u).

Clearly, the presence of latently infected cells deceases the basic reproduction number of the
system. Now we aim to determine the minimum drug efficacy that able to clear the viruses from
the body. We determine ucrit and uL

crit that make

R0(u) ≤ 1, for all ucrit ≤ u < 1,

RL
0 (u) ≤ 1, for all uL

crit ≤ u < 1,

to stabilize the system in Equations (31)–(39) around Q0 and QL
0 , respectively. Now, we calculate ucrit

and uL
crit as:

ucrit = max
{

0,
R0(0)− 1
R0(0)

}
,

uL
crit = max

{
0,
RL

0 (0)− 1
RL

0 (0)

}
.

Clearly,RL
0 (0) < R0(0) and thus uL

crit < ucrit. Therefore, the drug efficacy necessary to drive the
system to the virus-free steady state is actually less for the system in Equations (35)–(39) than that for
the system in Equations (31)–(34).
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Appendix A

Proof of Theorem A1. Construct a Lyapunov function W0 as:

W0(S, I, V, B) =
n

∑
i=1

yi

[
S0

i H

(
Si

S0
i

)
+ Ii

]
+ V +

q
c

B0H
(

B
B0

)
, (A1)

where yi = mi
εi

. Note that, W0(S, I, V, B) > 0 for all S, I, V, B > 0 and W0(S0, 0, 0, B0) = 0.

Calculating
dW0

dt
along the trajectories of Equations (9)–(12) we get
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dW0

dt
=

n

∑
i=1

yi

[(
1−

S0
i

Si

)
(µi − diSi − biSiV) + biSiV − εi Ii

]
+

n

∑
i=1

mi Ii − rV − qBV

+
q
c

(
1− B0

B

)
(η + cBV − δB)

=
n

∑
i=1

yidi

(
1−

S0
i

Si

)(
S0

i − Si

)
+

n

∑
i=1

mibiS0
i V

εi
− rV − qB0V +

q
c

(
1− B0

B

)(
δB0 − δB

)
=

n

∑
i=1

yidi

(
Si − S0

i
Si

)(
S0

i − Si

)
− qδ

c
(B− B0)2

B
+ (r + qB0)

(
n

∑
i=1

mibiµi
diεi(r + qB0)

− 1

)
V

= −
n

∑
i=1

yidi

(
Si − S0

i
)2

Si
− qδ

c
(B− B0)2

B
+ (r + qB0)(R0 − 1)V.

(A2)

IfR0 ≤ 1, then
dW0

dt
≤ 0 for all S, I, V, B > 0. In addition,

dW0

dt
= 0 if and only if Si = S0

i , B = B0,
V = 0. The solutions of the system in Equations (9)–(12) converge to D, the largest invariant set of

{(S, I, V, B) :
dW0

dt
= 0}. For any element in D satisfies V(t) = V̇(t) = 0. Then, from Equation (11),

we have Ii(t) = 0. By the LaSalle’s invariance principle [56,57], Q0 is globally asymptotically stable.

Proof of Theorem A2. Construct a Lyapunov function W1 as:

W1(S, I, V, B) =
n

∑
i=1

yi

[
S∗i H

(
Si
S∗i

)
+ I∗i H

(
Ii
I∗i

)]
+ V∗H

(
V
V∗

)
+

q
c

B∗H
(

B
B∗

)
.

We have W1(S, I, V, B) > 0 for all S, I, V, B > 0 and W1(S∗, I∗, V∗, B∗) = 0. Calculating
dW1

dt
along the trajectories of Equations (9)–(12) we get

dW1

dt
=

n

∑
i=1

yi

[(
1−

S∗i
Si

)
(µi − diSi − biSiV) +

(
1−

I∗i
Ii

)
(biSiV − εi Ii)

]

+

(
1− V∗

V

)( n

∑
i=1

mi Ii − rV − qBV

)
+

q
c

(
1− B∗

B

)
(η + cBV − δB)

=
n

∑
i=1

yi

[(
1−

S∗i
Si

)
(µi − diSi) + biS∗i V − biSiV

I∗i
Ii

+ εi I∗i

]
−

n

∑
i=1

mi Ii
V∗

V
− rV + rV∗ + qBV∗ − qB∗V +

q
c

(
1− B∗

B

)
(η − δB) .

Applying
µi = diS∗i + biS∗i V∗, η = δB∗ − cB∗V∗,

we obtain

dW1

dt
=

n

∑
i=1

yi

[(
1−

S∗i
Si

)
(diS∗i − diSi) + biS∗i V∗

(
1−

S∗i
Si

)
+ biS∗i V − biSiV

I∗i
Ii

+ εi I∗i

]
−

n

∑
i=1

mi Ii
V∗

V
− rV + rV∗ + qBV∗ − qB∗V − qB∗V∗ + qB∗V∗

(
B∗

B

)
+

q
c

(
1− B∗

B

)
(δB∗ − δB) .

Using the endemic steady state conditions

εi I∗i = biS∗i V∗,
n

∑
i=1

mi I∗i = rV∗ + qB∗V∗,
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we get

dW1

dt
=

n

∑
i=1

yi

[
di

(
1−

S∗i
Si

)
(S∗i − Si) + 3εi I∗i − εi I∗i

S∗i
Si
− εi I∗i

SiVI∗i
S∗i V∗ Ii

− εi I∗i
V∗ Ii
VI∗i

]
− 2qB∗V∗ + qBV∗

+ qB∗V∗
(

B∗

B

)
− qδ

c
(B− B∗)2

B

=
n

∑
i=1

yi

[
−di

(
Si − S∗i

)2

Si
+ εi I∗i

(
3−

S∗i
Si
−

SiVI∗i
S∗i V∗ Ii

− V∗ Ii
VI∗i

)]
− qB∗V∗

(
2− B

B∗
− B∗

B

)
(A3)

− qδ

c
(B− B∗)2

B

=
n

∑
i=1

yi

[
−di

(
Si − S∗i

)2

Si
+ εi I∗i

(
3−

S∗i
Si
−

SiVI∗i
S∗i V∗ Ii

− V∗ Ii
VI∗i

)]
− qη

cB∗
(B− B∗)2

B
.

The relation between the geometrical mean and the arithmetical mean implies that

3 ≤
S∗i
Si

+
SiVI∗i
S∗i V∗ Ii

+
V∗ Ii
VI∗i

.

Therefore, if R0 > 1, then S∗, I∗, V∗, B∗ > 0 and
dW1

dt
≤ 0 for all S, I,V, B > 0. The solutions

of system limit to D1, the largest invariant subset of
{

dW1

dt
= 0

}
. We have

dW1

dt
= 0 if and only if

Si = S∗i , Ii = I∗i , V = V∗, and B = B∗. It follows from LaSalle’s invariance principle that Q1 is globally
asymptotically stable in Ω̊.

Proof of Theorem A3. Construct a Lyapunov function WL
0 as:

WL
0 (S, L, I, V, B) =

n

∑
i=1

βi

[
S0

i H

(
Si

S0
i

)
+

λi
θi pi + λi

Li +
θi + λi

θi pi + λi
Ii

]
+ V +

q
c

B0H
(

B
B0

)
, (A4)

where βi =
mi(θi pi+λi)

εi(θi+λi)
. Calculating

dWL
0

dt
along the trajectories of Equations (19)–(23) we get

dWL
0

dt
=

n

∑
i=1

βi

[(
1−

S0
i

Si

)
(µi − diSi − biSiV) +

λi
θi pi + λi

((1− pi)biSiV − (θi + λi)Li)

+
θi + λi

θi pi + λi
(pibiSiV + λi Li − εi Ii)

]
+

n

∑
i=1

mi Ii − rV − qBV +
q
c

(
1− B0

B

)
(η + cBV − δB)

=
n

∑
i=1

βidi

(
1−

S0
i

Si

)(
S0

i − Si

)
+

n

∑
i=1

mibiS0
i (θi pi + λi)V

εi(θi + λi)
− rV − qB0V +

q
c

(
1− B0

B

)(
δB0 − δB

)
(A5)

=
n

∑
i=1

βidi

(
Si − S0

i
Si

)(
S0

i − Si

)
− qδ

c
(B− B0)2

B
+ (r + qB0)

(
n

∑
i=1

mibiµi(θi pi + λi)

diεi(θi + λi)(r + qB0)
− 1

)
V

= −
n

∑
i=1

βidi

(
Si − S0

i
)2

Si
− qδ

c
(B− B0)2

B
+ (r + qB0)(RL

0 − 1)V.

Therefore if RL
0 ≤ 1, then

dWL
0

dt
≤ 0 for all S, L, I, V, B > 0. Moreover,

dWL
0

dt
= 0 at QL

0 . By the

LaSalle’s invariance principle, QL
0 is globally asymptotically stable.

Proof of Theorem A4. Construct a Lyapunov function WL
1 as follows:

WL
1 =

n

∑
i=1

βi

[
S∗i H

(
Si
S∗i

)
+

λi
θi pi + λi

L∗i H
(

Li
L∗i

)
+

θi + λi
θi pi + λi

I∗i H
(

Ii
I∗i

)]
+ V∗H

(
V
V∗

)
+

q
c

B∗H
(

B
B∗

)
.
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Calculating
dWL

1
dt

along the trajectories of Equations (19)–(23) we get

dWL
1

dt
=

n

∑
i=1

βi

[(
1−

S∗i
Si

)
(µi − diSi − biSiV) +

λi
θi pi + λi

(
1−

L∗i
Li

)
((1− pi)biSiV − (θi + λi)Li)

+
θi + λi

θi pi + λi

(
1−

I∗i
Ii

)
(pibiSiV + λiLi − εi Ii)

]
+

(
1− V∗

V

)( n

∑
i=1

mi Ii − rV − qBV

)

+
q
c

(
1− B∗

B

)
(η + cBV − δB) .

Applying
µi = diS∗i + biS∗i V∗, η = δB∗ − cB∗V∗,

we obtain

dWL
1

dt
=

n

∑
i=1

βi

[(
1−

S∗i
Si

)
(diS∗i − diSi) + biS∗i V∗

(
1−

S∗i
Si

)
+ biS∗i V − λi(1− pi)bi

θi pi + λi

SiVL∗i
Li

+
λi(θi + λi)

θi pi + λi
L∗i −

(θi + λi)pibi
θi pi + λi

SiVI∗i
Ii
− (θi + λi)λi

θi pi + λi

Li I∗i
Ii

+
θi + λi

θi pi + λi
εi I∗i −

θi + λi
θi pi + λi

εi I∗i
V∗ Ii
VI∗i

]
− rV + rV∗ + qBV∗ − qB∗V − qB∗V∗ + qB∗V∗

(
B∗

B

)
+

q
c

(
1− B∗

B

)
(δB∗ − δB) .

Using the endemic steady state conditions

(1− pi)biS∗i V∗ = (θi + λi)L∗i , pibiS∗i V∗ = εi I∗i − λiL∗i ,
n

∑
i=1

mi I∗i = rV∗ + qB∗V∗,

we get
θi + λi

θi pi + λi
εi I∗i = biS∗i V∗ =

λi
θi pi + λi

(1− pi)biS∗i V∗ +
θi + λi

θi pi + λi
pibiS∗i V∗,

and

dWL
1

dt
=

n

∑
i=1

βi

[
di

(
1−

S∗i
Si

)
(S∗i − Si) + biS∗i V∗

(
λi

θi pi + λi
(1− pi) +

θi + λi
θi pi + λi

pi

)(
1−

S∗i
Si

)
− λi

θi pi + λi
(1− pi)biS∗i V∗

SiVL∗i
S∗i V∗Li

+
λi

θi pi + λi
(1− pi)biS∗i V∗

− θi + λi
θi pi + λi

pibiS∗i V∗
SiVI∗i
S∗i V∗ Ii

− λi
θi pi + λi

(1− pi)biS∗i V∗
Li I∗i
L∗i Ii

+
λi

θi pi + λi
(1− pi)biS∗i V∗ +

θi + λi
θi pi + λi

pibiS∗i V∗ − λi
θi pi + λi

(1− pi)biS∗i V∗
V∗ Ii
VI∗i

− θi + λi
θi pi + λi

pibiS∗i V∗
V∗ Ii
VI∗i

+
λi

θi pi + λi
(1− pi)biS∗i V∗ +

θi + λi
θi pi + λi

pibiS∗i V∗
]

− 2qB∗V∗ + qBV∗ + qB∗V∗
(

B∗

B

)
− qδ

c
(B− B∗)2

B
.
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dWL
1

dt
=

n

∑
i=1

βi

[
−di

(
Si − S∗i

)2

Si
+

λi
θi pi + λi

(1− pi)biS∗i V∗
(

4−
S∗i
Si
−

SiVL∗i
S∗i V∗Li

−
Li I∗i
L∗i Ii

− V∗ Ii
VI∗i

)
+

θi + λi
θi pi + λi

pibiS∗i V∗
(

3−
S∗i
Si
−

SiVI∗i
S∗i V∗ Ii

− V∗ Ii
VI∗i

)]
− qB∗V∗

(
2− B

B∗
− B∗

B

)
− qδ

c
(B− B∗)2

B
(A6)

=
n

∑
i=1

βi

[
−di

(
Si − S∗i

)2

Si
+

λi
θi pi + λi

(1− pi)biS∗i V∗
(

4−
S∗i
Si
−

SiVL∗i
S∗i V∗Li

−
Li I∗i
L∗i Ii

− V∗ Ii
VI∗i

)

+
θi + λi

θi pi + λi
pibiS∗i V∗

(
3−

S∗i
Si
−

SiVI∗i
S∗i V∗ Ii

− V∗ Ii
VI∗i

)]
− qη

cB∗
(B− B∗)2

B
.

Clearly,
dWL

1
dt
≤ 0 and

dWL
1

dt
= 0 if and only if Si = S∗i , Li = L∗i , Ii = I∗i , V = V∗ and B = B∗.

It follows from LaSalle’s invariance principle, QL
1 is globally asymptotically stable in Ω̊L.
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