
mathematics

Article

Role of Bi-Directional Migration in Two Similar
Types of Ecosystems

Nikhil Pal 1, Sudip Samanta 2, Maia Martcheva 3,*,† ID and Joydev Chattopadhyay 4

1 Department of Mathematics, Visva-Bharati University, Santiniketan 731235, India;
nikhil.pal@visva-bharati.ac.in

2 Department of Mathematics, Faculty of Science & Arts-Rabigh, King Abdulaziz University,
Rabigh 25732, Saudi Arabia; samanta.sudip.09@gmail.com

3 Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
4 Agricultural and Ecological Research Unit, Indian Statistical Institute 203, B. T. Road, Kolkata 700108, India;

joydev@isical.ac.in
* Correspondence: maia@ufl.edu; Tel.: +352-294-2319
† Work supported by NSF grant DMS-1515661.

Received: 15 January 2018; Accepted: 20 February 2018; Published: 2 March 2018

Abstract: Migration is a key ecological process that enables connections between spatially separated
populations. Previous studies have indicated that migration can stabilize chaotic ecosystems.
However, the role of migration for two similar types of ecosystems, one chaotic and the other stable,
has not yet been studied properly. In the present paper, we investigate the stability of ecological
systems that are spatially separated but connected through migration. We consider two similar types
of ecosystems that are coupled through migration, where one system shows chaotic dynamics, and
other shows stable dynamics. We also note that the direction of the migration is bi-directional and is
regulated by the population densities. We propose and analyze the coupled system. We also apply
our proposed scheme to three different models. Our results suggest that bi-directional migration
makes the coupled system more regular. We have performed numerical simulations to illustrate the
dynamics of the coupled systems.
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1. Introduction

In mathematical biology, population theory plays an important role. Historically, the first model
of population dynamics was formulated by Malthus [1] and was later on adapted for more realistic
situations by Verhulst [2]. Lotka and Volterra [3,4] first modeled oscillations occurring in natural
populations. Subsequently, the Lotka–Volterra model was modified by several researchers, and many
of them observed chaotic dynamics [5–9]. The occurrence of chaos in a simple ecological system
motivated researchers to investigate complex dynamical behaviors of ecological systems, such as
bi-stability, bifurcation and chaos. However, in real-world populations, the evidence of chaos is rare.
In ecology, until now, many researchers have investigated three-species food chain/web models with
the aim of controlling the chaos by incorporating several biological phenomena [10–12].

Spatial structure is an important factor in ecological systems. Natural systems are rarely isolated
but rather interact among themselves as well as with their natural surroundings, and the dynamics
of ecological systems connected by migration are very different from the dynamics of the individual
systems. The concept of a metapopulation is a formalism to describe spatially separated interacting
populations [13,14]. A metapopulation consists of a group of spatially separated populations living
in patches; individuals are allowed to migrate to surrounding patches. Levins (1969) [13] proposed a
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metapopulation theory and applied it in a pest-control situation. In landscape ecology and conservation
biology, the idea of a metapopulation plays an important role [15,16].

In population biology, two systems can be coupled through migration, which is a common
biological phenomenon and plays a vital role in the stability of ecosystems. Migration has been
studied in a variety of taxa [17–19]. In the stability of an ecosystem, migration can have a stabilizing
effect [20–23]. Holt (1985) [23] observed that passive dispersal between sink and source habitats
can stabilize an otherwise unstable system. MacCullum observed that immigration could stabilize a
chaotic system of the crown of thorns starfish Acanthaster planci and its associated larval recruitment
patterns [21]. Stone and Hart [22] observed that a discrete-time chaotic system could be stabilized by
constant immigration. Silva et al. [24] also synchronized chaotic oscillations of uncoupled populations
through migration. Furthermore, it has been established that unstable equilibria of a single-patch
predator–prey model cannot be stabilized by coupling with identical patches [25]. The persistence of
coupled locally unstable systems depends on asynchronous behaviors between the populations [25–27].
Ruxton [28] showed that weak coupling between two chaotic systems exhibited simple cycles or
remained at a stable level and reduced populations’ extinction probabilities. Recently, Pal et al. [29]
investigated the effect of bi-directional migration on the stability of two non-identical ecosystems,
which were connected through migration. They observed that an increase in the rate of migration could
stabilize the non-identical coupled ecosystem. The above observations clearly indicate that migration
has a major role in stabilizing chaotic ecosystems. However, the role of bi-directional migration for
two similar types of ecosystems, where one is chaotic and the other is stable in nature, has not yet been
investigated properly.

In the present paper, we consider metapopulation dynamics of spatially separated food webs that
are connected through bi-directional migrations. Our aim of the present study is to investigate the role
of migration on the stability of a coupled ecosystem for which one system shows chaotic dynamics,
and the other system shows stable dynamics. In the next section, we formulate the model and analyze
its behavior regarding the interior equilibrium point. In Section 3, we show the applications of the
present scheme in three different models. Finally, the paper ends with a brief conclusion.

2. General Model Formulation and Stability Analysis

Two isolated systems can be coupled via migration. We consider the general case of two coupled
ecological systems:

dX
dt

= f (X) + F(X, Y)

dY
dt

= g(Y) + G(X, Y)
(1)

where X and Y are the variables in the vector notation. The individual systems are described by the
functions f (X) and g(Y); F(X, Y) and G(X, Y) are coupling functions. The equilibrium solutions of
the uncoupled system are given by f (X) = 0 and g(Y) = 0. When coupling occurs, the equilibrium
points of the system given by Equation (1) are given by f (X) + F(X, Y) = g(Y) + G(X, Y) = 0.

Now we consider two three-species food-chain ecological systems that are coupled through
bi-directional migrations. In bi-directional migration, a population can migrate from one patch to
another depending on the population densities. The flow of the migration is from higher to lower
density. Therefore, in bi-directional migration, the migration depends on the relative density difference
between two patches. Then Equation (1) with bi-directional migration can be written as
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dx1

dt
= f1(x1, y1, z1) + k1(x2 − x1)

dy1

dt
= f2(x1, y1, z1) + k2(y2 − y1)

dz1

dt
= f3(x1, y1, z1) + k3(z2 − z1)

dx2

dt
= g1(x2, y2, z2) + k1(x1 − x2)

dy2

dt
= g2(x2, y2, z2) + k2(y1 − y2)

dz2

dt
= g3(x2, y2, z2) + k3(z1 − z2)

(2)

where x1, y1, and z1 are the populations of system 1 and x2, y2, and z2 are the populations of system 2;
fi(i = 1, 2, 3) and gi(i = 1, 2, 3) are the functions describing systems 1 and 2, respectively; k1, k2, and k3

are the migration coefficients of the three different populations. To study the stability behavior of
the coupled system around the interior equilibrium point E∗(x1

∗, y1
∗z1
∗, x2

∗, y2
∗, z2

∗), we have to
calculate the Jacobian matrix of the system given by Equation (2) at the interior equilibrium point.
The Jacobian matrix at E∗(x1

∗, y1
∗z1
∗, x2

∗, y2
∗, z2

∗) is

J(E∗) =



V1 V2 V3 k1 0 0
V4 V5 V6 0 k2 0
V7 V8 V9 0 0 k3

k1 0 0 M1 M2 M3

0 k2 0 M4 M5 M6

0 0 k3 M7 M8 M9


where the
V1 = f1x1 − k1, V2 = f1y1 , V3 = f1z1 , V4 = f2x1 , V5 = f2y1 − k2, V6 = f2z1 , V7 = f3x1 , V8 = f3y1 ,
V9 = f3z1 − k3, M1 = g1x2 − k1, M2 = g1y2 , M3 = g1z2 , M4 = g2x2 , M5 = g2y2 − k2, M6 = g2z2 ,
M7 = g3x2 , M8 = g3y2 , and M9 = g3z2 − k3

suffixes denote the partial derivatives with respect to the corresponding variable.
The characteristic equation of the above Jacobian matrix is

λ6 + σ1λ5 + σ2λ4 + σ3λ3 + σ4λ2 + σ5λ + σ6 = 0,

where
σ1 = −(A1 + B1)

σ2 = −(k1
2 + k2

2 + k3
2)− A2 − B2 + A1B1

σ3 = −A3 − B3 + A2B1 + B2 A1 + k1
2(V5 + V9 + M5 + M9) + k2

2(V1 + V9 + M1 + M9) + k3
2(V1 + V5 + M1 + M5)

σ4 = A1B3 + A2B2 + A3B1 − k1
2((V5 + V9)(M5 + M9) + (V5V9 −V6V8) + (M5M9 −M6M8))

−k2
2((V1 + V9)(M1 + M9) + (V1V9 −V3V7) + (M1M9 −M3M7))− k1k2(V2M4 + V4M2)− k1k3(V3M7 + V7M3)

−k3
2((V1 + V5)(M1 + M5) + (V1V5 −V2V4) + (M1M5 −M2M4))− k2k3(V8M6 + V6M8) + k1

2k2
2 + k2

2k3
2 + k3

2k1
2

σ5 = (A2B3 + A3B2) + k1
2((V5 + V9)(M5M9 −M6M8) + (M5 + M9)(V5V9 −V6V8))

+k2
2((V1 + V9)(M1M9 −M3M7) + (M1 + M9)(V1V9 −V3V7))− k1

2k2
2(V9 + M9)

+k3
2((V1 + V5)(M1M5 −M2M4) + (M1 + M5)(V1V5 −V2V4))− k2

2k3
2(V1 + M1)− k1

2k3
2(V5 + M5)

+k1k2 (V2(M4M9 −M6M7) + M4(V2V9 −V3V8) + M2(V4V9 −V6V7) + V4(M2M9 −M3M8))

+k2k3 (V8(M1M6 −M3M4) + M6(V1V8 −V2V7) + M8(V1V6 −V3V4) + V6(M1M8 −M2M7))

+k1k3 (V3(M5M7 −M4M8) + M7(V3V5 −V2V6) + M3(V5V7 −V4V8) + V7(M3M5 −M2M6))

σ6 = A3B3 − k1
2(V5V9 −V6V8)(M5M9 −M6M8)− k2

2(V1V9 −V3V7)(M1M9 −M3M7)
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−k3
2(V1V5 −V2V4)(M1M5 −M2M4) + k1

2k2
2V9M9 + k2

2k3
2V1M1 + k1

2k3
2V5M5 − k1

2k2
2k3

2

+k1
2k2k3(V6M8 + M6V8) + k1k2

2k3(V7M3 + M7V3) + k1k2k3
2(V2M4 + M2V4)

+k1k2 ((V3V8 −V2V9)(M4M9 −M6M7) + (M3M8 −M2M9)(V4V9 −V6V7))

+k2k3 ((V2V7 −V1V8)(M1M6 −M3M4) + (M2M7 −M1M8)(V1V6 −V3V4))

+k1k3 ((V5V7 −V4V8)(M2M6 −M3M5) + (M5M7 −M4M8)(V2V6 −V3V5))

with A1 = (V1 + V5 + V9), A2 = (V6V8 −V5V9) + (V3V7 −V1V9) + (V2V4 −V1V5),
A3 = V1(V5V9 −V6V8) + V2(V6V7 −V4V9) + V3(V4V8 −V5V7) ,
B1 = (M1 + M5 + M9), B2 = (M6M8 −M5M9) + (M3M7 −M1M9) + (M2M4 −M1M5),
and B3 = M1(M5M9 −M6M8) + M2(M6M7 −M4M9) + M3(M4M8 −M5M7).

Now, the eigenvalues of the characteristic equation are negative or have negative real parts if
all Routh–Hurwitz (RH) determinants (RHi, i = 1, 2, ..., 6) are positive, where RH1 = |σ1|, RH2 =

σ1 1
σ3 σ2

and RHn =

σ1 1 0 0 ... 0
σ3 σ2 σ1 1 ... 0
... ... ... ... ... ...
0 0 0 0 0 σn

, where σj = 0 if j > n.

3. Applications

Migration within a population with spatial subdivision is important in some species and systems.
It is observed that, if two identical patches are coupled through migration, then the coupled system
acts exactly as a single-patch system. The persistence of coupled locally unstable systems depends on
asynchrony behaviors among populations [25–27]. It is to be noted that two identical chaotic systems
cannot be stabilized by diffusive migration. Here we consider two tri-trophic food-chain systems
of the same type with different parameter values, where one system shows chaotic dynamics and
the other system shows stable dynamics. We also note that the two tri-trophic food web systems are
spatially separated but are connected through bi-directional migrations. In this section, we describe
the application of the above scheme developed in Section 2 to three different models, namely, the
Hastings–Powell (HP) model, the Upadhyay–Rai (UR) model and the Priyadarshi–Gakkhar (PG)
model, which are able to produce stable dynamics as well as chaotic dynamics for different sets of
parameter values.

3.1. Hastings–Powell Model

In 1991, Hastings and Powell [6] proposed and analyzed a three-species food-chain model
with a Holling type II functional response. The model is known for exhibiting chaotic dynamics
in a continuous-time food-chain model. The non-dimensional HP model is governed by the
following equations:

dx
dt

= x (1− x)− a1xy
1 + b1x

dy
dt

=
a1xy

1 + b1x
− a2yz

1 + b2y
− d1y

dz
dt

=
a2yz

1 + b2y
− d2z

(3)

where x, y and z are the densities of the prey, middle-predator and top-predator populations,
respectively; a1, a2, b1, b2, d1 and d2 are the non-negative parameters that have the usual meanings [6].
Hastings and Powell [6] studied the model given by Equation (3) and observed switching of the
dynamics of the system between stable focus, limit cycle oscillations and chaos by changing the
parameter b1.
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Coupling between Chaotic HP Model and Stable HP Model

The HP model shows different dynamical behaviors, including chaos. In the present section, we
investigate the dynamics of the coupled ecosystem, for which one HP system shows chaotic dynamics
and the other HP system shows stable dynamics. Here, we assume that the two different systems are
connected by migration and that the direction of the migration is bi-directional. Further, all populations
are free to migrate from one system to another. We denote the chaotic HP system with subscript 1 and
the stable HP system with subscript 2. The coupled system is governed by the following equations:

dx1

dt
= x1(1− x1)−

a1x1y1

1 + b11x1
+ k1(x2 − x1)

dy1

dt
=

a1x1y1

1 + b11x1
− a2y1z1

1 + b2y1
− d1y1 + k2(y2 − y1)

dz1

dt
=

a2y1z1

1 + b2y1
− d2z1 + k3(z2 − z1)

dx2

dt
= x2(1− x2)−

a1x2y2

1 + b21x2
+ k1(x1 − x2)

dy2

dt
=

a1x2y2

1 + b21x2
− a2y2z2

1 + b2y2
− d1y2 + k2(y1 − y2)

dz2

dt
=

a2y2z2

1 + b2y2
− d2z2 + k3(z1 − z2)

(4)

where k1, k2, and k3 are the migration coefficients of the prey, middle-predator and top-predator
populations, respectively. We assume that two systems differ only in the parameter b1 in Equation (3);
b11 and b21 are the parameters corresponding to systems 1 and 2, respectively.

Non-Negativity of the Solutions: We let R6
+ = [0, ∞)6 be the non-negative octant in R6. Then the

interaction functions of the system given by Equation (4) are continuously differentiable and locally
satisfy Lipschitz conditions in R6

+. Thus, any solution of the system given by Equation (4) with
non-negative initial conditions satisfies the non-negativity condition and exists uniquely in the interval
[0, M) for some M > 0 ([30], Theorem A.4).

Boundedness of the Solutions:
We define a function

P(t) = x1(t) + y1(t) + z1(t) + x2(t) + y2(t) + z2(t). (5)

The time derivative of Equation (5) along with the solutions of Equation (4) are

dP
dt = dx1

dt + dy1
dt + dz1

dt + dx2
dt + dy2

dt + dz2
dt = x1(1− x1)− d1y1 − d2z1 + x2(1− x2)− d1y2 − d2z2

⇒ dP
dt + µP = x1(1− x1 + µ)− (d1 − µ)(y1 + y2)− (d2 − µ)(z1 + z2) + x2(1− x2 + µ) ≤ (1+µ)2

2 =

Q (say),

where µ ≤ min{d1, d2}.
Applying the theorem of differential inequality [31], we obtain P(x1, y1, z1, x2, y2, z2) ≤

Q
µ

(
1− e−µt)+ P(x1(0), y1(0), z1(0), x2(0), y2(0), z2(0))e−µt, which implies that P ≤ Q/µ + ε for all

t ≥ t0. Therefore, all the solutions of the system given by Equation (4) are bounded.
Hence, all the solutions of the system given by Equation (4), which are initiated in R6

+, are
positively invariant in the region B = {(x1, y1, z1, x2, y2, z2) ∈ R6

+ : P ≤ Q/µ + ε}.
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Now we describe the numerical simulations for the system given by Equation (3) and the coupled
system given by Equation (4) by considering the following parameter values:

a1 = 5, a2 = 0.1, b2 = 2, d1 = 0.4, d2 = 0.01, (6)

which were taken from [6]. Choosing b11 = b21 = 3, then the coupled system given by
Equation (4) remained chaotic for any coupling strength (migration rate). We then chose two
different values of b1(b1 = 3 and b1 = 2), and the HP model of Equation (3) showed chaotic
dynamics and stable dynamics. For system 1, we set b11 = 3, so that the system showed
chaotic dynamics, and for system 2, we set b21 = 2, so that the system showed stable dynamics
(Figure 1). The initial condition for the simulation of the coupled system given by Equation (4) was
(x1(0), y1(0), z1(0), x2(0), y2(0), z2(0)) = (0.7, 0.6, 12, 0.75, 0.5, 11). We could then investigate the effect
of bi-directional migration between the two systems. For simplicity, we considered k1 = k2 = k3 = k
and drew the bifurcation diagram of the coupled system of Equation (4) with respect to the rate
of migration k (Figure 2). It is to be noted that in the absence of migration (k = 0), system 1
showed chaotic dynamics and system 2 showed stable dynamics. When we introduced migration
between these two systems, then the coupled system became stable through a Hopf bifurcation
when the migration rate (k) crossed a threshold value, (k∗HP = 0.0145) (Figure 2). We observed that
a small migration destabilized the stable system, and the coupled system showed higher periodic
and chaotic oscillations, but if the strength of migration was increased gradually, then the coupled
system became stable. We also observed that for k = 0.25, the coupled system of Equation (4) had
a unique positive interior equilibrium E∗HP(0.837058, 0.0841652, 12.2809, 0.692788, 0.171415, 12.4183).
We also obtained the RH determinants, RH1 = 2.4080 > 0, RH2 = 4.2563 > 0, RH3 = 2.7726 > 0,
RH4 = 0.3547 > 0, RH5 = 0.0058 > 0, and RH6 = 7.4751 × 10−6 > 0, which satisfied the RH
stability criterion of order 6. The eigenvalues of the coupled system given by Equation (4) were
(−0.9721,−0.1091+ 0.1388i,−0.1091 − 0.1388i,−0.1544,−0.5317+ 0.0778i,−0.5317− 0.0778i). Hence,
the system given by Equation (4) was stable around the positive interior equilibrium E∗HP (Figure 3).
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Figure 1. (a,b) Chaotic oscillations and stable focus of the system given by Equation (3) for b1 = 3 and
b1 = 2, respectively.
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Figure 2. Bifurcation diagram for y1 and y2 populations of the coupled Hastings–Powell (HP)–HP
system corresponding to the bifurcating parameter k, where k ∈ [0, 0.02].
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Figure 3. Figure shows stable dynamics of the coupled system given by Equation (4) for k = 0.25.

Further, we performed numerical simulations of the coupled system for the realistic parameter
values considered by McCann and Yodzis [32]. McCann and Yodzis [32] considered the modified
HP model [6]; they produced a range of more “plausible” parameter values and demonstrated the
existence of chaos for a wide range of these values. We considered the following parameter values:

xc = 0.4, yc = 2.01, xp = 0.08, yp = 5, c0 = 0.5, (7)

which were taken from [32]. The model and the meaning of the parameter values are given
in [32]. For system 1, we set r0 = 0.161, so that the system showed chaotic dynamics, and for
system 2, we set r0 = 0.75, so that the system showed stable dynamics (Figure 4). The initial
condition for the simulations of the coupled system was (x1(0), y1(0), z1(0), x2(0), y2(0), z2(0)) =

(0.35, 0.5, 0.9, 0.35, 0.5, 0.9). If we introduced migration between the two systems (chaotic system and
stable system), then the coupled system showed limit cycle oscillations via period-halving bifurcations
(Figure 5). We observed that a gradual increase in migration made the coupled system switch its
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stability from chaotic dynamics to limit cycle oscillations (Figure 6). Therefore, migration could
stabilize the coupled system by producing stable focus or more regular oscillations.
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Figure 4. Figure shows chaotic oscillations and stable focus for r0 = 0.161 and r0 = 0.75, respectively.
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Figure 6. Figure shows limit cycle oscillations of the coupled system for k = 5.
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3.2. Upadhyay–Rai Model

Upadhyay and Rai [7,33] proposed and analyzed a tri-trophic food-chain model by considering
the middle predator as a specialist predator and the top predator as a generalist predator.

The prey–specialist predator–generalist system is governed by the following equations [7,33]:

dx
dt

= m1x− n1x2 − wxy
x + D1

dy
dt

= −n2y +
w1xy

x + D1
− w2yz

y + D2
dz
dt

= cz2 − w3z2

y + D3

(8)

where x, y and z are the densities of the prey, specialist predator, and generalist predator populations,
respectively; m1, n1, n2, w, w1, w2, w3, D, D1, D2 and c are the non-negative parameters that have
the usual meanings [7,33]. In the above model, the prey population (x) grows logistically; the
specialist predator (y) predates prey (only food item available to the specialist predator) via a Holling
type II functional response; the generalist predator (z) sexually reproduces, its population growing

quadratically (cz2) and decaying as a result of intraspecific competition (− w3z2

y+D3
). Additionally, males

and females in the generalist predator population are assumed to be equal in terms of numbers, and the
mating frequency is directly proportional to the number of males as well as the number of females. The
interaction between the generalist predator and specialist predator follows a modified Leslie–Gower
scheme. Here, the specialist middle predator is the favourite food choice of the generalist top predator
and the generalist predator feeds on other food items (alternative food resources), in case of a short
supply of the middle predator.

It is to be noted here that the system given by Equation (8) is not always dissipative, and the
solutions may blow-up in finite time (explosive instability) depending on the parameter values and
initial conditions [34]. In recent literature, few researchers have investigated different models that
show finite-time blow-up in the solutions [34–40]. However, the above system given by Equation (8)
shows very rich dynamics when w3

y+D3
< c < w3

D3
. Upadhyay and Rai [7,33] explored chaotic dynamics

in the system by increasing the intrinsic growth rate m1.

Coupling between Chaotic UR Model and Stable UR Model

In this section, we denote the chaotic UR system with the subscript 1 and the stable UR system
with the subscript 2. The coupled system is governed by the following equations:

dx1

dt
= m11x1 − n1x1

2 − wx1y1

x1 + D1
+ k1(x2 − x1)

dy1

dt
= −n2y1 +

w1x1y1

x1 + D1
− w2y1z1

y1 + D2
+ k2(y2 − y1)

dz1

dt
= cz1

2 − w3z1
2

y1 + D3
+ k3(z2 − z1)

dx2

dt
= m21x2 − n1x2

2 − wx2y2

x2 + D1
+ k1(x1 − x2)

dy2

dt
= −n2y2 +

w1x2y2

x2 + D1
− w2y2z2

y2 + D2
+ k2(y1 − y2)

dz2

dt
= cz2

2 − w3z2
2

y2 + D3
+ k3(z1 − z2)

(9)

where k1, k2, and k3 are the migration coefficients of the prey, specialist predator and generalist
predator populations, respectively. We assume that two systems differ only in the parameter m1

in Equation (8); m11 and m21 are the parameters corresponding to systems 1 and 2, respectively.
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Now we describe the numerical simulations of the system given by Equation (8) and the coupled
system given by Equation (9). The set of parameters were as follows:

n1 = 0.06, w = 1, D1 = 10, n2 = 1, w1 = 2,
w2 = 0.405, D2 = 10, c = 0.03, w3 = 1, D3 = 20,

(10)

which were taken from [33]. Choosing m11 = m21 = 1.93, then the coupled system given by
Equation (8) remained chaotic for any coupling strength (migration rate). We then chose two
different values of m1(m1 = 1.93 and m1 = 1.2), and the UR model given by Equation (8)
showed chaotic dynamics and stable dynamics, respectively (Figure 7). For system 1, we set
m11 = 1.93, so that the system showed chaotic dynamics, and for system 2, we set m21 = 1.2, so
that the system showed stable dynamics. The initial condition for the simulations of the coupled
system given by Equation (9) was (x1(0), y1(0), z1(0), x2(0), y2(0), z2(0)) = (0.7, 0.5, 7, 0.7, 0.4, 6). We
then investigated the effect of bi-directional migration on the two systems. For simplicity, we
considered k1 = k2 = k3 = k and drew the bifurcation diagram of the coupled system given by
Equation (9) with respect to the rate of migration k (Figure 8). We observed that the coupled system
given by Equation (9) became stable through a Hopf bifurcation when the migration coefficient
crossed a threshold value k∗UR = 0.21. We observed that when the migration was weak (k small),
the stable system became unstable and the coupled system showed higher periodic and chaotic
oscillations, but if the strength of migration was increased gradually, then the coupled system
became stable. Further, we observed that for k = 0.25, the coupled system given by Equation (9)
had a unique positive interior equilibrium E∗UR(22.7980, 15.6757, 19.5396, 15.1274, 10.5329, 16.5322).
We also obtained the RH determinants RH1 = 2.9322 > 0, RH2 = 7.7900 > 0, RH3 = 9.8214 > 0,
RH4 = 3.1712 > 0, RH5 = 0.0300 > 0, and RH6 = 8.2866 × 10−4 > 0, which satisfied the RH
stability criterion of order 6. The eigenvalues of the coupled system given by Equation (9) were
(−1.1705,−0.0096 + 0.3009i,−0.0096− 0.3009i,−0.6209,−0.5608 + 0.3227i,−0.5608− 0.3227i). Hence,
the coupled system given by Equation (9) was stable around the positive interior equilibrium E∗UR
(Figure 9).
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Figure 7. (a,b) Chaotic oscillations and stable focus of the system given by Equation (8) for m1 = 1.93 and
m1 = 1.2, respectively.
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Figure 8. Bifurcation diagram for x1 and x2 populations of the coupled Upadhyay–Rai (UR)–UR system
corresponding to the bifurcating parameter k, where k ∈ [0, 0.25].
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Figure 9. The figure shows stable dynamics of the coupled system given by Equation (9) for k = 0.25.

3.3. Priyadarshi–Gakkhar Model

Priyadarshi and Gakkhar [9] proposed and analyzed a tri-trophic food-web model consisting of a
Leslie–Gower-type generalist predator, where the middle predator is a specialist predator and the top
predator is a generalist predator.

The prey–specialist predator–generalist predator system is governed by the following equations [9]:

dx
dt

= x(1− x)− xy
1 + w1x

− xz
1 + w2x + w3y

dy
dt

= −w5y +
w4xy

1 + w1x
− w6yz

1 + w2x + w3y
dz
dt

= w7z2 − w8z2

1 + w9x + w10y

(11)

where x, y and z are the densities of the prey, specialist predator, and generalist predator populations,
respectively. The parameters w1, w2, w3, w4, w5, w6, w7, w8, w9 and w10 are non-negative parameters
that have the usual meanings [9]. The formulation of the above model is similar to that of the UR
model. However, in the above model, the specialist predator predates prey according to a Holling
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type II functional response, whereas the generalist predator predates prey and the specialist predator
following a modified Holling type II functional response. It is to be noted that the system given by
Equation (11) may not be dissipative and shows the blow-up phenomenon depending on the parameter
values and initial conditions [34]. Priyadarshi and Gakkhar [9] explored a “snail-shell” chaotic attractor
in the system.

Coupling between Chaotic PG Model and Stable PG Model

In this section, we investigate the dynamics of the coupled ecosystem, where one PG system
shows chaotic dynamics and the other PG system shows stable dynamics. Here, we consider that two
different systems are connected by bi-directional migration. We assume that all populations are free to
migrate from one system to the other. We denote the chaotic PG system with the subscript 1 and the
stable PG system with the subscript 2. The coupled system is governed by the following equations:

dx1

dt
= x1(1− x1)−

x1y1

1 + w1x1
− x1z1

1 + w2x1 + w31y1
+ k1(x2 − x1)

dy1

dt
= −w5y1 +

w4x1y1

1 + w1x1
− w6y1z1

1 + w2x1 + w31y1
+ k2(y2 − y1)

dz1

dt
= w7z1

2 − w8z1
2

1 + w9x1 + w10y1
+ k3(z2 − z1)

dx2

dt
= x2(1− x2)−

x2y2

1 + w1x2
− x2z2

1 + w2x2 + w32y2
+ k1(x1 − x2)

dy2

dt
= −w5y2 +

w4x2y2

1 + w1x2
− w6y2z2

1 + w2x2 + w32y2
+ k2(y1 − y2)

dz2

dt
= w7z2

2 − w8z2
2

1 + w9x2 + w10y2
+ k3(z1 − z2)

(12)

where k1, k2, and k3 are the migration coefficients of the prey, specialist predator and generalist
predator populations, respectively. We assume that two systems differ only in the parameter w3

in Equation (11); w31, w32 are the parameters corresponding to systems 1 and 2, respectively.
In numerical simulations, we considered the following parameter values:

w1 = 1.4, w2 = 1, w4 = 1, w5 = 0.16, w6 = 0.1, w7 = 0.1, w8 = 0.5, w9 = 8, w10 = 8, (13)

which were taken from [9]. Choosing w31 = w32 = 10, then the coupled system given by
Equation (11) remained chaotic for any coupling strength (migration rate). Choosing two different
values of w3(w3 = 10 and w3 = 1), then the PG model of Equation (11) showed chaotic
dynamics and stable dynamics (Figure 10). For system 1, we set w31 = 10, so that the system
showed chaotic dynamics, and for system 2, we set w32 = 1, so that the system showed stable
dynamics. The initial condition for the simulation of the coupled system given by Equation (12)
was (x1(0), y1(0), z1(0), x2(0), y2(0), z2(0)) = (0.5, 0.2, 5, 0.6, 0.3, 7). We then investigated the effect
of bi-directional migration on the two systems. For simplicity, we considered k1 = k2 = k3 = k
and drew the bifurcation diagram of the coupled system given by Equation (12) with respect
to the rate of migration k (Figure 11). We observed that the coupled system became stable
through a Hopf bifurcation when the migration rate (k) crossed a threshold value, (k∗PG = 0.1)
(Figure 11). We observed that weak migration destabilized the stable system, but if the strength
of the migration was increased gradually, then the coupled system became stable. Further, we
observed that for k = 0.25, the coupled system given by Equation (12) had a unique positive
interior equilibrium E∗PG(0.3927, 0.2318, 1.2881, 0.2191, 0.1773, 1.1778). We also obtained the RH
determinants RH1 = 1.9351 > 0, RH2 = 2.2437 > 0, RH3 = 0.7799 > 0, RH4 = 0.0354 > 0,
RH5 = 8.1643× 10−5 > 0, and RH6 = 4.8986× 10−8 > 0, which satisfied the RH stability criterion
of order 6. The eigenvalues of the coupled system given by Equation (12) were (−0.6763,−0.5218 +
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0.1623i,−0.5218− 0.1623i,−0.0180 + 0.1299i,−0.0180− 0.1299i,−0.1792). Hence, the system given by
Equation (12) was stable around the positive interior equilibrium E∗PG (Figure 12).
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Figure 10. (a,b) Chaotic oscillations and stable focus of the system given by Equation (11) for w3 = 10 and
w3 = 1, respectively.
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Figure 11. Bifurcation diagram for z1 and z2 populations of the coupled Priyadarshi–Gakkhar (PG)–PG
system given by Equation (12) corresponding to the bifurcating parameter k, where k ∈ [0, 0.15].
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Figure 12. The figure shows stable dynamics of the coupled system given by Equation (12) for k = 0.25.
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We calculated the maximum Lyapunov exponent (Figure 13) for the coupled systems given by
Equations (4), (9) and (12) with respect to the coupling strength (k). We observed that if we increased
the strength of migration, then the value of the maximum Lyapunov exponent became negative.
The maximum Lyapunov exponent (Figure 13) confirmed that the coupled systems (HP–HP, UR–UR,
and PG–PG) became stable from chaotic dynamics.
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Figure 13. Largest Lyapunov exponent of the coupled systems given by Equations (4), (9) and (12) with
respect to the parameter k.

4. Conclusions

The persistence of coupled unstable systems depends on the maintenance of the asynchronous
behavior among populations. Several types of asynchronous behaviors, such as the existence of
refuge [41], biased dispersal [42], fixed differences in parameters [43], and so on, can enhance the
stability of predator–prey systems. In the present paper, we considered two ecological systems of the
same type that were connected through migration. We also considered different sets of parameter
values so that one system (HP-1/UR-1/PG-1) showed chaotic dynamics and the other system
(HP-2/UR-2/PG-2) showed stable dynamics. The direction of migration was taken as bi-directional
and depended on the density difference of the populations in the two patches. We studied the effect of
bi-directional migration on the chaotic ecosystem and stable ecosystem by considering three different
types of food webs. We observed that small migration destabilized the stable system, and the coupled
system showed higher periodic and chaotic oscillations, but if the strength of the migration was
increased gradually, then above a threshold value, all the coupled systems (HP/UR/PG) became stable.
Bi-directional migration can replace chaotic oscillations by a stable steady state or stable limit cycle.
Therefore, migration makes the system more regular. In the present work, migration was considered
as the coupling force; the migration could be both ways depending on the density difference of
each population in the two patches. If the migration strength was weak, then we observed that the
chaotic system dominated the dynamic properties of the coupled system. For a low migration rate,
the population density of each patch changed very slowly. Intuitively, migration has a stabilizing
effect. However, if the change in the population densities due to trophic interactions is greater than
the change due to migration, then the population dynamics are likely to be dominated by trophic
interactions. Therefore, the population dynamics of a coupled system may be unstable. However, if
the migration strength is high enough, then the population densities of each patch quickly converge to
the average density of the two patches, which may stabilize the coupled system.
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A possible explanation could be provided as follows: If the populations in a system show chaotic
dynamics, the population densities oscillate in an unpredictable manner. The amplitude of the
population oscillations may be high enough or may be very low. However, depending on the density
difference of the populations in the two patches, all species start to migrate from one patch to the other
(from higher to lower density). Bi-directional migration mediates the population densities, and none
of the population densities increase or decrease drastically. Migration helps to balance the population
densities in two patches. In terms of stability and extinction, populations in the coupled system will be
less prone to extinction. Therefore, migration can prevent chaos in a coupled system and also enhance
the stability and persistence of the system.

Author Contributions: N.P., S.S., M.M. and J.C. formulated the model. N.P. and S.S. performed mathematical
analysis and numerical simulations. N.P., S.S., M.M. and J.C. wrote the paper.
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