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Abstract: This manuscript addresses the problem of data driven model based economic model
predictive control (MPC) design. To this end, first, a data-driven Lyapunov-based MPC is designed,
and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven
Lyapunov-based MPC utilizes a linear time invariant (LTI) model cognizant of the fact that the training
data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop
operation or experiments. Simulation results are first presented demonstrating closed-loop stability
under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then
utilized as the basis to design an economic MPC. The economic improvements yielded by the
proposed method are illustrated through simulations on a nonlinear chemical process system example.

Keywords: Lyapunov-based model predictive control (MPC); subspace-based identification;
closed-loop identification; model predictive control; economic model predictive control

1. Introduction

Control systems designed to manage chemical process operations often face numerous challenges
such as inherent nonlinearity, process constraints and uncertainty. Model predictive control (MPC)
is a well-established control method that can handle these challenges. In MPC, the control action is
computed by solving an open-loop optimal control problem at each sampling instance over a time
horizon, subject to the model that captures the dynamic response of the plant, and constraints [1].
In early MPC designs, the objective function was often utilized as a parameter to ensure closed-loop
stability. In subsequent contributions, Lyapunov-based MPC was proposed where feasibility and
stability from a well characterized region was built into the MPC [2,3].

With increasing recognition (and ability) of MPC designs to focus on economic objectives, the notion
of Economic MPC (EMPC) was developed for linear and nonlinear systems [4–6], and several important
issues (such as input rate-of-change constraint and uncertainty) addressed. The key idea with the EMPC
designs is the fact that the controller is directly given the economic objective to work with, and the
controller internally determines the process operation (including, if needed, a set point) [7].

Most of the existing MPC formulations, economic or otherwise, have been illustrated using
first principles models. With growing availability of data, there exists the possibility of enhancing
MPC implementation for situations where a first principles model may not be available, and simple
‘step-test’, transfer-function based model identification approaches may not suffice. One of the widely
utilized approaches in the general direction of model identification are latent variable methods,
where the correlation between subsequent measurements is used to model and predict the process
evolution [8,9]. In one direction, Dynamic Mode Decomposition with control (DMDc) has been
utilized to extract low-order models from high-dimensional, complex systems [10,11]. In another
direction, subspace-based system identification methods have been adapted for the purpose of
model identification, where state-space model from measured data are identified using projection
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methods [12–14]. To handle the resultant plant model mismatch with data-driven model based
approaches, monitoring of the model validity becomes especially important.

One approach to monitor the process is to focus on control performance [15], where the control
performance is monitored and compared against a benchmark control design. To focus more explicitly
on the model behavior, in a recent result [16], an adaptive data-driven MPC was proposed to evaluate
model prediction performance and trigger model identification in case of poor model prediction.
In another direction, an EMPC using empirical model was proposed [17]. The approach relies
on a linearization approach, resulting in closed-loop stability guarantees for regions where the
plant-model mismatch is sufficiently small, and illustrate results on stabilization around nominally
stable equilibrium points. In summary, data driven MPC or EMPC approaches, which utilize
appropriate modeling techniques to identify data from closed-loop tests to handle operation around
nominally unstable equilibrium points, remain to be addressed.

Motivated by the above considerations, in this work, we address the problem of data driven
model based predictive control at an unstable equilibrium point. In order to identify a model
around an unstable equilibrium point, the system is perturbed under closed-loop operation.
Having identified a model, a Lyapunov-based MPC is designed to achieve local and practical
stability. The Lyapunov-based design is then used as the basis for a data driven Lyapunov-based
EMPC design to achieve economical goals while ensuring boundedness. The rest of the manuscript
is organized as follows: first, the general mathematical description for the systems considered
in this work and a representative formulation for Lyapunov-based model predictive control
are presented. Then, the proposed approach for closed-loop model identification is explained.
Subsequently, a Lyapunov-based MPC is designed and illustrated through a simulation example.
Finally, an economic MPC is designed to consider economical objectives. The efficacy of the proposed
method is illustrated through implementation on a nonlinear continuous stirred-tank reactor (CSTR)
with input rate of change constraints. Finally, concluding remarks are presented.

2. Preliminaries

This section presents a brief description of the general class of processes that are considered in this
manuscript, followed by closed-loop subspace identification and Lyapunov based MPC formulation.

2.1. System Description

We consider a multi-input multi-output (MIMO) controllable systems where u ∈ Rnu denotes the
vector of constrained manipulated variables, taking values in a nonempty convex subset U ⊂ Rnu ,
where U =

{
u ∈ Rnu | umin ≤ u ≤ umax

}
, umin ∈ Rnu and umax ∈ Rnu denote the lower and upper

bounds of the input variables, and y ∈ Rny denotes the vector of measured output variables. In keeping
with the discrete implementation of MPC, u is piecewise constant and defined over an arbitrary
sampling instance k as:

u(t) = u(k), k∆t ≤ t<(k + 1)∆t,

where ∆t is the sampling time and xk and yk denote state and output at the kth sample time. The central
problem that the present manuscript addresses is that of designing a data driven modeling and control
design for economic MPC.

2.2. System Identification

In this section, a brief review of a conventional subspace-based state space system identification
methods is presented [16,18,19]. These methods are used to identify the system matrices for
a discrete-time linear time invariant (LTI) system of the following form:

xk+1 = Axk + Buk + wk, (1)

yk = Cxk + Duk + vk, (2)
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where x ∈ Rnx and y ∈ Rny denote the vectors of state variables and measured outputs, and w ∈ Rnx

and v ∈ Rny are zero mean, white vectors of process noise and measurement noise with the following
covariance matrices:

E[

(
wi
vj

)(
wT

i vT
j

)
] =

(
Q S
ST R

)
δij, (3)

where Q ∈ Rnx×nx , S ∈ Rnx×ny and R ∈ Rny×ny are covariance matrices, and δij is the Kronecker delta
function. The subspace-based system identification techniques utilize Hankel matrices constructed by
stacking the output measurements and manipulated variables as follows:

U1|i =


u1 u2 . . . uj
u2 u3 . . . uj+1
. . . . . . . . . . . .
ui ui+1 . . . ui+j−1

 , (4)

where i is a user-specified parameter that limits the maximum order of the system (n), and, j is
determined by the number of sample times of data. By using Equation (4), the past and future Hankel
matrices for input and output are defined:

Up = U1|i, U f = U1|i, Yp = Y1|i, Yf = Y1|i. (5)

Similar block-Hankel matrices are made for process and measurement noises Vp, Vf ∈ Riny×j and
Wp, W f ∈ Rinx×j are defined in the similar way. The state sequences are defined as follows:

Xp =
[

x1 x2 . . . xj

]
, (6)

X f =
[

xi+1 xi+2 . . . xi+j

]
. (7)

Furthermore, these matrices are used in the algorithm:

Ψp =

[
Yp

Up

]
, Ψ f =

[
Yf
U f

]
, Ψpr =

[
R f
Ψp

]
. (8)

By recursive substitution into the state space model equations Equations (1) and (2), it is
straightforward to show:

Yf = ΓiX f + Φd
i U f + Φs

i W f + Vf , (9)

Yp = ΓiXp + Φd
i Up + Φs

i Wp + Vp, (10)

X f = AiXp + ∆d
i Up + ∆s

i Wp, (11)

where:

Γi =



C
CA
CA2

...
CAi−1


, Φd

i =


D 0 0 . . . 0

CB D 0 . . . 0
CAB CB D . . . 0

. . . . . . . . . . . . . . .
CAi−2B CAi−3B CAi−4B . . . D

 , (12)
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Φs
i =


0 0 0 . . . 0 0
C 0 0 . . . 0 0

CA C 0 . . . 0 0
. . . . . . . . . . . . 0 0

CAi−2 CAi−3 CAi−4 . . . C 0

 , (13)

∆d
i =

[
Ai−1B Ai−2B . . . AB B

]
, ∆s

i =
[

Ai−1 Ai−2 . . . A I
]

. (14)

Equation (9) can be rewritten in the following form to have the input and output data at the left
hand side of the equation [20]:

[
I −Φd

i

] [Yf
U f

]
= ΓiX f + Φs

i W f + Vf . (15)

In open loop identification methods, in the next step, by orthogonal projecting of Equation (15)
onto Ψp: [

I −Φd
i

]
Ψ f /Ψp = ΓiX f /Ψp. (16)

Note that, the last two terms in RHS of Equation (15) are eliminated since the noise terms are
independent, or othogonal to the future inputs. Equation (16) indicates that:

Column_Space(W f /Wp) = Column_Space((Γi
⊥T [

I −Hd
i

]
)

T
). (17)

Therefore, Γi and Hd
i can be calculated using Equation (17) by decomposition methods. These can

in turn be utilized to determine the system matrices (some of these details are deferred to Section 3.1).
For further discussion on system matrix extraction, the readers are referred to references [18,19].

2.3. Lyapunov-Based MPC

The Lyapunov-based MPC (LMPC) for linear system has the following form:

min
ũk ,...,ũk+P

Ny

∑
j=1
||ỹk+j − ySP

k+j||
2
Qy

+
Nu

∑
j=1
||ũk+j − ũk+j−1||2Rdu

, (18)

subject to: (19)

x̃k+1 = Ax̃k + Bũk, (20)

ỹk = Cx̃k + Dũk, (21)

ũ ∈ U , ∆ũ ∈ U◦, x̃(k) = x̂l , (22)

V(x̃k+1) ≤ αV(x̃k) ∀ V(x̃k) > ε∗, (23)

V(x̃k+1) ≤ ε∗ ∀ V(x̃k) ≤ ε∗, (24)

where x̃k+j, ỹk+j, ySP
k+j and ũk+j denote predicted state and output, output set-point and calculated

manipulated input variables j time steps ahead computed at time step k, and x̂l is the current estimation
of state, and 0 < α < 1 is a user defined parameter. The operator ||.||2Q denotes the weighted Euclidean
norm defined for an arbitrary vector x and weighting matrix W as ||x||2W = xTWx. Furthermore,
Qy > 0 and Rdu ≥ 0 denote the positive definite and positive semi-definite weighting matrices
for penalizing deviations in the output predictions and for the rate of change of the manipulated
inputs, respectively. Moreover, Ny and Nu denote the prediction and control horizons, respectively,
and the input rate of change, given by ∆ũk+j = ũk+j − ũk+j−1, takes values in a nonempty convex
subset U◦ ⊂ Rm, where U◦ =

{
∆u ∈ Rnu | ∆umin ≤ ∆u ≤ ∆umax

}
. Note finally that, while the system
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dynamics are described in continuous time, the objective function and constraints are defined in
discrete time to be consistent with the discrete implementation of the control action.

Equations (23) and (24) are representatives of Lyapunov-based stability constraint [21,22],
where V(xk) is a suitable control Lyapunov function, and α, ε∗ > 0 are user-specified parameters.
In the presented formulation, ε∗ > 0 enables practical stabilization to account for the discrete nature
of the control implementation.

Remark 1. Existing Lyapunov-based MPC approaches exploit the fact that the feasibility (and stability) region
can be pre-determined. The feasibility region, among other things, depends on the choice of the parameter α,
the requested decay factor in the value of the Lyapunov function at each time step. If (reasonably) good first
principles models are available, then these features of the MPC formulation provide excellent confidence over
the operating region under closed-loop. In contrast, in the presence of significant plant-model mismatch (as is
possibly the case with data driven models), the imposition of such decay constraints could result in unnecessary
infeasibility issues. In designing the LMPC formulation with a data driven model, this possible lack of feasibility
must be accounted for (as is done in Section 3.2).

3. Integrating Lyapunov-Based MPC with Data Driven Models

In this section, we first utilize an identification approach necessary to identify good models for
operation around an unstable equilibrium point. The data driven Lyapunov-based MPC design is
presented next.

3.1. Closed-Loop Model Identification

Note that, when interested in identifying the system around an unstable equilibrium point,
open-loop data would not suffice. To begin with, nominal open-loop operation around an unstable
equilibrium point is not possible. If the nominal operation is under closed-loop, but the loop is
opened to perform step tests, the system would move to the stable equilibrium point corresponding
to the new input value, thereby not providing dynamic information around the desired operating
point. The training data, therefore, has to be obtained using closed-loop step tests, and an appropriate
closed-loop model identification method employed. Such a method is described next.

In employing closed-loop data, note that the assumption of future inputs being independent
of future disturbances no longer holds, and, if not recognized, can cause biased results in system
identification [18]. In order to handle this issue, the closed-loop identification approach in the projection
utilizes a different variable Ψpr instead of Ψp. The new instrument variable, which satisfies the
independence requirement, is used to project both sides of Equation (15) and the result is used to
determine LTI model matrices. For further details, refer to [16,18,23].

By projecting Equation (15) onto Ψpr we get:[
I −Φd

i

]
Ψ f /Ψpr = ΓiX f /Ψpr + Φs

i W f /Ψpr + Vf /Ψpr. (25)

Since the future process and measurement noises are independent of the past input/output and
future setpoint in Equation (25), the noise terms cancel, resulting in:[

I −Φd
i

]
Ψ f /Ψpr = ΓiX f /Ψpr. (26)

By multiplying Equation (26) by the extended orthogonal observability Γ⊥i , the state term
is eliminated:

(Γ⊥i )
T
[

I −Φd
i

]
Ψ f /Ψpr = 0. (27)
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Therefore, the column space of Ψ f /Ψpr is orthogonal to the row space of
[
(Γ⊥i )

T −(Γ⊥i )TΦd
i

]
.

By performing singular value decomposition (SVD) of Ψ f /Ψpr:

Ψ f /Ψpr = UΣV =
[
U1 U2

] [Σ1 0
0 0

] [
V1

T

V2
T

]
, (28)

where Σ1 contains dominant singular values of Ψ f /Ψpr and, theoretically, it has the order nui+ n [18,23].
Therefore, the order of the system can be determined by the number of the dominant

singular values of the Ψ f /Ψpr [20]. The orthogonal column space of Ψ f /Ψpr is U2M,
where M ∈ R(ny−n)i×(ny−n)i is any constant nonsingular matrix and is typically chosen as an identity
matrix [18,23]. One approach to determine the LTI model is as follows [18]:

(
[
Γ⊥i −Γ⊥i Φd

i

]
)T = U2M. (29)

From Equation (29), Γi and Φd
i can be estimated:[

Γi
⊥

−(Φd
i )

TΓi
⊥

]
= U2, (30)

which results in (using MATLAB (2017a, MathWorks, Natick, MA, USA) matrix index notation): Γ̂i = U2(1 : nyi, :)⊥,

Φ̂d
i = −(U2(1 : nyi, :)T)

†
U2(nyi + 1 : end, :)T .

(31)

The past state sequence can be calculated as follows:

X̂i = Γ̂†
i

[
I −Φ̂d

i

]
Ψ f /Ψpr. (32)

The future state sequence can be calculated by changing data Hankel matrices as follows [18]:

R f = Ri+2|2i, (33)

Up = U1|i+1, (34)

Yp = Y1|i+1, (35)

U f = Ui+2|2i, (36)

Yf = Yi+2|2i, (37)

⇒ X̂i+1 = Γ̂†
i

[
I −Ĥd

i

]
Ψ f /Ψpr, (38)

where Γ̂i is obtained by eliminating the last ny rows of Γi, and Hd
i is obtained by eliminating the last

ny rows and the last nu columns of Hd
i . Then, the model matrices can be estimated using least squares:[

Xi+1
Yi|i

]
=

[
A B
C D

] [
Xi

Ui|i

]
+

[
Wi|i
Vi|i

]
. (39)

Note that the difference between the proposed method in [18] and described method is that,
in order to ensure that the observer is stable (eigenvalues of A− KC are inside unit circle), instead
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of innovation form of LTI model, Equations (1) and (2) are used [16] to derive extended state space
equations. The system matrices can be calculated as follows:[

Â B̂
Ĉ D̂

]
=

[
Xi+1
Yi|i

] [
Xi

Ui|i

]†

. (40)

With the proposed approach, process and measurement noise Hankel matrices can be calculated
as the residual of the least square solution of Equation (39):[

Ŵi|i
V̂i|i

]
=

[
Xi+1
Yi|i

]
−
[

Â B̂
Ĉ D̂

] [
Xi

Ui|i

]
. (41)

Then, the covariances of plant noises can be estimated as follows:[
Q̂ Ŝ
ŜT R̂

]
= E(

[
Ŵi|i
V̂i|i

] [
ŴT

i|i V̂T
i|i

]
). (42)

Model identification using closed-loop data has a positive impact on the predictive capability of
the model (see the simulation section for a comparison with a model identified using open-loop data).

3.2. Control Design and Implementation

Having identified an LTI model for the system (with its associated states), the MPC implementation
first requires a determination of the state estimates. To this end, an appropriate state estimator needs to
be utilized. In the present manuscript, a Luenberger observer is utilized for the purpose of illustration.
Thus, at the time of control implementation, state estimates x̂k are generated as follows:

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k), (43)

where L is the observer gain and is computed using pole placement method, and yk is the vector of
measured variables (in deviation form, from the set point).

In order to stabilize the system at an unstable equilibrium point, a Lyapunov-based MPC is
designed. The control calculation is achieved using a two-tier approach (to decouple the problem of
stability enforcement and objective function tuning). The first layer calculates the minimum value of
Lyapunov function that can be reached subject to the constraints. This tier is formulated as follows:

Vmin = min
ũ1

k

(V(x̃k+1)),

subject to:

x̃k+1 = Ax̃k + Bũ1
k ,

ỹk = Cx̃k + Dũ1
k ,

ũ1 ∈ U , ∆ũ1 ∈ U◦, x̃(k) = x̂l − xSP,

(44)

where x̃, ỹ are predicted state and output and ũ1 is the candidate input computed in the first tier. xSP is
underlying state setpoint (in deviation form from the nominal equilibrium point), which here is the
desired unstable equilibrium point (and therefore zero in terms of deviation variables). For setpoint
tracking, this value can be calculated using the target calculation method; readers are referred to [24]
for further details.
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Note that the first tier has a prediction horizon of 1 because the objective is to only compute the
immediate control action that would minimize the value of the Lyapunov function at the next time
step. V is chosen as a quadratic Lyapunov function with the following form:

V(x̃) = x̃T Px̃, (45)

where P is a positive definite matrix computed by solving the Riccati equation with the LTI model
matrices as follows:

AT PA− P− AT PB(BT PB + R)−1 + Q = 0, (46)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are positive definite matrices. Then, in the second tier,
this minimum value is used as a constraint (upper bound for Lyapunov function value at the next
time step). The second tier is formulated as follows:

min
ũ2

k ,...,ũ2
k+Np

Ny

∑
j=1
||ỹk+j − ỹSP

k+j||
2
Qy

+ ||ũ2
k+j − ũ2

k+j−1||
2
Rdu

,

subject to:

x̃k+1 = Ax̃k + Bũk,

ỹk = Cx̃k + Dũk,

ũ2 ∈ U , ∆ũ2 ∈ U◦, x̃(k) = x̂l ,

V(x̃k+1) ≤ Vmin ∀ V(x̃k) > ε∗,

V(x̃k+1) ≤ ε∗ ∀ V(x̃k) ≤ ε∗

(47)

where Np is the prediction horizon and ũ2 denotes the control action computed by the second tier.
In essence, in the second tier, the controller calculates a control action sequence that can take the
process to the setpoint in an optimal fashion optimally while ensuring that the system reaches the
minimum achievable Lyapunov function value at the next time step. Note that, in both of the tiers,
the input sequence is a decision variable in the optimization problem, but only the first value of
the input sequence of the second tier is implemented on the process. The solution of the first tier,
however, is used to ensure and generate a feasible initial guess for the second tier. The two-tiered
control structure is schematically presented in Figure 1.

Plant
Tier II
(MPC)

Tier I
(Lyapunov 

Value) 

Setpoint

State 
Estimator

Estimated 
State

Vmin Input Output

Figure 1. Two-tier control strategy.

Remark 2. Note that Tiers 1 and 2 are executed in series and at the same time, and the implementation does
not require a time scale separation. The overall optimization is split into two tiers to guarantee feasibility of
the optimization problem. In particular, the first tier computes an input move with the objective function only
focusing on minimizing the Lyapunov function value at the next time step. Notice that the constraints in the first
tier are such that the optimization problem is guaranteed to be feasible. With this feasible solution, the second
tier is used to determine the input trajectory that achieves the best performance, while requiring the Lyapunov
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function to decay. Again, since the second tier optimization problem uses the solution from Tier 1 to impose the
stability constraint, feasibility of the second tier optimization problem, and, hence, of the MPC optimization
problem, is guaranteed. In contrast, if one were to require the Lyapunov function to decay by an arbitrary chosen
factor, determination of that factor in a way that guarantees feasibility of the optimization problem would be
a non-trivial task.

Remark 3. It is important to recognize that, in the present formulation, feasibility of the optimization problem
does not guarantee closed-loop stability. A superfluous (and incorrect) reason is as follows: the first tier computes
the control action that minimizes the value of the Lyapunov function at the next step, but does not require that
it be smaller than the previous time step, leading to potential destabilizing control action. The key point to
realize here, however, is that if such a control action were to exist (that would lower the value of the Lyapunov
function at the next time step), the optimization problem would determine that value by virtue of the Lyapunov
function being the objective function, and lead to closed-loop stability. The reasons closed-loop stability may
not be achieved are two: (1) the current state might be such that closed-loop stability is not achievable for the
system dynamics and constraints; and (2) due to plant model mismatch, where the control action that causes
the Lyapunov function to decay for the identified model does not do so for the system in question. The first
reason points to a fundamental limitation due to the presence of input constraints, while the second is due to the
lack of availability of the ‘correct’ system dynamics, and as such will be true in general for data driven MPC
formulations. Note that inclusion of a noise/plant model mismatch term in the model may help with the predictive
capability of the model, however, unless a bound on the uncertainty can be assumed, closed-loop stability can not
be guaranteed.

Remark 4. Along similar lines, consider the scenario where, based on the model, and constraints, an input
value exists for which V(x(k)) <= V(x(k − 1)) is achievable. It can be readily shown that any solution
computed by the first tier of the optimization problem would also result in V(x(k)) <= V(x(k− 1)) by virtue
of the objective function being the Lyapunov function at the next time step. Thus, in such a case, the explicit
incorporation of the constraint V(x(k)) <= V(x(k− 1)) (as is traditionally done in Lyapunov based MPC)
does not help, and is not required. On the other hand, for the scenario where such an input does not exist,
the inclusion of the constraint will cause the optimization problem to be infeasible. In contrast, in the proposed
formulation, the MPC will compute a control action where the value of the Lyapunov function might be greater
than the previous value, but greater by the smallest margin possible. The real impact of this phenomenon is
in making the MPC formulation more pliable, especially when dealing with plant-model mismatch. In such
scenarios, the proposed MPC continues to compute feasible (best possible, in terms of stabilizing behavior)
solutions, and, should the process move into a region from where stabilization is possible, smoothly transits to
computing stabilizing control action.

Remark 5. In the current manuscript, we focus on the cases where a first principal model is not available.
If a good first principles model was available, it could be utilized directly in a nonlinear MPC design, or linearized
if one were to implement a linear MPC. In the case of linearization, the applicability would be limited by the
region over which the linearization holds. In contrast, note that the model utilized in the present manuscript
does not result from a linearization of a nonlinear model. Instead, it is a linear model, possibly with a higher
number of states than the original nonlinear model, albeit identified, and applicable, over a ‘larger’ region of
operation, compared to a linearized model.

Remark 6. To account for possible plant-model mismatch, model validity can be monitored with model
monitoring methods [16], resulting in appropriately triggering re-identification in case of poor model prediction.
In another direction, in line with control performance monitoring approaches, the Lyapunov function value
could be utilized. Thus, unacceptable increases in Lyapunov function value could be utilized as a means of
triggering re-identification.
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Remark 7. As mentioned previously, in order to create rich training data around unstable operating points,
closed-loop data must be generated. In turn, since open-loop methods result in biased estimation [25,26] in
model identification, a suitable closed-loop identification method is utilized, and adapted to ensure that the model
accurately captures the key dynamics.

4. Simulation Results

We next illustrate the proposed approach using a nonlinear CSTR example [27]. To this end,

consider a CSTR where a first-order, exothermic and irreversible reaction of the form A k−→ B takes
place. The mass and energy conservation laws results in the following mathematical model:

ĊA =
F
V
(CA0 − CA)− k0e

−E
RTR CA,

ṪR =
F
V
(TA0 − TR) +

(−∆H)

ρcp
k0e

−E
RTR CA +

Q
ρcpV

.
(48)

The description of the process variables and the values of the system parameters are presented in
Table 1. The control objective is to stabilize the system at an unstable equilibrium point using inlet
concentration, CA0 , and the rate of heat input, Q, while the manipulated inputs are constrained to be
within the limits |CA0 | ≤ 1 kmol/m3 and |Q| ≤ 9× 103 KJ/min, and the input rate is constrained as
|∆CA0 | ≤ 0.1 Kmol/m3 and |∆Q| ≤ 9× 200 KJ/min. We assume that both of the states are measured.
The system has an unstable equilibrium point at CA = 0.573 Kmol/m3 and T = 395.3 K. The goal is
to stabilize the system at this equilibrium point. To this end, first an LTI model is identified using
closed-loop data; then, an MPC is designed to stabilize the system at the unstable equilibrium point.

Table 1. Variable and parameter description and values for the continuous stirred-tank reactor
(CSTR) example.

Variable Description Unit Value

CA,S Nominal Value of Concentration kmol
m3 0.573

TR,S Nominal Value of Reactor Temperature K 395
F Flow Rate m3

min 0.2
V Volume of the Reactor m3

min 0.2
CA0,S Nominal Inlet Concentration kmol

m3 0.787
k0 Pre-Exponential Constant − 72× 109

E Activation Energy kJ
mol 8.314× 104

R Ideal Gas Constant kJ
KmolK 8.314

TA0 Inlet Temperature K 352.6
∆H Enthalpy of the Reaction kJ

Kmol 4.78× 104

ρ Fluid Density kg
m3 103

cp Heat Capacity kj
kg.K 0.239

For system identification of the CSTR model, proportional–integral (PI) controllers (pairing CA
with CA,in and T with Q) are implemented in the process. In particular, pseudo-random binary signals
are used as set-points for PI controllers. The identified LTI model order is selected as n = 4 and i = 12,
in order to achieve the best fit in model prediction (using cross-validation). Note that these four states
are the states of the identified LTI model. When dealing with setpoint tracking, these states can be
augmented with additional states and utilized as part of an offset-free MPC design. Model validation
results under a different set of set-point changes from training data are presented in Figures 2 and 3.
The identified system is unstable with absolute eigenvalues

[
0.9311 0.9311 0.9998 1.0002

]
,
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which has an eigenvalue outside unit circle. The unstable nature of the identified model is consistent
with the operation of the system around the unstable equilibrium point.

Figure 2. Data driven model validation results: measured outputs (dash-dotted line), state and output
estimates using the (linear time invariant) LTI model model from closed-loop data and identification
(dashed line), state and output estimates using the LTI model from open-loop data and identification
(dotted line), observer stopping point (vertical dashed line).
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Figure 3. Model validation data: manipulated inputs under a proportional–integral (PI) controller.

For the model validation, initially, a steady state Kalman filter (gain calculated by the identification
method) is utilized to update state estimate until t = 0.8 min and after convergence of the states
(gaged via convergence of the outputs), the model and the input trajectory (without the state
estimator) are used to predict the future output. Figure 2 illustrates the results of the model validation,
and compares against a model obtained from open-loop step pseudo-random binary sequence (PRBS)
on the input. As expected, the model identified using closed-loop data predicts better.

Next, closed-loop simulation results for proposed controller and conventional MPC
(i.e., MPC without Lyapunov constraint) with horizons 1 and 10 are presented in Figures 4–7.
The controllers parameters are presented in Table 2. As can be seen, the LMPC has the best performance
in stabilizing the system at the unstable equilibrium point. The MPC with a horizon of 1 is not capable
of stabilizing the system, and the controller with a horizon of 10 reaches the set-point later compared
to the LMPC. In addition, the evolution of the subspace states indicates better performance under the
proposed LMPC.
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Figure 4. Closed-loop profiles of the measured variables obtained from the proposed Lyapunov-based
MPC (continuous line), MPC with horizon 1 (dash-dotted line), MPC with horizon 10 (dashed line),
and MPC with horizon 1 and open-loop identification (narrow dash-dotted line) and set-point
(dashed line).

Figure 5. Closed-loop profiles of the manipulated variables obtained from the proposed LMPC
(continuous line), MPC with horizon 1 (dash-dotted line), MPC with horizon 1 and open-loop
identification (narrow dash-dotted line) and MPC with horizon 10 (dashed line).
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Figure 6. Closed-loop profiles of the LTI model states obtained from the proposed LMPC
(continuous line), MPC with horizon 1 (dash-dotted line) and MPC with horizon 10 (dashed line).
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Figure 7. Closed-loop Lyapunov function profiles obtained from the proposed LMPC (continuous line),
MPC with horizon 1 (dash-dotted line) and MPC with horizon 10 (dashed line).

Table 2. List of controllers parameters for the CSTR reactor.

Variable Value

∆t 0.2 min

Qx

[
1 0
0 1

]
Qx,MPC 10× diag([1/CA,s, 1/TR,S])
R∆u,MPC diag([1/CA0,max, 1/Qmax])
QK diag([103, 103])
RK diag([10−3, 10−3])
τmin 0
τmax 5
εi 10−3 × xi,Sp

∆umin

[
−0.1 −200

]
∆umax

[
0.1 200

]
ε∗ 1
V(x) (x− xsp)T(x− xsp)

cy

[
108 0

]T

cu

[
0 0.1

]T

ρ 7.83× 105

5. Data-Driven EMPC Design and Illustration

Having illustrated the ability of the LMPC to achieve stabilization, it is next utilized to achieve
economical objectives while ensuring stability. The Lyapunov based EMPC formulation is as follows:

max
ũk ,...,ũk+P

Ny

∑
j=1

cT
y ỹk+j − cT

u ũk+j,

subject to:

x̃k+1 = Ax̃k + Bũk,

ỹk = Cx̃k + Dũk,

ũ ∈ U , ∆ũ ∈ U◦, x̃(k) = x̂l ,

V(x̃k+j) ≤ ρ for j = 1, . . . , P,

(49)
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where the value of ρ dictates the neighborhood that the process states are allowed to evolve within.
cy and cu indicate output and input cost vectors. Other variables have the same definition as
Equation (47).

Remark 8. In recent contributions [17,28], a Lyapunov-Based EMPC is proposed that utilizes data-driven
methods to identify an empirical model for the system where the number of empirical model states is equal to the
order of the plant model. In contrast, in the present work, the order of the model is selected based on the ability of
the model to fit and predict dynamic behavior over a suitable range of operation, in turn allowing for an EMPC
design that can reliably operate over a larger region.

Remark 9. The EMPC formulation in the present manuscript utilizes a linear form of the cost function for the
purpose of illustration. The proposed approach is not limited by this particular choice. Any other form of the cost
function, including those where the costs could be time dependent, could be readily utilized within the proposed
formulation. In such scenarios, the presence of the stability constraints provide the safeguards that allow the
EMPC to move the process as needed to achieve economical goals.

Remark 10. The use of linear models in the control design opens up the possibility of utilizing MPC
formulations [3,29] that enable stabilization from the entire null controllable region (the region from which
stabilization is achievable subject to input constraints). The use of the NCR can, in turn, be utilized to maximize
the region over which the EMPC can be implemented, thereby maximizing the potential economic benefit.
Such an implementation, however, needs to account for potential plant model mismatch owing to the use of the
linear model, and remains the subject of future work.

Next, the proposed Lyapunov-based EMPC (LEMPC) is implemented on the CSTR simulation
example and compared to the LMPC implementation. The closed-loop results are presented in
Figures 8–11. Exploiting the flexibility of operation within a neighborhood of the origin, the LEMPC
drives the system to a point on the border of that neighborhood, which happens to be the optimal
operating point, instead of the nominal operating point. Figure 12 shows the comparison of the
LEMPC and LMPC. As expected, the LEMPC achieves improved economic returns compared to the
conventional MPC.
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Figure 8. Closed-loop profiles of the measured variables obtained from the proposed Lyapunov-based
economic MPC (continuous line) and the nominal equilibrium point (dashed line).
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Figure 9. Closed-loop profiles of the manipulated variables obtained from the proposed LEMPC
(continuous line).
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Figure 10. Closed-loop profiles of the identified model states obtained from the proposed LEMPC
(continuous line).
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Figure 11. Closed-loop Lyapunov function profiles obtained from the proposed LEMPC (continuous line).
Note that the LEMPC drives the system to a point within the acceptable neighborhood of the origin.
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Figure 12. A comparison of the economic cost between the LEMPC (continuous line) and LMPC (dotted line).

6. Conclusions

In this study, a novel data-driven MPC is developed that enables stabilization at nominally
unstable equilibrium points. This LMPC is then utilized within an economic MPC formulation to
yield a data driven EMPC formulation. The proposed approach is described and compared against
a representative MPC, and shown to be able to provide improved closed-loop performance.
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