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Abstract: The article is devoted to reflexive Müntz spaces MΛ,p of Lp functions with 1 < p < ∞.
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1. Introduction

A function approximation and an isomorphic classification of Banach spaces play a very important
role in functional analysis and in geometry (see, for example, literature from [1–19] and references
therein). Among Banach spaces, a large class consists of Müntz spaces (see [1,4,9,17,20,21] and
references therein).

The reflexive Müntz spaces MΛ,p(F) are defined as completions of a F-linear span of the
monomials tλ with λ ∈ Λ on the segment [0, 1] relative to the Lp norm, where Λ ⊂ [0, ∞), t ∈ [0, 1],
1 < p < ∞, where F is either the real field F = R or the complex field F = C. It is worth mentioning
that generally monomials tλ do not form a Schauder basis in the Müntz space MΛ,p. For a long time,
whether or not they have Schauder bases remained a problem [1,2,8,16].

This article is devoted to the reflexive Müntz spaces MΛ,p fulfilling the gap and Müntz conditions.
For this purpose, the Stieltjes transform and a potential transform are studied (see Propositions 1 and 2
and Corollary 2). This study is based on certain useful properties of the Fourier transform in the
reflexive Müntz spaces with a change of the variable (Lemmas 4, 5, and 6 and Corollary 1). Their Banach
space geometry is investigated in Propositions 3 and 4 and Theorem 1. A relation with the Banach
space lp = lp(F) over the field F is elucidated.

It is proven in Theorem 1 that under the aforementioned conditions MΛ,p(F) is isomorphic
with lp(F).

All main results of this paper are obtained for the first time. They can be used for further studies
of Banach space geometry, measures and stochastic processes in Banach spaces, approximations
of functions.

2. The Müntz MΛ,p Spaces

To avoid misunderstandings, we first give our notation and some useful Lemmas 1–3.

Notation 1. As is usual, Lp(Ω,F , ν, F) denotes the Banach space of all ν-measurable functions f : Ω→
F having a finite norm

‖ f ‖Lp(Ω,F ,ν,F) := (
∫

Ω
| f (x)|pν(dx))1/p < ∞, (1)

where 1 < p < ∞ is a marked number, F is a σ-algebra of subsets in a set Ω, ν is a σ-finite
nonnegative measure on F , either F is the real field R or F stands for the complex field C. Then, the
closure of the F-linear span T := cl − spanF{tk : t ∈ [0, 1]; k ∈ Λ} in the Banach space Lp([0, 1]) =

Lp([0, 1],B([0, 1]), µ, F) is called the Müntz space MΛ,p := MΛ,p([0, 1],B([0, 1]), µ, F), where µ denotes
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the Lebesgue measure, B([0, 1]) is the Borel σ-algebra on [0, 1], Λ ⊂ [0, ∞). These spaces are also
denoted by MΛ,E, where E = Lp([0, 1], F).

Henceforward, measures are considered on Borel σ-algebras, and for brevity short B([a, b]) will
be omitted from the notation of the corresponding Banach spaces.

Henceforth, it is supposed that Λ is an increasing sequence contained in (0, ∞) and satisfying the
gap condition

inf
k
{λk+1 − λk} =: α0 > 0 (2)

and the Müntz condition
∞

∑
k=1

1
λk

=: α1 < ∞. (3)

Lemma 1. The Müntz space MΛ,p is isomorphic with the Banach subspace MΛ,p([0, ∞), ν, R) := cl −
spanR{exp(−kx) : x ∈ [0, ∞); k ∈ Λ} in the Banach space Lp([0, ∞), ν, R), where ν(dx) = e−xµ(dx).

Proof. The change of the variable t = exp(−x) gives exp(−[0, ∞)) = (0, 1], dt = − exp(−x)dx,
tk = exp(−kx); consequently,

∫ 1

0
f (t)g(t)dt =

∫ ∞

0
f (exp(−x))g(exp(−x)) exp(−x)dx.

�

Lemma 2. The Banach space Lp([0, ∞), ν, R) is isomorphic with Lp([0, ∞), µ, R).

Proof. The measures µ and ν are equivalent; consequently, these Banach spaces are linearly topologically
isomorphic (see also [19,22]). �

Lemma 3. The Banach space Lp([0, ∞), µ, R) is isomorphic with the direct sum of the Banach spaces
(
⊕∞

m=0 Lp([2πm, 2π(m + 1)), µ, R))p with the norm inherited from Lp([0, ∞), µ, R).

Proof. For any function g ∈ Lp([2πm, 2π(m + 1)), µ, R), one can take its extension function gm(x) =
g(x) for each x in [2πm, 2π(m + 1)), while gm(x) = 0 for each x ∈ R \ [2πm, 2π(m + 1)). Then, gm is
in Lp([0, ∞), µ, R). Therefore, there is an isometric embedding

θm : Lp([2πm, 2π(m + 1)), µ, R) ↪→ Lp([0, ∞), µ, R) (4)

for each m ∈ N0 such that
θm( f ) = fm

for each f ∈ Lp([2πm, 2π(m + 1)), µ, R). Let χA denote the characteristic function of a subset A,
χA(x) = 1 for each x ∈ A, whereas χA(x) = 0 for any x /∈ A. As is usual for a sequence of Banach
spaces Xm, the direct sum

X = (
∞⊕

m=0
Xm)p = lp(Xm : m ∈ N0) (5)

denotes the Banach space of all vectors x = (xm : ∀m ∈ N0 xm ∈ Xm) of the finite norm

‖x‖p := (
∞

∑
m=0
‖xm‖p

Xm
)1/p < ∞. (6)

�

Thus, the mapping
T(g) := (gχ[2πm,2π(m+1)) : m ∈ N0) (7)
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from Lp([0, ∞), µ, R) is a linear isometry onto (
⊕∞

m=0 Lp([2πm, 2π(m + 1)), µ, R))p with the norm
inherited from Lp([0, ∞), µ, R) such that

(
∞⊕

m=0
Lp([2πm, 2π(m + 1)), µ, R))p = lp(Lp([2πm, 2π(m + 1)), µ, R) : m ∈ N0),

where N = {1, 2, 3, ...} and N0 = {0} ∪N (see also [22] or Pelczynsky’s decomposition method in [5]).
Next, the Fourier transform is studied in the reflexive Müntz spaces with a change of the variable.

Lemma 4. A continuous linear operator exists, induced by the Fourier sine transform Fs( f (x)e−x/p) from
MΛ,p([0, ∞), ν, R) into Lq(R, µ, R), where 1/q + 1/p = 1, 1 < p ≤ 2, f ∈ MΛ,p([0, ∞), ν, R).

Proof. A function f (x) belongs to MΛ,p([0, ∞), ν, R) if and only if f (x)e−x/p is in MΛ,p([0, ∞), µ, R),
since ν(dx) = e−xµ(dx) so that the operator

Bp( f )(x) := f (x)e−x/p (8)

is the isometry from Lp([0, ∞), ν, R) onto Lp([0, ∞), µ, R). We consider the odd extension

f (−x)e−|x|/p = − f (x)e−|x|/p (9)

from [0, ∞) onto R for each f ∈ MΛ,p([0, ∞), ν, R). There is the natural embedding

ψp : MΛ,p([0, ∞), ν, R) ↪→ Lp([0, ∞), ν, R) (10)

(see Section 2). Then, the sine transform

Fs( f (x)e−x/p)(y) :=

√
2
π

∫ ∞

0
f (x)e−x/p sin(yx)dx

=
i√
2π

∫ ∞

−∞
f (x)e−|x|/p exp(−iyx)dx (11)

is continuous from Lp([0, ∞), µ, R) into Lq(R, µ, R) according to Theorem 33.5 [23], where i =
√
−1.

Indeed, the latter theorem states that if h ∈ Lp(R, µ, C), then the sequence of functions

{ 1√
2π

∫ n

−n
h(x) exp(−iyx)dx : n ∈ N} (12)

converges in the Lq(R,B(R), µ, C)-norm to a function F(h) ∈ Lq(R, µ, C), and the Fourier transform
is non-expanding:

‖F(h)‖Lq(R,µ,R) ≤ ‖h‖Lp(R,µ,R). (13)

�

At the same time, Fs( f (x)e−x/p)(y) is a real-valued function, since f is real-valued.

Remark 1. Let M′Λ,p([0, ∞), ν, R) denote the topologically dual space of the Müntz space MΛ,p([0, ∞), ν, R).
In the case 1 ≤ p ≤ 2, the Fourier transform in Lp spaces is defined as usual. For p > 2, the Fourier transform
in Lp is understood in the sense of the dual pair (Lq, Lp) so that (F( f ), g) = ( f , F(g)) for each f ∈ Lq and
g ∈ Lp, where 1/q + 1/p = 1 (see, for example, [23–26] and references therein).

Corollary 1. The Fourier sine transform induces a continuous linear operator from MΛ,p([0, ∞), ν, R) into
M′Λ,p([0, ∞), ν, R).
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Proof. Each continuous linear functional φ on MΛ,p([0, ∞), ν, R) has the continuous extension onto
Lp([0, ∞), ν, R) due to the Hahn–Banach extension theorem (see Section 7.1.2 in [3] or (8.4.7) in [15]). �

For the dual pair (Lp(R, µ, C); Lq(R, µ, C)) of Banach spaces, a continuous adjoint operator F′ to
F exists (see Proposition 1 and Corollary 6 in Section 8.6 [3]). On the other hand, we infer that

[φ, F̂( f )] = [F̂′φ, f ], (14)

where [φ, f ] denotes the value of a functional φ at f , where the notation is used

F̂( f ) := Fs( f e−x/p), (15)

while F̂′ stands for the adjoint operator, which exists due to Formulas (8), (11), and (13) in the proof of
Lemma 4 above.

3. The Potential Transform for Reflexive Müntz Spaces

Lemma 5. For every f ∈ Lp([0, ∞), ν, R) and g ∈ Lq([0, ∞), µ, R), the equality∫ ∞

0
f (x)e−x/pg(x)µ(dx) =

∫ ∞

0
Fs( f (x)e−x/p)(y)Fs(g)(y)µ(dy) (16)

is satisfied.

Proof. Recall that, on [0, ∞), the measure ν has density e−x with respect to the Lebesgue measure µ.
The operator Bp given by Formula (8) is the linear isometry from Lp([0, ∞), ν, R) onto Lp([0, ∞), µ, R),
since ν(dx)/µ(dx) = e−|x|. At the same time, L′p([0, ∞), µ, R) is isomorphic with Lq([0, ∞), µ, R),
where 1/p + 1/q = 1. That is, for each continuous linear functional g on Lp([0, ∞), ν, R) there exists
a function h ∈ Lq([0, ∞), µ, R) for which g has the form

[g, f ] =
∫ ∞

0
h(x) f (x)e−x/pµ(dx) = (h, Bp f ), (17)

where
(h, v) =

∫ ∞

0
h(x)v(x)µ(dx) (18)

for any v ∈ Lq([0, ∞), µ, R), where µ denotes the Lebesgue measure on the Borel σ-algebra B(R) as
above. The space L2 ∩ Lp(R, µ, C) is dense in Lp(R, µ, C). The Fourier transform F is the unitary
operator from L2(R, µ, C) onto L2(R, µ, C) such that the Parceval equality is satisfied∫ ∞

−∞
h(x)ḡ(x)µ(dx) =

∫ ∞

−∞
F(h)(y)F(ḡ)(y)µ(dy) (19)

for every h, g ∈ L2(R, µ, C). Therefore, by continuity, for the dual pair (Lp, Lq) this equality is also
valid for any h ∈ Lp(R, µ, C) and g ∈ Lq(R, µ, C), where z̄ denotes the conjugated number of a complex
number z ∈ C. Using odd extensions of functions and Formulas (11) and (19), we deduce Equality (16).
�

Further, the Stieltjes transform and a potential transform are investigated in the reflexive Müntz
spaces with a change of the variable.

Proposition 1. There is the identity

∫ ∞

0
exp(−kx)e−x/pg(x)µ(dx) =

√
2
π

∫ ∞

0

yFs(g)(y)
(k + 1/p)2 + y2 µ(dy) (20)
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for each k ∈ N0 and g ∈ Lq([0, ∞), µ, R).

Proof. This follows from Formula (16), since

Fs(exp(−ax)) =

√
2
π

∫ ∞

0
exp(−ax) sin(yx)dx =

√
2
π

y
a2 + y2

for each a > 0 (see Formulas 2-7-2 on page 49 and S7 on page 518 in [27]) and putting a = k + 1/p in
the considered case. �

Corollary 2. A function g is in the orthogonal complement (MΛ,p([0, ∞), ν, R))⊥ of the Müntz space if and
only if ∫ ∞

0

yFs(g)(y)
(k + 1/p)2 + y2 µ(dy) = 0 (21)

for each k ∈ Λ.

Proof. From Embedding Formulas (10),it follows that for the space MΛ,p([0, ∞), ν, R) its orthogonal
complement (MΛ,p([0, ∞), ν, R))⊥ is contained in the topologically dual space L′p([0, ∞), ν, R) and
consists of all g ∈ L′p([0, ∞), ν, R) such that

[g, f ] = 0 f or each f ∈ MΛ,p([0, ∞), ν, R) (22)

(see also Section 9.8 in [15] and Formula (17) above). Thus, Formula (21) follows from Identities (16)–(20),
the definition of the Müntz space, Lemma 1 and Condition (2) , since the real linear span
spanR{exp(−kx) : x ∈ [0, ∞); k ∈ Λ} is dense in MΛ,p([0, ∞), ν, R). �

Remark 2. The integral

G(x) :=
2
π

∫ ∞

0

yg(y)
x2 + y2 µ(dy) (23)

is called the potential transform whenever this integral converges, where x ∈ R (see Section 7.2 in [28]).
Generally, this integral is considered as the improper integral:

∫ ∞

0
h(y)µ(dy) := lim

ε↓0

∫ 1

ε
h(y)µ(dy) + lim

R→∞

∫ R

1
h(y)µ(dy) =:

∫ ∞

0+
h(y)µ(dy). (24)

It is related with the Stieltjes transform by the change of variables t = y2:

2
∫ ∞

0

yg(y)
x2 + y2 µ(dy) =

∫ ∞

0

g(
√

t)
s + t

µ(dt) := S(h)(s), (25)

where s = x2, h(t) = g(
√

t). In the Stieltjes transform, S(h)(s) generally the complex variable
s = σ + iτ ∈ C is considered with σ, τ ∈ R (see Chapter 7 in [29] or [30]).

Remark 3. Let α be a function of bounded variation on each segment [0, R] = {t : 0 ≤ t ≤ R}, where
0 < R < ∞. Then we put ∫ ∞

0

dα(t)
(s + t)ρ := lim

R→∞

∫ R

0

dα(t)
(s + t)ρ (26)

whenever the limit exists, where ρ > 0, s = σ + iτ ∈ C, σ, τ ∈ R.
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If a function α is of bounded variation on each segment [ε, R] = {t : ε ≤ t ≤ R}, where
0 < ε < R < ∞, and if the limits

A(s) = lim
ε↓0

∫ 1

ε

dα(t)
(s + t)ρ and B(s) = lim

R→∞

∫ R

1

dα(t)
(s + t)ρ

both exist for some s ∈ C, then one writes

f (s) =
∫ ∞

0+

dα(t)
(s + t)ρ = A(s) + B(s). (27)

Next, we shall use Theorems 13, 14.2 from [28], 2a, 2b, and 7b from [29,30] about the potential
and Stieltjes transforms.

Lemma 6. Suppose that g is an odd function on R such that g ∈ Lq(R, µ, R) and its support is contained in
[−2π(m + 1),−2πm]∪ [2πm, 2π(m + 1)] for some nonnegative integer m, and Fs(g)(y) is continuous in the
variable y ∈ R, where 1 < q < ∞. Then, its Fourier sine transform coefficients bn(g) are given by the formula:

bn(g) = lim
η↓0

S(h)(−n− iη)− S(h)(−n + iη)
2πi

(28)

for each n ∈ N, where h(t) = Fs(g)(
√

t) while t ≥ 0.

Proof. Formula (28) follows from Theorem 7b [29] and Identity (25). �

Proposition 2. Let g ∈ M′Λ,p([0, ∞), µ, R) and gm = gχ[2πm,2π(m+1)) and let Gm(s) be a continuous
function such that

Gm(s) =
∫ ∞

0
exp(−x(k + 1/p))gm(x)µ(dx) (29)

for each m ∈ N0, where 1 < p < ∞, s = (k + 1/p)2, k ∈ [0, ∞). Then, up to the isomorphism of the Müntz
spaces, the sine Fourier coefficients bn(gm) of gm are given by the formula:

bn(gm) = Fs(gm)(n) = lim
η↓0

Gm(−n− iη)− Gm(−n + iη)
2πi

(30)

for every n ∈ N. If in addition

G(s) =
∫ ∞

0
exp(−x(k + 1/p))g(x)µ(dx) (31)

is continuous, then

Fs(g)(n) =
∞

∑
m=0

Fs(gm)(n) = lim
η↓0

G(−n− iη)− G(−n + iη)
2πi

. (32)

Proof. For each function g ∈ Lq(R, µ, R), its restriction un = gχ[2πn,2π(n+1)) has a Fourier series
decomposition, so that

lim
m→∞

‖Sm(un)− un‖Lq = 0 (33)

due to the Riesz theorem (see [31]), where 1/p + 1/q = 1, n ∈ Z,

Sm(u)(x) =
m

∑
k=−m

akeikx (34)



Mathematics 2017, 5, 83 7 of 12

denotes the partial sum of the Fourier series, ak = ak(u) are decomposition coefficients of u. Moreover,
in view of the Hunt theorem if u ∈ Lp([0, 2π]) for some 1 < p < ∞, then

‖S∗‖Lp ≤ A(p)‖u‖Lp , (35)

where A(p) > 0 is a constant independent of u, where

S∗(x, u) := sup
m∈N
|Sm(u)(x)| (36)

(see [31]). Certainly, Fourier coefficient functionals ak are continuous from Lp([0, 2π), µ, R) into C due
to the integral Hölder inequality:∫ c

b
| f (t)g(t)|dt ≤ (

∫ c

b
| f (t)|p)1/p(

∫ c

b
|g(t)|q)1/q,

where

ak(u) :=
1√
2π

∫ 2π

0
u(t)e−iktdt,

i =
√
−1, k ∈ Z, f ∈ Lp([b, c]), g ∈ Lq([b, c]) with the Lebesgue measure considered on the

segment [b, c].

According to Lemma 2.2 in [8], the Müntz space MΛ,p([0, 1], µ, R) is isomorphic to the one with
Λ1 := δ + γΛ ⊂ N− 1/p and by Lemma 1 with MΛ1,p([0, ∞), ν, R). Therefore, their topologically dual
spaces M′Λ,p([0, 1], µ, R) and M′Λ1,p([0, ∞), ν, R) are also isomorphic; hence, Formula (30) follows from
Proposition 1 and Lemma 6. Moreover, if G(s) is continuous, then by Theorem 7b [29] and Proposition
1, the following limit exists:

Fs(g)(n) = lim
η↓0

G(−n− iη)− G(−n + iη)
2πi

.

By virtue of the Hahn–Banach extension Theorem (8.4.7) in [15], each continuous linear functional
g on MΛ,p([0, ∞), ν, R) has a continuous extension onto Lp([0, ∞), ν, R). On the other hand, the series
∑m gm converges to g in the Banach space M′Λ1,p([0, ∞), ν, R) relative to the Lq norm, since L′p = Lq

with 1/p + 1/q = 1. First observe that the function exp(−x/p) belongs to the space Lp([0, ∞), µ, R).
Then, from the Hölder inequality

|
∫ ∞

0
exp(−x(k + 1/p))[

n

∑
m=0

gm(x)− g(x)]µ(dx)| ≤

‖ exp(−x(k + 1/p))‖Lp‖
n

∑
m=0

gm(x)− g(x)‖Lq ≤ ‖ exp(−x/p)‖Lp‖
n

∑
m=0

gm(x)− g(x)‖Lq (37)

for each k ≥ 0 it follows that

lim
n→∞

n

∑
m=0

Gm(s) = G(s) for each s ∈ [p−2, ∞),

since 0 < exp(−x(k + 1/p)) ≤ exp(−x/p) for each k ≥ 0 and x ∈ [0, ∞). �
Using the preceding results, a geometry of the reflexive Müntz spaces is investigated below.
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4. Isomorphic Classification

Proposition 3. Let f be a continuous linear functional on Lp([0, ∞), µ, R) with 1 < p < ∞, let also f be
presented by a function f ∈ S([0, ∞)). Then, it satisfies the condition:

[Fs( f )](λ) = 0 (38)

for each λ ∈ Λ + 1/p if and only if its kernel ker( f ) contains the Müntz space MΛ,p([0, ∞), µ, R).

Proof. Recall that S([0, ∞)) denotes a space of all infinite differentiable functions h : [0, ∞)→ R such
that limx→∞ xnDmh(x) = 0 for all nonnegative integers n and m. As is traditional, the space S([0, ∞))

is supplied with the family of semi-norms ρn,m(h) := supx∈[0,∞) |xnDmh(x)| < ∞, where n and m are
nonnegative integers.

Since f provides a continuous linear functional on Lp([0, ∞), µ, R) with 1 < p < ∞, and since the
topological dual space of Lp is Lq, where 1/p + 1/q = 1, then the function f belongs to Lq([0, ∞), µ, R).
This means that the value < g, f > of f at g ∈ Lp is given by

< g, f >=
∫ ∞

0
g(x) f (x)dx. (39)

Without loss of generality for each function g ∈ Lr([0, ∞), µ, R) with 1 ≤ r < ∞ we can consider
the identically zero extension of g onto (−∞, 0). The Fourier transform is defined on Lr(R, µ, R) for
1 ≤ r ≤ 2 as:

F(h)(x) :=
1√
2π

lim
r→∞

∫ r

−r
h(t)e−ixtdt, (40)

where i =
√
−1, x ∈ R.

The linear span of functions exp(−x(k + 1/p)) with k ∈ Λ is dense in MΛ,p([0, ∞), µ, R).
Therefore, < f , g >= 0 for each g ∈ MΛ,p([0, ∞), µ, R) if and only if < f , exp(−x(k + 1/p)) >= 0 for
all k ∈ Λ.

The Fourier transform is a unitary operator on L2, and by the duality has the weakly continuous
extension for the dual pair < Lp, Lq > such that the Parseval identity is satisfied

< Fg, F f >=< g, f > (41)

for each g ∈ Lp and f ∈ Lq (see [24,25]). The sine Fourier transform Fs maps S([0, ∞)) into itself so that

∞

∑
m=0

[Fs( f χ[2πm,2π(m+1)))] = Fs( f )

for any f ∈ S([0, ∞)). Since f ∈ S([0, ∞)), the function g = f satisfies conditions of Proposition 2.
Thus, Formula (38) follows from Formulas (30)–(32). �

Proposition 4. The second orthogonal (M⊥Λ,p)
⊥([0, ∞), µ, R) of the Müntz space MΛ,p([0, ∞), µ, R) in

Lp([0, ∞), µ, R) with 1 < p < ∞ is characterized by the condition:∫ ∞

0
f (x)g(x)dx = 0 (42)

for each f satisfying the conditions of Proposition 3 and each g ∈ (M⊥Λ,p)
⊥([0, ∞), µ, R).

Proof. Since the Müntz space X = MΛ,p([0, ∞), µ, R) is the linear subspace in the normed space Y,
the Hahn–Banach Theorem (8.4.7) in [15] implies that each continuous linear functional f on X has
a continuous linear extension to Y = Lp([0, ∞), µ, R). It follows that M⊥Λ,p([0, ∞), µ, R) is a Banach
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space in which the linear subspace of all functionals satisfying the conditions of Proposition 3 is dense.

For all functions h ∈ Lq([0, ∞), µ, R) and u ∈ Lp([0, ∞), µ, R) with 1/p + 1/q = 1,
the Hölder inequality

|
∫ ∞

0
u(x)h(x)dx| ≤ ‖u‖Lp‖h‖Lq (43)

is fulfilled. Since the subspace S([0, ∞)) is dense in the Banach space Lq([0, ∞)) relative to the Lq norm
topology and Fs(S([0, ∞)) = S([0, ∞)), then from Inequality (43) it follows that if (42) is satisfied for
a function g ∈ Lp for each f ∈ S([0, ∞)) satisfying Condition (38), then g ∈ (M⊥Λ,p)

⊥([0, ∞), µ, R).

Thus, g ∈ (M⊥Λ,p)
⊥([0, ∞), µ, R) if and only if Formula (42) is valid for all f satisfying the conditions

of Proposition 3. �

Theorem 1. Suppose that an increasing sequence Λ satisfies the gap and Müntz conditions (2) and (3).
Let 1 < p < ∞. Then the Müntz space MΛ,p([0, 1], µ, F) is isomorphic with lp(F).

Proof.

(I). In view of Theorem 2.1 and Lemma 2.2 in [8], up to the Banach spaces isomorphism it is sufficient
to consider the case Λ ⊂ N. It is clear that if the theorem is proved over the real field R, then from it
the case over the complex field C follows.

(II). The Banach space Lp(R, µ, R) is isomorphic with the Banach space

lp(Lp([2πn, 2π(n + 1)), µ, R) : n ∈ Z).

Let Lp,o(R, µ, R) denote the Banach subspace consisting of all odd functions in Lp(R, µ, R). Then,
we put Lp,o([2πn, 2π(n + 1)), µ, R) to be the Banach subspace of all functions g ∈ Lp([2πn, 2π(n + 1)),
µ, R) such that g(2πn+ x) = −g(2π(n+ 1)− x) for almost each x ∈ [0, π]. Therefore, the Banach space
Lp,o(R, µ, R) is isomorphic with lp(Lp,o([2πn, 2π(n + 1)), µ, R) : n ∈ Z) and with Lp([0, ∞), µ, R).

In view of Theorem 33.3 [23], if 1 < p ≤ 2 and 1/p + 1/q = 1, f ∈ Lp([2πn, 2π(n + 1)), µ, R) and
if â( f ) := {an( f ) : n ∈ Z} is the sequence of Fourier coefficients of f , then â( f ) ∈ lq and

‖â( f )‖lq ≤ ‖ f ‖Lp , (44)

where

lq = lq(C, Z) := {x = (xk : xk ∈ C, k ∈ Z); ‖x‖lq := [
∞

∑
k=−∞

|xk|q]1/q < ∞}.

Moreover, Theorem 33.4 [23] asserts that if 1 < p ≤ 2 and 1/p + 1/q = 1, if b̂ = {bn : bn ∈ C,
n ∈ Z} ∈ lp is given and

Sm(x) :=
m

∑
k=−m

bkeikx (45)

is the m-th partial sum of the trigonometric series ∑∞
k=−∞ bkeikx, then the sequence of sums Sm(x) tends

to a function f ∈ Lq([0, 2π), µ, C) in the Lq norm as m tends to infinity; furthermore,

b̂ = â( f ) and ‖ f ‖Lq ≤ ‖b̂‖lp . (46)

For odd real-valued functions, we consider the partial sums of the form

Sm,o(x) =
m

∑
k=1

ak sin(kx),
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where ak ∈ R. On the other hand, there exists an isomorphism of lq ⊕ lq with lq. Therefore, there exists
a linear projection operator E from lq(R) onto the space

Q := {x ∈ lq(R) : ∀k ∈ N \Λ xk = 0}, (47)

where Λ ⊂ N. At the same time, there exists the continuous projection linear operator A from
lq(lq(R), N) onto

V := {x ∈ lq(lq(R), N) : ∀k ∈ N \Λ ∀n ∈ N0 xk(n) = 0}, (48)

where
lq(Jn : n ∈ N) :=

{x = (x(n) : x(n) ∈ Jn, n ∈ N); ‖x‖lq := [
∞

∑
n=1
‖x(n)‖q

Jn
]1/q < ∞} (49)

for a sequence of Banach spaces Jn over the same field either R or C, while lq(J, N0) := lq(Jn :
Jn = J, n ∈ N0), where N = {1, 2, 3, ...}, N0 = N ∪ {0}.

Its adjoint operator A′ relative to the dual pair (lq, lp) is the continuous embedding from lp(lp, N0)

into lp(Q′, N0) due to Corollary 8.6.4 in [26] and Formulas (47)–(49), since A2 = A and hence
(A′)2 = (A2)′ = A′, where 1 < p < ∞ and 1/p + 1/q = 1.

By virtue of Theorem (9.11.1) in [15], if M is a closed subspace of a topological vector space X,
then (X/M)′ is algebraically isomorphic to M⊥, where X′ denotes the topological dual space of X. In
view of Theorem (9.11.3) in [15], if X and Y are paired topological vector spaces and M is a closed
subspace in X, then X/M and M⊥ are paired spaces and σ(X/M, M⊥) is the quotient topology on
X/M induced by σ(X, Y).

Let S denote the operator from lq(R) into Lp,o([0, 2π], µ, R) such that

Sâ =
∞

∑
k=1

ak sin(kx), (50)

where 1 < q ≤ 2, 1/p + 1/q = 1. We consider its extension from V into Lp([0, ∞), µ, R):

S(â(n) : n ∈ N0) =
∞

∑
n=0

∞

∑
k=1

ak(n) sin(kx)χ[2πn,2π(n+1))(x). (51)

If B : H0 → K is a continuous linear operator from the normed space H0 into the Banach space K,
while H0 is a dense linear subspace in a normed space H such that the norm on H0 is inherited from H,
then B has a continuous extension from H into K [15].

In view of Lemmas 1–3 and the isomorphism of the Banach space Lp,o(R, µ, R) with
lp(Lp,o([2πn, 2π(n + 1)), µ, R) : n ∈ Z) (see the proof above), there exists the Banach space embedding

θ : MΛ,p([0, ∞), µ, R) ↪→ Y := lp(Lp,o([2πn, 2π(n + 1)), µ, R) : n ∈ Z). (52)

Using Formulas (44), (47), (49), (51), and (52), the dual pairs (Lp, Lq) and (lp, lq), and also the
theorems cited above, we deduce that (θ(MΛ,p([0, ∞), µ, R))⊥ =: X is complemented in Y′. Therefore,
the second orthogonal (MΛ,p([0, ∞), µ, R))⊥⊥ of the Müntz space MΛ,p([0, ∞), µ, R) is isomorphic
with the orthogonal complement subspace X⊥ of the topologically complemented subspace X in Y′.

(III). In view of Theorems 9.2.2 and 9.8.1 in [15], we have that

(MΛ,p([0, ∞), µ, R))⊥⊥ = MΛ,p([0, ∞), µ, R),
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since the Müntz space MΛ,p([0, ∞), µ, R) is complete and linear. By virtue of the part (II) above,
Lemmas 1 and 2 the Müntz space MΛ,p([0, 1], µ, R) is complemented in Lp([0, 1], µ, R), since the
Banach space Lp([0, 1], µ, R) is reflexive for 1 < p < ∞. There are natural embeddings of lp into Lp.

Theorem 9.1.6 [1] asserts that the Müntz space MΛ,p([0, 1], µ, R) is isomorphic to a subspace of
lp, since conditions (2) and (3) are fulfilled and 1 < p < ∞. However, lp is a prime space, which,
by definition, means that its infinite dimensional topologically linearly complemented subspace
is isomorphic to itself (see volume 1, page 57 and further in [5]). Therefore, the Müntz space
MΛ,p([0, 1], µ, R) being infinite dimensional, is isomorphic with lp(R). �

5. Conclusions

The results of this paper can be used not only in Banach space geometry, function approximations,
but also for periodic function analysis of perturbations to almost periodic functions with trend [32],
also for distortions in high-frequency pulse acoustic signals [33].
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