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1. Introduction and Preliminaries

In the last decades, the renowned metric fixed point results of Banach [1] has been improved,
extended, and generalized in several ways, see e.g., [2–21]. We first mention that the notion of
E-contraction, defined by Fulga and Proca [10,11], is one of the interesting approach to improve the
Banach mapping contraction. Another interesting fixed point result was given by Khojasteh et al. [19]
via the newly defined notion, simulation function. Both results generalize and extend the basic results
on the theory of metric fixed point. In this paper, we combine these two interesting notions and get
some interesting results in this direction.

We recollect some basic notions as well as the fundamental definitions to provide a self-contained
manuscript. For more details about the tools and notations, we refer e.g., [19,20]. We shall use the
letters R,R+,N for the reals, nonnegative real numbers, and natural numbers, accordingly. Moreover,
we employ the symbols R+

0 = R+ ∪ {0} = [0, ∞) and N0 = N∪ {0}.

Definition 1 (See [19]). A function σ : R+
0 × R+

0 → R is called simulation function if it checks the
following conditions:

(s f1) σ(0, 0) = 0;
(s f2) σ(t, s) < s− t for all t, s ∈ R+;
(s f3) if {tn}, {sn} in (0, ∞) are two sequences such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

σ(tn, sn) < 0. (1)

We will denote by S the family of all simulation functions. It is clear, due to the axiom (s f2), that

σ(t, t) < 0 for all t > 0. (2)

Let Φ be the class of continuous functions φ : [0, ∞)→ [0, ∞) which satisfies the condition

φ(x) = 0 if, and only if, x = 0.
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Example 1 (See e.g., [2,19,20]). Let φi ∈ Φ for i = 1, 2, 3 and σj : R+
0 ×R+

0 → R for j = 1, 2, 3, 4, 5, 6.
Each of the functions defined below is an example of simulation functions.

(i) σ1(t, s) = φ1(s)− φ2(t) for all t, s ≥ 0 where φ1(t) < t ≤ φ2(t) for all t > 0.
(ii) σ2(t, s) = s− φ3(s)− t for all t, s ≥ 0.
(iii) σ3(t, s) = s−

∫ t
0 µ(u)du for all t, s ≥ 0, where µ : [0, ∞)→ [0, ∞) is a function such that

∫ ε
0 µ(u)du

exists and
∫ ε

0 µ(u)du > ε, for each ε > 0.
(iv) σ4(t, s) = f (s) − t for all t, s ≥ 0, t, s ≥ 0, where the function f : [0, ∞) → [0, ∞) is upper

semi-continuous and such that f (t) < t for all t > 0 and f (0) = 0.

(v) σ5(t, s) = s− g(t, s)
h(t, s)

for all t, s ≥ 0, where g, h : [0, ∞)2 → (0, ∞) are two continuous functions with

respect to each variable such that g(t, s) > h(t, s) for all t, s > 0.
(vi) σ6(t, s) = s η(s) − t for all t, s ≥ 0, where η : [0, ∞) → [0, 1) is a function with the property

lim supt→r+ η(t) < 1 for all r > 0

Let (M, d) be a metric space and σ ∈ S be a simulation function. We say that a function
S :M→M is S-contraction with respect to σ [19], if the inequality

σ(d(Sp, Sq), d(p, q)) ≥ 0 for all p, q ∈ M, (3)

is attained.

Remark 1. From (σ2), we find that

d(Sp, Sq) 6= d(p, q) for all distinct p, q ∈ M, (4)

which infers that, whenever S is a S-contraction, S cannot be an isometry. As a result, the fixed point of a
S-contraction S (if there exists) is necessarily unique.

Theorem 1 ([19]). For every S-contraction on a complete metric space there exists exactly one fixed point.
In fact, every Picard sequence converges and its limit is the unique fixed point.

2. Main Results

We state now our main results. For this purpose, we start by defining a new type of S-contraction.

Definition 2. A self-mapping S defined on a complete metric space (M, d) is a S-contraction of type E with
respect to σ if there exists σ ∈ S such that

σ(d(Sp, Sq), E(p, q)) ≥ 0 for all p, q ∈ M, (5)

where,
E(p, q) = d(p, q) + |d(p, Sp)− d(q, Sq)| . (6)

We denote by CE(M) the set of S-contractions of type E with respect to σ defined onM.

We now present the results regarding the existence of a fixed point, since the uniqueness follows
from Remark 1.

Theorem 2. There exists a fixed point for every S ∈ CE(M)

Proof. Given an arbitrary p0 ∈ M we consider the constructive sequence {pn} ⊂ M which is defined
by un+1 = Sun = Snu0 for all n ∈ N.
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We shall assume that pn+1 6= pn for all n ∈ N. Indeed, in the opposite case, where pn0 = pn0+1

for some n0 ∈ N, then Spn0 = pn0 . This completes the proof and we conclude that the given point pn0

turns to be a fixed point of S.
Consequently, d (pn+1, pn) > 0 and from Equation (5), it follows, for all n ≥ 1, that

0 ≤ σ(d(Spn, Spn−1), E(pn, pn−1))

= σ(d(pn+1, pn), E(pn, pn−1))

< E(pn, pn−1)− d(pn+1, pn).
(7)

In conclusion, for all n = 1, 2, . . . , we have

d(pn, pn+1) < E(pn, pn−1). (8)

To understand the inequality Equation (8), we consider two cases. For the first case, we suppose
that d(pn, pn+1) ≥ d(pn−1, pn). In this case, the inequality Equation (8), becomes

d(pn, pn+1) < d(pn−1, pn)− d(pn−1, pn) + d(pn, pn+1) = d(pn, pn+1),

a contradiction. Thus, the following case occurs

d(pn, pn+1) < d(pn−1, pn) for all n = 1, 2, . . . . (9)

Accordingly, we deduce that the sequence {d(pn, pn−1)} is non-increasing and bounded below
by 0. Hence, the sequence {d(pn, pn−1)} converges to some d∗ ≥ 0. In the same time, we note that

lim
n→∞

E(pn, pn−1) = lim
n→∞

(2d(pn−1, pn)− d(pn, pn+1)) = d∗. (10)

We claim that
d∗ = lim

n→∞
d(pn, pn−1) = 0. (11)

Suppose, on the contrary that d∗ > 0. Then, letting tn = d(pn, pn+1) and sn = E(pn, pn−1) we get
from Equation (5) and (s f3), that

0 ≤ lim sup
n→∞

σ(d(pn+1, pn), E(pn, pn−1)) = lim sup
n→∞

σ(tn, sn)) < 0 (12)

This contradiction shows that d∗ = 0. We will now show that the sequence {pn} is Cauchy.
Suppose, on the contrary, that {pn} is not a Cauchy sequence. Then there exists a real positive number
ε > 0 and sequences α(n), β(n) of natural numbers such that α(n) > β(n) > n and

d(pα(n), pβ(n)) ≥ ε, d(pα(n)−1, pβ(n)) < ε (∀) n ∈ N.

So, from triangle inequality,

ε ≤ d
(

pα(n), pβ(n)

)
≤ d

(
pα(n), pα(n)−1

)
+ d

(
pα(n)−1, pβ(n)

)
< d

(
pα(n), pα(n)−1

)
+ ε

and by Equation (11) we get
lim

n→∞
d
(

pα(n), pβ(n)

)
= ε (13)

On the other hand, it is easy to see that
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∣∣∣d (pα(n)−1, pβ(n)−1

)
− d

(
pα(n), pβ(n)

)∣∣∣ ≤ d
(

pβ(n), pα(n)−1

)
+

+d
(

pβ(n)−1, pβ(n)

)
and from Equation (11) respectively Equation (13)

lim
n→∞

d
(

pα(n)−1, pβ(n)−1

)
= ε. (14)

Moreover from Equations (6), (11) and (13), we have

lim
n→∞

E(pα(n)−1, pβ(n)−1) = lim
n→∞

(
d(pα(n)−1, pβ(n)−1)+

+
∣∣∣d(pα(n)−1, Spα(n)−1)− d(pβ(n)−1, Spβ(n)−1)

∣∣∣)
= lim

n→∞

(
d(pα(n)−1, pβ(n)−1)+

+
∣∣∣d(pα(n)−1, pα(n))− d(pβ(n)−1, pβ(n))

∣∣∣)
= ε.

(15)

Letting tn = d(pα(n), pβ(n)) and sn = E(pα(n−1), pβ(n−1)) we have lim
n→∞

sn = lim
n→∞

tn = ε and

combing with (s f3),

0 ≤ lim sup
n→∞

σ(d(Spα(n)−1, Spβ(n)−1), E(pα(n)−1, pβ(n)−1)

= lim sup
n→∞

σ(d(pα(n), pβ(n), E(pα(n)−1, pβ(n)−1)

= lim sup
n→∞

σ(tn, sn) < 0.

(16)

This contradiction proves that ε = 0 and thus the sequence {pn} is Cauchy. On the account of the
completeness of (M, d) there exists a point p∗ ∈ M such that

lim
n→∞

pn = p∗ = 0. (17)

We must prove now that p∗ = Sp∗. Arguing by contradiction, we will assume that d(p∗, Sp∗) > 0.
By the property (s f2), for r ∈ N sufficiently large, we have

0 ≤ σ(d(Spr, Sp∗), E(pr, p∗))
= σ(d(pr+1, Sp∗), E(pr, p∗))
< E(pr, p∗)− d(pr+1, Sp∗).

(18)

Considering the sequences t∗r = d(pr+1, Sp∗) respectivelly s∗r = E(pr, p∗) = d(pr, p∗) +
|d(pr, Spr)− d(p∗, Sp∗)| we find that

lim
r→∞

t∗r = lim
r→∞

s∗r = d(p∗, Sp∗) > 0, (19)

which implies together with Equation (18)

0 ≤ lim sup
r→∞

σ(d(Spr, Sp∗), E(pr, p∗) < 0. (20)

a contradiction. Thus, we have d(p∗, Sp∗) = 0, i.e., Sp∗ = p∗.
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Examples

Example 2. Let the set M =
[
0, 5

3
]
∪ {2} and d(p, q) = |p− q|, d : M → M. Suppose that

σ : [0, ∞)× [0, ∞)→ R is defined as σ(s, t) = s
2 − t and hence σ ∈ S . Define a map S : M → M

as follows

S(p) =

{
1 if p ∈

[
0, 5

3
]

,
1
3 if p = 2.

Notice that for p = 2 and q = 5
3 , we have

d(2,
5
3
) =

1
3

, d(S2, S
5
3
) =

2
3

and for these values there is no k1 ∈ [0, 1) such that

d(S2, S
5
3
) =

2
3
≤ k1

1
3
= k1d(2,

5
3
)

Thus, the mapping S is not a contraction.

On the other hand, it is S-contraction of type E. For the proof of our claim, we need to consider two
distinct cases:

Case 1. q = 2, p < 1. Then, we find that

d(p, 2) = 2− p, d(p, Sp) = 1− p and d(2, S2) =
∣∣∣∣2− 1

3

∣∣∣∣ = 5
3

and d(S2, Sp) =
2
3

.

Since

E(p, 2) = 2− p +

∣∣∣∣1− p− 5
3

∣∣∣∣ = 2− p +
3p + 2

3
=

8
3

,

we have that

σ(d(Sp, S2), E(p, 2)) =
E(p, 2)

2
− d(Sp, S2) =

8
6
− 2

3
=

2
3
> 0.

Case 2. If q = 2, p ≥ 1 then

d(p, 2) = 2− p and d(p, Sp) = p− 1 and d(2, S2) =
∣∣∣∣2− 1

3

∣∣∣∣ = 5
3

and d(S2, Sp) =
2
3

.

As a result, we have

E(p, 2) = 2− p +

∣∣∣∣p− 1− 5
3

∣∣∣∣ = 2− p +
8− 3p

3
=

14− 6p
3

and also

σ(d(Sp, S2), E(p, 2)) =
E(p, 2)

2
− d(Sp, S2) =

14− 6p
6

− 2
3
=

5− 3p
3
≥ 0.

We deduce that S is a S-contraction of type E. Further, all conditions of Theorem 2 are fulfilled and p = 1
is a fixed point of S. Finally, we mention that the uniqueness of the fixed point follows from the Remark 1.

Example 3. LetM = {1, 3, 4, 5} and d :M→M, d(p, q) = |p− q|. We define the function S :M→M
as, S1 = S3 = S4 = 3, S5 = 1, and set σ(t, s) = 1

2 s− t.
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One can easily get that

d(3, 4) = d(4, 5) = 1, d(3, 5) = d(1, 3) = 2, d(1, 4) = 3, d(1, 5) = 4,
d(S3, S4) = d(S1, S3) = d(S1, S4) = 0, d(S3, S5) = d(S4, S5) = d(S1, S5) = 2.

Moreover, we have

E(1, 4) = E(1, 3) = E(4, 5) = 4 and E(1, 5) = E(3, 5) = 6 and E(3, 4) = 2

Firstly, we claim that S is not a contraction. Indeed, for p = 4 and q = 5, we could not find a real constant
k2 ∈ [0, 1) such that d(T4, T5) = 2 ≤ k2d(4, 5) is satisfied. So, S is not a contraction.

Now, we shall show that S is a S-contraction of type E. For this purpose, we examine all possible cases:

For p = 1, q = 3, we have σ (d(S1, S3), E(1, 3)) = σ(0, 4) = 4
2 − 0 = 2.

For p = 1, q = 4, we find σ (d(S1, S4), E(1, 4)) = σ(0, 4) = 4
2 − 0 = 2.

For p = 1, q = 5, we get σ (d(S1, S5), E(1, 5)) = σ(2, 6) = 6
2 − 2 = 1.

For p = 3, q = 4 we obtain σ (d(S3, S4), E(3, 4)) = σ(0, 2) = 2
2 − 0 = 1.

For p = 3, q = 5 we observe σ (d(S3, S5), E(3, 5)) = σ(2, 6) = 6
2 − 2 = 1.

As a last case, for p = 4, q = 5, we derive σ (d(S4, S5), E(4, 5)) = σ(2, 4) = 4
2 − 2 = 0. Evidently,

we conclude that S ∈ CE(M).
In addition, all conditions of Theorem 2 are attained and p = 3 is a fixed point of S. As in the above

example, the uniqueness results from the Remark 1.

Example 4. LetM = [0, 1
2 ] ∪ {

3
4} and define d(p, q) =


max{p, q} if p 6= q

0 otherwise.

We consider the following self-mapping S(p) =


p

p+1 if p ∈
[
0, 1

4

)
∪
(

1
4 , 1
]

1
2 if p = 3

4 .
We claim that S is a S-contraction of type E for σ(t, s) = s

s+1 − t.

Case 1. For 0 ≤ q ≤ p ≤ 1
2 , we have

d(p, q) = max{p, q} = p and d(Sp, Sq) = max{ p
p+1 , q

q+1} =
p

p+1 ,

d(p, Tp) = max{p, p
p+1} = p and d(q, Tq) = q.

So, we have
E(p, q) = p + |p− q| = 2p− q.

and
σ (d(Sp, Sq), E(p, q)) = E(p,q)

1+E(p,q) − d(Sp, Sq)

= 2p−q
1+2p−q −

p
p+1

= p−q
(2p−q+1)(p+1) > 0.

It is clear that the above observation is also valid for 0 ≤ p ≤ q ≤ 1
2 .

Case 2. For 0 ≤ p ≤ 1
2 , and q = 3

4 , we have

d(p, q) = max{p, q} = 3
4 and d(Sp, Sq) = max{ p

p+1 , 1
2} =

1
2

d(p, Sp) = max{p, p
p+1} = p and d(q, Sq) = max{ 3

4 , 1
2} =

3
4 .
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So,

E(p, q) =
3
4
+ |p− 3

4
| = 3

2
− p.

Consequently,

σ

(
1
2

,
3
2
− p

)
=

3
2 − p
5
2 − p

− 1
2
=

1− 2p
5− 2p

> 0

The case, for 0 ≤ q ≤ 1
2 , and p = 3

4 , is the analog of Case 2.
In any case, we observe that S ∈ CE(M). This completes the proof. Therefore, we conclude that S has a

unique fixed point, namely, x = 0. On the account of Remark 1, the fixed point of S is unique.

3. Consequences and Application

In this section we give one corollary and we consider an application of the main result in which
the solution for an integral equation can be described.

Corollary 1. Let S : M → M be a function on a complete metric space (M, d). If there exist µ1, µ2 ∈ Φ
with µ1(s) < s ≤ µ2(s) for all s > 0, such that for all p, q ∈ M, the following inequality is fulfilled

µ2(d(Sp, Sq)) ≤ µ1(E(p, q)),

where, E(p, q) = d(p, q) + |d(p, Sp)− d(q, Sq)|. Then, S has exactly one fixed point.

Proof. It is enough to take σ(t, s) = σ1(t, s) in Example 1 and apply Theorem 2.

It is clear that by choosing simulation function σ from Example 1 and applying Theorem 2, we get
further corollaries, as we got Corollary 1. So, we skip this list of corollaries by using the analogy.

Let M = C(I,R) be the set of all continuous functions on I = [0, 1] equipped with a metric
d(x, y) = ‖x− y‖ = sup{|x(s)− y(s)| : s ∈ I}, for all x, y ∈ M. Then (M, d) forms a complete metric
space. We investigate the integral equation

x(s) = ξ(s) +
∫ 1

0
K(s, u)η(u, x(u))du, s ∈ [0, 1], (21)

where the functions η : I ×R → R and ξ : I → R are continuous and K : I × I → R+
0 is a function

such that K(s, ·) ∈ L1(I) for all s ∈ [0, 1]. We handle the map S :M→M which is defined by

S(x)(s) = ξ(s) +
∫ 1

0
K(s, u)η(u, x(u))du, s ∈ [0, 1]. (22)

Theorem 3. The Equation (21) has a unique solution inM, if the following conditions are fulfilled:

(a1) there exists µ ∈ Φ with µ(s) < s for all s > 0 satisfying

0 ≤ |η(u, x1(u))− η(u, x2(u))| ≤ µ

(
|x1(u)− x1(u)|+

∣∣∣∣|x1(u)− S(x1)(u)| − |x2(u)− S(x2)(u)|
∣∣∣∣) ,

for all u ∈ I and for all x1, x2 ∈ M.
(a2) followed by the inequality assumed

sup
s∈I

∫ 1

0
K(s, u)du ≤ 1.
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Proof. Note that any fixed point of Equation (21) is a solution of the integral Equation (21). On account
of (a1) and (a2), we find that∣∣∣∣S(x1)(s)− S(x2)(s)

∣∣∣∣ =

∣∣∣∣ ∫ 1
0 K(s, u)[η(u, x1(u))− η(u, x2(u))]du

∣∣∣∣
≤
∫ 1

0 K(s, u)
∣∣∣∣η(u, x1(u))− η(u, x2(u))

∣∣∣∣du

≤
∫ 1

0 K(s, u)µ
(
|x1(u)− x2(u)|+

∣∣∣∣|x1(u)− S(x1)(u)| − |x2(u)− S(x2)(u)|
∣∣∣∣) du

≤ µ (E(x1, x2)) ,

where, E(x1, x2) = ‖x1 − x2‖+
∣∣∣∣‖x1 − Sx1‖ − ‖x2 − Sx2‖

∣∣∣∣. Hence, we derive that

‖Sx1 − Sx2‖ ≤ µ(‖x1 − x2‖+
∣∣∣∣‖x1 − Sx1‖ − ‖x2 − Sx2‖

∣∣∣∣).
Therefore we have

σ(d(Sx1, Sx2), E(x1, x2)) = µ(E(x1, x2))− d(Sx1, Sx2) ≥ 0.

This implies that all the conditions of Corollary 1 and hence Theorem 2 are satisfied. Thus,
the operator S has a unique fixed point which is the solution of the integral Equation (21) inM.

Example 5. As an example of Theorem 3, we consider the next integral equation

x(s) =
1

1 + s4 +
1
3

∫ 1

0

u sin 2u
12(1 + s2)

|x|
1 + |x|du, s ∈ [0, 1], (23)

This equation is obtained from Equation (21) by choosing

ξ(s) =
1

1 + s4 , K(s, u) =
u

2(1 + s2)
, and η(s, x) =

|x| sin 2s
6(1 + |x|)

Let S be a self-mapping, defined as

S(x)(s) = ξ(s) +
∫ 1

0
K(s, u)η(u, x(u))du, s ∈ [0, 1]. (24)

By letting µ(t) = s
2 , we get that

|η(s, x1)− η(s, x2)| =

∣∣∣∣ sin 2s
6

|x1|
1+|x1|

− sin 2s
6

|x2|
1+|x2|

∣∣∣∣
≤ 1

6 |x1 − x2| ≤ µ

(
|x1 − x2|+

∣∣∣∣|x1 − x2| − |x1 − x2|
∣∣∣∣) = µ(E(x1, x2)).

On the other hand,

sup
s∈I

∫ 1

0
K(s, u)du = sup

s∈I

∫ 1

0

u
2(1 + s2)

du =
1
4
≤ 1.

Hence, we conclude that the integral Equation (23) has exactly one solution in C(I,R).
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