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Abstract: In this paper, the existence of fixed point for Pata type Zamfirescu mapping in a complete
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1. Introduction

In 1922, Banach proved the existence of fixed point on a complete metric space (X, d). The mapping
f has been considered to be a contraction and f takes points of X to itself. Later, several interpretations
for the existence of fixed point with weaker conditions to contraction mappings were given. Later,
Kannan type and Chatterjea type mappings were introduced. These were significant type of mappings
since they provided the existence of fixed point for non-continuous mappings for the first time in
literature. In 1972, Zamfirescu [1] introduced and gave the existence of fixed point for a generalized
contraction mapping. This class of functions generalized the results of [2–4]. All of these mappings
were compared by [5].

Throughout the paper, Θ denotes the class of all increasing functions Ψ : [0, 1]→ [0, ∞) such that
Ψ is continuous at 0 with Ψ(0) = 0.

Definition 1. Let (X, d) be a metric space. A mapping f : X → X is said to be a Zamfirescu mapping if, for all
x, y ∈ X and a, b, c ∈ [0, 1), it satisfies the condition

d( f (x), f (y)) ≤ max
{

ad(x, y),
b
2
[
d(x, f (x)) + d(y, f (y))

]
,

c
2
[
d(x, f (y)) + d(y, f (x))

]}
.

In a recent paper, Pata [6] obtained the following refinement of the classical Banach Contraction
Principle. Let Λ ≥ 0, α ≥ 1, β ∈ [0, α] be any constants. For each ε ∈ [0, 1],

d( f (x), f (y)) ≤ (1− ε)d(x, y) + ΛεαΨ(ε)
[
1 + ‖x‖+ ‖y‖

]β
, (1)

where ‖x‖ = d(x, x0) for arbitrary x0 ∈ X and Ψ ∈ Θ.
In this paper, we define Pata type Zamfirescu mappings and prove the existence of fixed point in

metric spaces, which generalizes the result of [1,6]. We also prove a best proximity point result that
generalizes the result of [6].
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The following lemma is used to prove our results.

Lemma 1. Suppose (X, d) is a metric space. Let {xn} be a sequence in X such that d(xn, xn+1) → 0 as
n→ ∞. If {xn} is not a Cauchy sequence, then there exist a δ > 0 and sequences of positive integers {mk} and
{nk} with mk > nk > k such that d(xmk , xnk ) ≥ δ, d(xmk−1, xnk ) < δ and

1. limk→∞ d(xmk−1, xnk+1) = δ;
2. limk→∞ d(xmk , xnk ) = δ;
3. limk→∞ d(xmk−1, xnk ) = δ.

Using the above lemma, we get

limk→∞ d(xmk+1, xnk+1) = δ,
limk→∞ d(xmk , xnk−1) = δ.

2. Existence of Fixed Point for Pata Type Zamfirescu Mappings

In this section, we prove the existence of unique fixed point for Pata type Zamfirescu mappings. Let
(X, d) be a metric space. In the sequel, we write ‖x‖ = d(x, x0), where x0 is an arbitrary element in X.

Definition 2. Let (X, d) be a complete metric space. A mapping f : X → X is said to be a Pata type Zamfirescu
mapping if for all x, y ∈ X, Ψ ∈ Θ and for every ε ∈ [0, 1], f satisfies the inequality

d( f (x), f (y)) ≤ (1− ε)M(x, y) + ΛεαΨ(ε)
[
1 + ‖x‖+ ‖y‖+ ‖ f (x)‖+ ‖ f (y)‖

]β
,

where M(x, y) = max
{

d(x, y), d(x, f (x))+d(y, f (y))
2 , d(x, f (y))+d(y, f (x))

2

}
and Λ ≥ 0, α ≥ 1, β ∈ [0, α]

are constants.

Now, we show that all Zamfirescu mappings fall under a particular case of Pata type Zamfirescu
mappings. Let d = max{a, b, c} in Definition 1 and consider the Bernoulli’s inequality (1+ rt) ≤ (1+ t)r,
r ≥ 1 and t ∈ [−1, ∞). Then,

d( f (x), f (y)) ≤d max
{

d(x, y),
d(x, f (x)) + d(y, f (y))

2
,

d(x, f (y)) + d(y, f (x))
2

}
≤(1− ε)max

{
d(x, y),

d(x, f (x)) + d(y, f (y))
2

,
d(x, f (y)) + d(y, f (x))

2

}
+ (d + ε− 1)

[
1 + max

{
‖x‖+ ‖y‖, ‖x‖+ ‖y‖+ ‖ f (x)‖+ ‖ f (y)‖

2

}]
≤(1− ε)max

{
d(x, y),

d(x, f (x)) + d(y, f (y))
2

,
d(x, f (y)) + d(y, f (x))

2

}
+ d

(
1 +

ε− 1
d

)
[1 + ‖x‖+ ‖y‖+ ‖ f (x)‖+ ‖ f (y)‖]

≤(1− ε)max
{

d(x, y),
d(x, f (x)) + d(y, f (y))

2
,

d(x, f (y)) + d(y, f (x))
2

}
+ dε

1
d [1 + ‖x‖+ ‖y‖+ ‖ f (x)‖+ ‖ f (y)‖]

≤(1− ε)max
{

d(x, y),
d(x, f (x)) + d(y, f (y))

2
,

d(x, f (y)) + d(y, f (x))
2

}
+ dεε

1−d
d [1 + ‖x‖+ ‖y‖+ ‖ f (x)‖+ ‖ f (y)‖] .

(2)

Comparing this with Pata type Zamfirescu mappings, we have that Zamfirescu mapping is
actually a special case of Pata type Zamfirescu mappings with Λ = d, Ψ(ε) = ε

1−d
d and β = 1. It is also

clear that mappings given by [6–8] were also Pata type Zamfirescu mappings.
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Now, we prove the main result of this paper.

Theorem 1. Let (X, d) be a complete metric space and let f : X → X be a Pata type Zamfirescu mapping.
Then, f has a unique fixed point in X.

Proof. Let x0 be an arbitrary element in X. Define xn+1 = f (xn) and cn = d(xn, x0). To prove that
d(xn+1, xn) is a nonincreasing sequence, take ε = 0. Therefore,

d(xn+1, xn) ≤max
{

d(xn, xn−1),
d(xn, f (xn)) + d(xn−1, f (xn−1))

2
,

d(xn, f (xn−1)) + d(xn−1, f (xn))

2

}
≤max

{
d(xn, xn−1),

d(xn, xn+1) + d(xn−1, xn)

2
,

d(xn−1, xn+1)

2

}
≤max

{
d(xn, xn−1),

d(xn, xn+1) + d(xn−1, xn)

2
,

d(xn, xn−1) + d(xn+1, xn)

2

}
≤max

{
d(xn, xn−1),

d(xn, xn+1) + d(xn−1, xn)

2

}
.

Therefore, d(xn+1, xn) ≤ d(xn, xn−1) ≤ · · · ≤ d(x1, x0) = c1.
Claim (1): {cn} is bounded.

cn =d(xn, x0)

≤d(xn, xn+1) + d(xn+1, x1) + d(x1, x0)

≤(1− ε)max
{

d(xn, x0),
d(xn, xn+1) + d(x0, x1)

2
,

d(xn, x1) + d(x0, xn+1)

2

}
+ 2c1 + ΛεαΨ(ε)

[
1 + ‖xn‖+ 0 + ‖xn+1‖+ ‖x1‖

]β

≤(1− ε)max
{

d(xn, x0),
d(xn, xn+1) + d(x0, x1)

2
,

d(xn, x1) + d(x0, xn+1)

2

}
+ 2c1 + ΛεαΨ(ε)

[
1 + ‖xn‖+ d(xn+1, xn) + d(xn, x0) + ‖x1‖

]β

≤(1− ε)max
{

d(xn, x0),
d(xn, xn+1) + d(x0, x1)

2
,

d(xn, x1) + d(x0, xn+1)

2

}
+ 2c1 + ΛεαΨ(ε)

[
1 + ‖xn‖+ ‖x1‖+ ‖xn‖+ ‖x1‖

]β

≤(1− ε)max
{

cn, c1,
d(xn, x0) + d(x1, x0) + d(xn+1, xn) + d(xn, x0)

2

}
+ 2c1 + ΛεαΨ(ε)

[
1 + ‖xn‖+ ‖xn‖+ ‖x1‖+ ‖x1‖

]β

≤(1− ε)max{cn, c1, cn + c1}+ 2c1 + ΛεΨ(ε)
[
1 + 2cn + 2c1

]β

≤(1− ε)[cn + c1] + 2c1 + ΛεαΨ(ε)
[
1 + 2cn + 2c1

]α
.

By the same reasoning as in [8], it follows that the sequence {cn} is bounded.
Let lim

n→∞
d(xn, xn−1) = d. Since d(xn, xn−1) is nonincreasing,



Mathematics 2018, 6, 25 4 of 8

d(xn+1, xn) =d( f (xn), f (xn−1))

≤(1− ε)max
{

d(xn, xn−1),
d(xn, xn+1) + d(xn−1, xn)

2
,

d(xn, xn) + d(xn−1, xn+1)

2

}
+ ΛεαΨ(ε)

[
1 + ‖xn‖+ ‖xn−1‖+ ‖xn+1‖+ ‖xn‖

]β

≤(1− ε)max
{

d(xn, xn−1),
d(xn, xn+1) + d(xn−1, xn)

2

}
+ KεΨ(ε).

Now, as n→ ∞, we get d ≤ KΨ(ε) and hence d = 0.
Claim (2): The sequence {xn} is Cauchy. Suppose that {xn} is not a Cauchy sequence. Then,

by Lemma 1, there exist subsequences {xnk} and {xmk} of {xn} with nk> mk>k such that

δ ≤ d(xmk , xnk ) =d( f (xmk−1), f (xnk−1))

≤(1− ε)max
{

d(xmk−1, xnk−1),
d(xmk−1, xmk ) + d(xnk−1, xnk )

2
,

d(xnk−1, xmk ) + d(xmk−1, xnk )

2

}
+ KεΨ(ε)

≤(1− ε)max
{

d(xmk−1, xnk ) + d(xnk , xnk−1),
d(xmk−1, xmk ) + d(xnk−1, xnk )

2
,

d(xnk−1, xmk ) + d(xmk−1, xnk )

2

}
+ KεΨ(ε).

Now, as k→ ∞, we get δ ≤ KΨ(ε), which is a contradiction. Therefore, {xn} is Cauchy. Since X
is complete, there exists x ∈ X such that xn → x. Now, for all n ∈ N and for ε = 0, we obtain

d( f (x), x) ≤d( f (x), xn+1) + d(xn+1, x)

≤max
{

d(x, xn),
d(x, f (x)) + d(xn, xn+1)

2
,

d(x, xn+1) + d(xn, f (x))
2

}
+ d(xn+1, x).

As n→ ∞, the above inequality concludes that d( f (x), x) ≤ 1
2 d( f (x), x). Hence, x is a fixed point

of f . For the uniqueness of fixed point, suppose that x and y are fixed points of F. Then,

d( f (x), f (y)) ≤(1− ε)max
{

d(x, y),
d(x, f (x)) + d(y, f (y))

2
,

d(x, f (y)) + d(y, f (x))
2

}
+ KεΨ(ε).

Therefore, we get d(x, y) ≤ KΨ(ε) and hence x = y. Therefore, f has a unique fixed point in X.

Corollary 1. Let (X, d) be a complete metric space and f1 : X → X be a Zamfirescu mapping satisfying, for all
x, y ∈ X and a, b, c ∈ [0, 1), the inequality

d( f1(x), f1(y)) ≤ max
{

ad(x, y),
b
2
[
d(x, f1(x)) + d(y, f1(y))

]
,

c
2
[
d(x, f1(y)) + d(y, f1(x))

]}
.

Then, f1 has a unique fixed point in X.
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Proof. Using inequality (2), we obtain that

d( f1(x), f1(y)) ≤(1− ε)max
{

d(x, y),
d(x, f1(x)) + d(y, f1(y))

2
,

d(x, f1(y)) + d(y, f1(x))
2

}
+ dεε

1−d
d

[
1 + ‖x‖+ ‖y‖+ ‖ f1(x)‖+ ‖ f1(y)‖

]
.

Therefore, by Theorem 1, f1 has a unique fixed point in X.

Corollary 2. Let (X, d) be a complete metric space and f : X → X be a mapping which satisfies (1). Then,
f has a unique fixed point in X.

3. Existence of Best Proximity Point for Pata Type Proximal Contraction

In this section, we define Pata type proximal mappings and prove the existence of best proximity
points. Our work generalizes the result of [6]. Let A and B be two closed subsets of a complete metric
space (X, d). We denote by A0 the subset of A defined by

A0 = {x ∈ A : d(x, y) = d(A, B), for some y ∈ B}.

Similarly, we denote by B0 the subset of B defined by

B0 = {y ∈ B : d(x, y) = d(A, B), for some x ∈ A}.

Throughout this section, we assume that A0 and B0 are closed subsets of A and B.

Definition 3. A mapping f : A→ B is said to be a Pata type proximal contraction if for all x, y ∈ A, Ψ ∈ Θ
and for every ε ∈ [0, 1], f satisfies the inequality

d(u, v) ≤ (1− ε)d(x, y) + ΛεαΨ(ε)
[
1 + ‖x‖+ ‖y‖

]β
,

where d( f (x), u) = d( f (y), v) = d(A, B) and Λ ≥ 0, α ≥ 1, β ∈ [0, α] are any constants.

Theorem 2. Let A and B be two closed subsets of a complete metric space (X, d). Let f : A→ B be a Pata type
proximal contraction such that f (A0) ⊂ B0. Then, f has a best proximity point in A.

Proof. Let x0 be an element in A0. Then, f (x0) ∈ B0 and so there exists an element x1 ∈ A0 such
that d( f (x0), x1) = d(A, B). Similiarly, define xn+1 ∈ A0 such that d(xn+1, f (xn)) = d(A, B) and
cn = d(xn, x0). Then, we get

d(xn, xn+1)) ≤ (1− ε)d(xn−1, xn) + ΛεαΨ(ε)
[
1 + ‖xn‖+ ‖xn−1‖

]β
(3)

for all ε ∈ [0, 1].
In particular, letting ε = 0 in the inequality (3), we obtain that d(xn+1, xn) is a

nonincreasing sequence.
Therefore, d(xn+1, xn) ≤ d(xn, xn−1) ≤ ... ≤ d(x1, x0) = c1.
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Next, we prove that {cn} is bounded:

cn =d(xn, x0)

≤d(xn, xn+1) + d(xn+1, x1) + d(x1, x0)

≤(1− ε)d(xn, x0) + 2c1 + ΛεαΨ(ε)
[
1 + ‖xn‖+ ‖x0‖

]β

≤(1− ε)cn + 2c1 + ΛεΨ(ε)
[
1 + cn + c1

]β
.

Now, as in [6], we see that {cn} is bounded.
Let lim

n→∞
d(xn, xn−1) = d. Since d(xn, xn−1) is nonincreasing,

d(xn+1, xn) ≤(1− ε)d(xn, xn−1) + ΛεαΨ(ε)
[
1 + ‖xn‖+ ‖xn−1‖

]β

≤(1− ε)d(xn, xn−1) + KεΨ(ε).

As n→ ∞, we get d ≤ KΨ(ε) and hence d = 0. Now, we claim that {xn} is a Cauchy sequence.
Suppose that {xn} is not a Cauchy sequence. Then, by Lemma 1, there exist subsequences {xnk} and
{xmk} of {xn} with nk> mk>k such that

δ ≤ d(xmk , xnk ) ≤ (1− ε)d(xmk−1, xnk−1) + KεΨ(ε)

≤ (1− ε)
[
d(xmk−1, xnk ) + d(xnk , xnk−1)

]
+ KεΨ(ε).

Now, as k→ ∞, we get δ ≤ KΨ(ε), which is a contradiction. Therefore, {xn} is a Cauchy sequence.
Since X is complete, there exists x ∈ X such that {xn} → x. Let d(u, f (x)) = d(A, B) and ε = 0. Then,
for all n ∈ N, we get

d(u, x) ≤d(u, xn+1) + d(xn+1, x)

≤d(x, xn) + d(xn+1, x),

which concludes that d(u, x) = 0. Hence, x is a proximity point of f .
Suppose that x and y are proximity points of f . Then,

d(x, y) ≤(1− ε)d(x, y) + KεΨ(ε).

Therefore, we get d(x, y) ≤ KΨ(ε) and hence x = y. Thus, x is the only proximity point of f in A.

Corollary 3. Let (X, d) be a complete metric space and f : X → X be a mapping which satisfies condition (1).
Then, f has a unique fixed point in X.

Proof. The proof follows directly from the previous theorem, when A = B.

In complete metric space setting, the following example shows the existence of best proximity of
Pata type proximal contraction.

Example 1. Consider A = {(0, a)|a ∈ [0, 1]} and B = {(1, b)|b ∈ [0, 1]} on R2 under 1−norm with
d(A, B) = 1. For x ∈ A, define f : A→ B as f (0, x) = (1, x2

4 ), Λ = α = β = 1, and for δ ∈ (0, 1
2 )

ψ(x) =

{
x
2 if x ∈ [0, δ),

1 if x ∈ [δ, 1].
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It has to be shown that, for all ε ∈ [0, 1], f satisfies the inequality of Pata type proximal contraction (i.e.,)... f or ε = 0 =⇒ d(u, v) ≤ d(x, y),

f or ε ∈ (0, 1] =⇒ d(u, v) ≤ (1− ε)d(x, y) + εΨ(ε)
[
1 + ‖x‖+ ‖y‖

]
.

(4)

The next inequality shows that f satisfies the first case if ε = 0. For ε = 0 and for all (0, x), (0, y) ∈ A,

d(u, v) = d
((

0,
x2

4
)
,
(
0,

y2

4
))

=
∣∣∣0∣∣∣+ ∣∣∣ x2

4
− y2

4

∣∣∣
=
∣∣∣( x

2
+

y
2
)( x

2
− y

2
)∣∣∣

≤ d(x, y).

The following inequalities shows that f satisfies second case if ε ∈ (0, 1].
For ε ∈ (0, δ) and for all (0, x), (0, y) ∈ A,

d(u, v) = d
((

0,
x2

4
)
,
(
0,

y2

4
))

=
∣∣∣0∣∣∣+ ∣∣∣ x2

4
− y2

4

∣∣∣
≤ 1

2

∣∣∣x− y
∣∣∣

=
1
2

d(x, y)

= (1− ε)d(x, y) +
(1

2
+ ε− 1

)
d(x, y)

= (1− ε)d(x, y) +
1
2

(
1 +

ε− 1
1
2

)[
d(x, x0) + d(y, x0)

]
≤ (1− ε)d(x, y) +

1
2

ε2[d(x, x0) + d(y, x0)
]

= (1− ε)d(x, y) + εΨ(ε)
[
1 + ‖x‖+ ‖y‖

]
.

For ε ∈ [δ, 1] and for all (0, x), (0, y) ∈ A,

d(u, v) = d
((

0,
x2

4
)
,
(
0,

y2

4
))

=
∣∣∣0∣∣∣+ ∣∣∣ x2

4
− y2

4

∣∣∣
≤ d(x, y)

= (1− ε)d(x, y) + εd(x, y)

≤ (1− ε)d(x, y) + ε
[
d(x, x0) + d(y, x0)

]
≤ (1− ε)d(x, y) + εΨ(ε)

[
1 + ‖x‖+ ‖y‖

]
.

Therefore, f is Pata type proximal contraction and hence there exists a best proximity point (0, 0) in A.
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