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1. Introduction

There are different approaches to construct semicircular elements (e.g., [1–3]) in topological
∗-probability spaces (e.g., C∗-probability spaces, or W∗-probability spaces, or Banach ∗-probability
spaces, etc.). In [4], we introduced how to construct semicircular elements in certain topological
∗-probability spaces. The construction of [4] is highly motivated by that of weighted-semicircular
elements in a Banach ∗-probability space in the sense of [5,6]. In this paper, we put our semicircular
elements on a fixed W∗-probability space, and then consider structure theorems of such Banach
∗-probabilistic structures under our actions, and study free-distributional data from the structures.

1.1. Motivation and Background

The main purpose of this paper are (i) to construct (weighted-)semicircular elements from
orthogonal projections, (ii) to act them to von Neumann algebras, and (iii) to study free-distributional
data determined both by these (weighted-)semicircular elements, and free distributions on von
Neumann algebras. In particular, the construction of our (weighted-)semicircular elements are highly
motivated by the constructions of [5,6].

In [7], the author and Gillespie studied free-probabilistic models of certain embedded
sub-structures of Hecke algebrasH(Gp) generated by the generalized linear groups Gp = GL2(Qp) over
p-adic number fields Qp, for fixed primes p. In addition, such a free-probabilistic model is generalized
in [8] fully on H(Gp). Motivated by [7,8], independently, the author mimicked the techniques and
ideas to construct weighted-semicircular elements and corresponding semicircular elements induced
by certain orthogonal projections on Qp in [6]. In [5], as an application of the main results of [6], we
studied free stochastic calculus for the weighted-semicircular laws in the sense of [6].

Our constructions of weighted-semicircular, and semicircular elements in this paper is understood
as a pure operator-theoretic version of those of [5,6].
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1.2. Overview

Here, we generalize the free probability on free filterizations (which are Banach ∗-probability
spaces generated by the semicircular elements obtained in [4]). By using these free filterizations
to arbitrarily fixed von Neumann algebras M, we consider M-affiliated free filterizations, and establish
suitable free-probabilistic models on them.

In Section 2, we briefly mention background theories for our proceeding works.
In Section 3, we introduce fundamental free-probabilistic settings from given |Z|-many mutually

orthogonal projections.
In Sections 4 and 5, we construct weighted-semicircular, and semicircular elements induced by

given orthogonal projections.
In Section 5, from the ingredients of Sections 3, 4 and 5, we construct free filterizations as free

product Banach ∗-probability spaces, and consider fundamental free-distributional data on them.
In Section 7, we act an arbitrarily fixed free filterization to a given von Neumann algebra, and

construct the corresponding von-Neumann-algebra-affiliated free filterizations, and study how our
semicircular elements work on such structures.

In Section 8, from the free-distributional data obtained in Section 7, we construct-and-study
weighted-semicircular, and semicircular elements in affiliated free filterizations. By doing that, one can
see how the freeness on our free filterizations affects the free probability on affiliated structures.

In Section 9, by considering (embedded, or full) freeness conditions on given von Neumann
algebras, free-distributional data on affiliated free filterizations are studied. We show how the freeness
conditions on von Neumann algebras affect the affiliated structures.

In Section 10, an example for the main results of Sections 7, 8 and 9 will be considered. In particular,
we are interested in the case where a fixed von Neumann algebra is given to be a free group factor L(Fn)

(e.g., [1]) generated by the free group Fn with n-generators.

2. Preliminaries

Readers can check fundamental analytic-and-combinatorial free probability theory from [2,3,9] (and
cited papers therein). Free probability is understood as the noncommutative operator-algebraic version
of classical probability theory and statistics. The classical independence is replaced by the freeness, by
replacing measures on sets to linear functionals on (noncommutative algebraic, or topological ∗-) algebras.
It has various applications not only in pure mathematics (e.g., [1,2]), but also in related topics (e.g., [8]
through [7]). In particular, we will use combinatorial free-probabilistic approach of Speicher (e.g., [9]).
Free moments andfree cumulantsof operators (representing free-distributional data of operators), or free
probability spaces, or free product of algebras will be considered without introducing detailed concepts.

3. Certain Banach ∗-Algebras Induced by Orthogonal Projections

Let (A, ψ) be a topological ∗-probability space (C∗-probability space, or W∗-probability space, or
Banach ∗-probability space, etc.) of a topological ∗-algebra A (C∗-algebra, resp., von Neumann algebra,
resp., Banach ∗-algebra), and a bounded linear functional ψ on A.

An operator a of A is said to be a free random variable whenever it is regarded as an element of
(A, ψ). As usual, we say a is self-adjoint (as an operator in A), if a∗ = a in A, where a∗ is the adjoint of a.

Definition 1. A self-adjoint free random variable a is said to be weighted-semicircular in (A, ψ) with its weight
t0 ∈ C× = C \ {0}, (or, in short, t0-semicircular), if a satisfies the free-cumulant computation,

kψ
n (a, ..., a) =

{
kψ

2 (a, a) = t0 if n = 2,
0 otherwise,

(3.1)

for all n ∈ N, where kψ
n (...) is the free cumulant on A in terms of ψ, under the Möbius inversion of [9].

If t0 = 1 in (3.1), the 1-semicircular element a is simply said to be semicircular in (A, ψ),
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By definition, a free random variable a is semicircular in (A, ψ), if a satisfies

kψ
n (a, ..., a) =

{
1 if n = 2,
0 otherwise,

(3.2)

for all n ∈ N.
By the Möbius inversion of [9], one can characterize the weighted-semicircularity (3.1) as follows:

a is t0-semicircular in (A, ψ), if and only if

ψ(an) = ωn

(
t

n
2
0 c n

2

)
, (3.3)

where

ωn
de f
=

{
1 if n is even,
0 if n is odd,

for all n ∈ N, where ck are the k-th Catalan numbers,

ck =
1

k+1

(
2k
k

)
= 1

k+1
(2k)!
k!k! = (2k)!

k!(k+1)! ,

for all k ∈ N0 = N ∪ {0}.
By (3.2) and (3.3), a free random variable a is semicircular in (A, ψ), if and only if

ψ(an) = ωn c n
2
, (3.4)

for all n ∈ N, where ωn are in the sense of (3.3).
Thus, one can use the t0-semicircularity (3.1) (respectively, the semicircularity (3.2)), and its

characterization (3.3) (respectively, (3.4)) alternatively.
Recall that, if a free random variable x ∈ (A, ψ) is self-adjoint, then the sequences

(ψ(xn))∞
n=1 , and

(
kψ

n (x, ..., x)
)∞

n=1

provide equivalent free distributions of x.
Indeed, the Möbius inversion (of [9]) satisfies

ψ(an) = ∑
π∈NC(n)

(
Π

V∈π
k|V|(a, ..., a)

)
,

and

kψ
n (a, ..., a) = ∑

π∈NC(n)

(
Π

V∈θ
ψ(a|V|)

)
µ (π, 1n) ,

where NC(n) is the lattice of all noncrossing partitions over {1, ..., n}, and “V ∈ π” means “V is a block
of π,” and where µ is the Möbius functional in the incidence algebra over

∪
n∈N

(NC(n)× NC(n))

(see [9]).

Now, let A be a given C∗-algebra, and let qj ∈ A be a projection in the sense that:

q∗j = qj = q2
j in A,

for all j ∈ Z, where Z is the set of all integers. Moreover, assume that the projections {qj}j∈Z are mutually
orthogonal from each other in the sense that:
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qiqj = δi,jqj in A, for all i, j ∈ Z, (3.5)

where δ means the Kronecker delta.

Remark 1. Such mutually orthogonal |Z|-many projections {qj}j∈Z can be found in a C∗-algebra A, naturally,
or artificially. One can find such projections naturally as in [3,4].

If {qj}N
j=1 is a finite family of mutually orthogonal projections in a certain C∗-algebra A0, for some N ∈ N,

then one can construct a C∗-algebra A,

A = A⊕|Z|0 = · · · ⊕ A0 ⊕ A0 ⊕ A0 ⊕ · · ·,

under product topology, and then we obtain the mutually orthogonal |Z|-many projections,{
· · ·, {qj}N

j=1, {qj}N
j=1, {qj}N

j=1, · ··
}

,

in A, artificially.
Similarly, if N = ∞, and {qj}∞

j=1 forms a family of mutually orthogonal projections in a certain C∗-algebra
A0, then one can construct a C∗-algebra A,

A = A0 ⊕ A0,

with a family of mutually orthogonal |Z|-many projections,

{{· · ·, q3, q2, q1}, {q1, q2, q2, · ··}} ,

in A, artificially.
Therefore, from below, we always assume a given C∗-algebra A has a family {qj}j∈Z of mutually orthogonal

|Z|-many projections.
Note that we are not interested in operator-algebraic structures or properties of A, but interested in induced

weighted-semicircularity or semicircularity from projections in a C∗-algebra A.

Now, we fix a family {qj}j∈Z of mutually orthogonal projections of a fixed C∗-algebra A, and we
denote it by Q;

Q = {qj : j ∈ Z} in A, (3.6)
satisfying (3.5).

In addition, let Q be the C∗-subalgebra of A generated by Q of (3.6),

Q
de f
= C∗ (Q) ⊆ A. (3.7)

Then, it is easy to get the following structure theorem.

Proposition 1. Let Q be a C∗-subalgebra (3.7) of a given C∗-algebra A, generated by the family Q of (3.6). Then,

Q ∗-iso
= ⊕

j∈Z

(
C · qj

) ∗-iso
= C⊕|Z|, in A. (3.8)

Proof. The structure theorem (3.8) is proven by the mutual-orthogonality (3.5) of the generator set Q
of (3.6) in A.

Now, assume that we fix a bounded linear functional ψ on the C∗-algebra A, creating the
corresponding C∗-probability space (A, ψ). From this fixed C∗-probability space (A, ψ), define now
linear functionals ψj on Q by

ψj (qi) = δij ψ(qj), for all i ∈ Z, (3.9)
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for all j ∈ Z, where ψ, on the right-hand side of (3.9), is the restricted linear functional of ψ on the
C∗-subalgebra Q of A. Remark that such linear functionals {ψj}j∈Z of (3.9) are well-defined on Q
by (3.8).

Therefore, if q ∈ Q, then

q = ∑
j∈Z

tj qj (with tj ∈ C),

and, hence,

ψj(q) = ψj
(
tjqj
)
= tj ψ(qj),

by the definition (3.9) of ψj, for all j ∈ Z. It shows that the system {ψj}j∈Z of the linear functionals (3.9)
filterize, or sectionize Q free-probabilistically.

Definition 2. The C∗-probability spaces
(
Q, ψj

)
are called the j-th C∗-probability spaces of Q in (A, ψ), where

Q is the C∗-subalgebra (3.7) of A, and ψj are in the sense of (3.9), for all j ∈ Z.

Now, let us define bounded linear transformations c and a “acting on the C∗-algebra Q” by

c
(
qj
)
= qj+1, and a

(
qj
)
= qj−1, (3.10)

for all j ∈ Z. Then, c and a are indeed well-defined bounded linear operators “on Q,” understood as
elements of the operator space B(Q), consisting of all bounded linear transformations on Q (e.g., [10]).
Without loss of generality, one can regard c and a of (3.10) as Banach-space operators on a Banach space Q.

Definition 3. We call these Banach-space operators c and a of (3.10), the creation, respectively, the annihilation
on Q.

Define now a new Banach-space operator l in the operator space B(Q) by

l = c + a on Q, (3.11)

where c and a are the creation, respectively, the annihilation on Q.

Definition 4. We call the Banach-space operator l of (3.11), the radial operator on Q.

By the definition (3.11), one has

l

(
∑

j∈Z
tj qj

)
= ∑

j∈Z
tj
(
qj+1 + qj−1

)
.

Now, define a Banach subspace

L
de f
= C[{l}]‖.‖, (3.12)

of B(Q), generated by the radial operator l, equipped with the operator norm,

‖T‖ = sup{‖Tq‖Q : ‖q‖Q = 1},

on B(Q), where ‖.‖Q is the C∗-norm on Q, where X‖.‖ mean the operator-norm closures of subsets X
in B(Q). By the definition (3.12), it is not difficult to see that this Banach-subspace L forms a Banach
algebra inside B(Q).

On the Banach algebra L of (3.12), define a unary operation (∗) by

(∑∞
n=0 tnln)∗ = ∑∞

n=0 tn ln in L, (3.13)
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where z are the conjugates of z in C.
Then, the operation (3.13) is a well-defined adjoint on L, and hence, all elements of L are

adjointable (in the sense of [10]) in B(Q). Thus, the Banach algebra L of (3.12) forms a Banach ∗-algebra.

Definition 5. We call the Banach ∗-algebra L of (3.12), the radial (Banach ∗-)algebra on Q.

Now, let L be the radial algebra on Q. Construct now the tensor product Banach ∗-algebra,

LQ = L ⊗C Q. (3.14)

Definition 6. We call the tensor product Banach ∗-algebra LQ of (3.14), the radial projection (Banach ∗-)algebra
on Q.

4. Weighted-Semicircular Elements Induced by Q

Throughout this section, we fix the settings of Section 3, and construct weighted-semicircular
elements induced by the family Q of mutually orthogonal |Z|-many projections in a fixed C∗-probability
space (A, ψ). Let (Q, ψj) be j-th C∗-probability space of Q in (A, ψ), where ψj are the linear functionals
(3.9), for all j ∈ Z, and let LQ be the radial projection algebra (3.14) on Q.

Remark that, if
uj = l ⊗ qj ∈ LQ, for all j ∈ Z, (4.1)

then

un
j =

(
l ⊗ qj

)n
= ln ⊗ qj, for all n ∈ N,

since qn
j = qj, for all n ∈ N, for j ∈ Z.

Then, one can construct a linear functional ϕj on the radial projection algebra LQ by a linear
morphism satisfying that

ϕj ((l ⊗ qi)
n) = ϕj (ln ⊗ qi)

de f
= ψj (ln(qi)), (4.2)

for all n ∈ N, for all i, j ∈ Z. Note that such linear functionals ϕj of (4.2) are well-defined by (3.8)
and (3.14).

Definition 7. We call the Banach ∗-probability spaces,(
LQ, ϕj

)
, for all j ∈ Z, (4.3)

the j-th (Banach-∗-)probability spaces on Q.

Now, consider the elements ln (qi) in Q, for all n ∈ N, i ∈ Z. Observe first that, if c and a are the
creation, respectively, the annihilation on Q in the sense of (3.10), then

ca = 1Q = ac, (4.4)

where 1Q is the identity operator on Q in the operator space B(Q), satisfying

1Q(q) = q, for all q ∈ Q.

Indeed, for any qj ∈ Q in Q,

ca
(
qj
)
= c

(
a
(
qj
))

= c
(
qj−1

)
= qj−1+1 = qj,

and

ac
(
qj
)
= a

(
c
(
qj
))

= a
(
qj+1

)
= qj+1−1 = qj,
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for all j ∈ Z.
By (4.4), one can get that

cnan = 1Q = ancn, for all n ∈ N (4.4)′

and

cn1 an2 = an2 cn1 , for all n1, n2 ∈ N.

Furthermore, since the radial algebra L, which is a tensor-factor of LQ, is generated by a single
generator l, one has

ln = (c + a)n = ∑n
k=0

(
n
k

)
ckan−k, (4.5)

in L, for all n ∈ N, by (4.4) and (4.4)′, where(
n
k

)
= n!

k!(n−k!) , for all k ≤ n ∈ N0.

Note that, for any n ∈ N,

l2n−1 = ∑2n−1
k=0

(
2n− 1

k

)
ckan−k, (4.6)

by (4.5). Therefore, the formula (4.6) does not contain 1Q-terms by (4.4)′.
Note also that, for any n ∈ N, one has

l2n = ∑2n
k=0

(
2n
k

)
ckan−k

=

(
2n
n

)
cnan + [Rest terms],

(4.7)

by (4.5).

Proposition 2. Let l be the radial operator generating the radial algebra L on Q. Then,

l2n−1 does not contain 1Q-terms in L, (4.8)

l2n contains

(
2n
n

)
· 1Q in L. (4.9)

Proof. The statement (4.8) (resp., (4.9)) is proven by (4.6) (resp., (4.7)) with help of (4.4), (4.4)′

and (4.5).

By (4.1) and (4.2), one can obtain that

ϕj

(
u2n−1

j

)
= ψj

(
l2n−1 (qj

))
= 0, (4.10)

for all n ∈ N, by (3.9) and (4.8). Indeed, l2n−1 (qj
)

does not contain qj-terms by (4.8). Therefore, the
formula (4.10) holds.

Similarly, we have

ϕj

(
u2n

j

)
= ψj

(
l2n (qj

))
= ψj

((
2n
n

)
qj + [Rest teimrs](qj)

)
by (4.7)

=

(
2n
n

)
ψj
(
qj
)
=

(
2n
n

)
ψ
(
qj
)

, (4.11)

by (3.9), for all n ∈ N.
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Theorem 1. Fix j ∈ Z, and let uj = l ⊗ qj be the corresponding generating operator of the j-th probability
space (LQ, ϕj). Then,

ϕj

(
un

j

)
= ωn

(( n
2 + 1

)
ψ
(
qj
))

c n
2
, (4.12)

where ωn are in the sense of (3.3), and c n
2

are the ( n
2 )-th Catalan numbers, for all n ∈ N.

Proof. Observe that

ϕj

(
u2n−1

j

)
= 0, for all n ∈ N,

by (4.10). In addition, one has that

ϕj

(
u2n

j

)
=

(
2n
n

)
ψ
(
qj
)
=
(

n+1
n+1

)( 2n
n

)
ψ
(
qj
)

=
(
(n + 1)ψ

(
qj
)) ( 1

n+1

(
2n
n

))

=
(
(n + 1)ψ

(
qj
))

cn,

by (4.11), for all n ∈ N.

Motivated by the free-distributional data (4.12) of the generating operator uj = l ⊗ qj of the radial
projection algebra LQ of (3.14), we define the following morphism

Ej,Q : LQ → LQ

by a linear transformation satisfying that

Ej,Q
(
un

i
) de f
=


ψ(qj)

n−1

([ n
2 ]+1)

un
j if i = j,

0LQ , the zero operator of LQ otherwise,

(4.13)

for all n ∈ N, i, j ∈ Z, where [ n
2 ] means the minimal integer greater than or equal to n

2 , for example,

[ 3
2 ] = 2 = [ 4

2 ].

The linear transformations Ej,Q of (4.13) are well-defined linear transformations on LQ because of
the construction (3.14) of LQ = L⊗C Q, and by the structure theorem (3.8) of the radial algebra L.

Define now a new linear functional τj on LQ by

τj
de f
= ϕj ◦ Ej,Q on LQ, for all j ∈ Z, (4.14)

where ϕj are in the sense of (4.2).
By the linearity of ϕj and Ej,Q, the above morphisms τj are indeed well-defined linear functionals

on LQ, for all j ∈ Z.

Definition 8. The well-defined Banach ∗-probability spaces

LQ(j) denote
=

(
LQ, τj

)
(4.15)
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are called the j-th filtered (Banach-∗-)probability spaces of the radial projection algebra LQ on Q, for all j ∈ Z.

On the j-th filtered probability space LQ(j) of (4.15), one can obtain that

τj

(
un

j

)
= ϕj

(
Ej,Q

(
un

j

))
= ϕj

(
ψ(qj)

n−1

([ n
2 ]+1)

(
un

j

))
=

ψ(qj)
n−1

([ n
2 ]+1)

ϕj

(
un

j

)

=
ψ(qj)

n−1

([ n
2 ]+1)

ωn
(( n

2 + 1
)

ψ
(
qj
))

c n
2
,

i.e., we can get that

τj

(
un

j

)
= ωnψ

(
qj
)n c n

2
(4.16)

for all n ∈ N, for j ∈ Z, by (4.12).

Theorem 2. Let LQ(j) = (LQ, τj) be the j-th filtered probability space of the radial projection algebra LQ on Q,
for an arbitrarily fixed j ∈ Z. Then,

τj
(
un

i
)
= δi,j

(
ωnψ

(
qj
)n c n

2

)
, (4.17)

for all n ∈ N, for all i ∈ Z, where ωn are in the sense of (3.3).

Proof. If i = j in Z, then the free momental data (4.17) holds true by (4.16), for all n ∈ N.
If i 6= j in Z, then, by the very definition (4.13) of the j-th filterization Ej,Q, and also by the

definition (4.2) of ϕj,

τj
(
un

i
)
= 0, for all n ∈ N.

Therefore, the above formula (4.17) holds, for all i ∈ Z.

The following corollary is a direct consequence of the above free distribution (4.17).

Corollary 1. Let LQ(j) be the j-th filtered probability space of LQ, for a fixed j ∈ Z, and let uj = l ⊗ qj be the
j-th generating operator of LQ. Then, uj is ψ(qj)

2-semicircular in LQ(j).

Proof. First, remark that the j-th generating operator uj of LQ(j) is self-adjoint in LQ because

u∗j =
(
l ⊗ qj

)∗
= l∗ ⊗ q∗j = l ⊗ qj = uj.

The ψ(qj)
2-semicircularity of uj is proven by the above self-adjointness, the free-moment

computation (4.17), and the weighted-semicircularity characterization (3.3).

Readers can check that the j-th generating operator uj satisfies the free-cumulant formula

kj
n
(
uj, ..., uj

)
=

{
ψ(qj)

2 if n = 2,
0 otherwise,

(4.18)

for all n ∈ N, by the Möbius inversion of [9], where kj
n(...) is the free cumulant on LQ in terms of τj, for

all j ∈ Z. Thus, by the definition (3.1), the free random variables uj are ψ(qj)
2-semicircular in the j-th

filtered probability spaces LQ(j) =
(
LQ, τj

)
, for all j ∈ Z.

Remark that, the k-th generating operators uk of the j-th filtered probability space LQ(j) have
zero-free distributions, whenever k 6= j in Z, also, by (4.17). Therefore, in summary, we have the
following theorem.
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Theorem 3. Let uk = l ⊗ qk be the generating operators of the j-th filtered probability space LQ(j), for all
k ∈ Z, for a fixed j ∈ Z. Then,

the j-th generating operator uj is ψ(qj)
2-semicircular in LQ(j), (4.19)

the k-th generating operators uk have zero-free distributions, for all k 6= j in Z. (4.20)

Proof. The proof of the statement (4.19) is done by (4.17) and (4.18). The statement (4.20) is also shown
by (4.17). Indeed, if k 6= j in Z, then

τj
(
un

k
)
= 0, for all n ∈ N,

by (4.17). Thus, the free distributions of these self-adjoint operators uk of LQ(j), where k 6= j in Z,
are characterized by the following free-moment sequences:(

τj(un
k )
)∞

n=1 = (0, 0, 0, 0, ...) .

Therefore, the free distributions of uk are the zero-free distribution in LQ(j), whenever k 6= j in Z.

The above two statements (4.19) and (4.20) fully characterize the free distributions of all generating
operators uk of the j-th filtered probability spaces LQ(j), for all k, j ∈ Z.

5. Semicircular Elements Induced by Q

As in Section 4, we keep working on the j-th filtered probability spaces, LQ(j) =
(
LQ, τj

)
, for j ∈Z.

The main results of Section 4 show that, for a fixed j ∈ Z, the j-th generating operator uj = l ⊗ qj of LQ
is ψ(qj)

2-semicircular in LQ(j), by (4.19) (and (4.20)), satisfying that

τj

(
un

j

)
= ωnψ(qj)

nc n
2
, (5.1)

equivalently,

kj
n
(
uj, ..., uj

)
=

{
ψ(qj)

2 if n = 2,
0 otherwise,

for all n ∈ N.
Recall now that we assumed for convenience that

ψ(qj) ∈ C× = C \ {0}, for all j ∈ Z,

in Section 3.
Under our assumption, the generating operators uk of the projection-radial algebra LQ induce the

operators Uk,
Uk =

1
ψ(qk)

uk ∈ LQ(j), (5.2)
for all k, j ∈ Z.

Theorem 4. Let Uk =
1

ψ(qk)
uk be free random variables (5.2) of the j-th filtered probability space LQ(j), for all

k ∈ Z, for a fixed j ∈ Z.

If ψ(qj) ∈ R× = R \ {0} in C, then Uj is semicircular in LQ(j). (5.3)

The operators Uk have zero-free distributions in LQ(j), whenever k 6= j in Z. (5.4)
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Proof. Note first that the k-th generating operators uk have zero-free distributions in the j-th filtered
probability space LQ(j), whenever k 6= j in Z, by (4.20). Since the corresponding operators Uk of (5.2)
are the scalar-multiplies of uk, if k 6= j in Z, then the operators Uk also have zero-free distributions in
LQ(j). It shows that the statement (5.4) holds.

Assume now that Uj is in the sense of (5.2) in LQ(j), for j ∈ Z, and suppose ψ(qj) ∈ R× in C.
Since ψ(qj) ∈ R×, the corresponding operator Uj is not only well-defined in LQ, but also self-adjoint
in LQ(j) by the self-adjointness of uj. Therefore, this operator Uj is self-adjoint in LQ(j), if ψ(qj) ∈ R×.

Under self-adjointness of Uj, observe that

τj

(
Un

j

)
= τj

(
1

ψ(qj)n un
j

)
= 1

ψ(qj)n τj(un
j )

= 1
ψ(qj)n

(
ωnψ(qj)

nc n
2

)
= ωnc n

2
,

(5.5)

by the ψ(qj)
2-semicircularity (5.1) of uj, for all n ∈ N.

Therefore, by the semicircularity characterization (3.4), this operator Uj is semicircular in LQ(j),
whenever ψ(qj) ∈ R×. Therefore, the statement (5.3) holds.

The above theorem shows that the operators Uj of (5.2), generated by our ψ(qj)
2-semicircular

elements uj, are semicircular in the j-th filtered probability spaces LQ(j), for all j ∈ Z, whenever
ψ(qj) ∈ R×.

Assumption 5.1 (in short, A 5.1, from below) If there is no confusion, then we automatically assume

ψ(qj) ∈ R× in C, for all j ∈ Z,

for all qj ∈ Q. �

The above assumption, A 5.1, will guarantee that, if we have the ψ(qj)
2-semicircular elements

uj in the j-th filtered probability space LQ(j), we also have the corresponding semicircular element
Uj =

1
ψ(qj)

uj in LQ(j) for all j ∈ Z.

6. The Free Product Banach ∗-Probability Space ?
j∈Z

LQ(j)

A family {an}n∈Λ in an arbitrary (topological or pure-algebraic) free probability space (B, ϕ)

is said to be a free family, if all elements an of the family are mutually free from each other in (B, ϕ),
where Λ is a countable (finite or infinite) index set. For such a free family {an}n∈Λ, if every element
an is weighted-semicircular (or semicircular), then we call the free family, free weighted-semicircular
(respectively, semicircular) family in (B, ϕ).

Recall that, for a fixed C∗-probability space (A, ψ), if there exists a mutually-orthogonal
projections {qj}j∈Z, then one can construct ψ(qj)

2-semicircular elements uj = l ⊗ qj in the j-th
filtered probability spaces LQ(j) = (LQ, τj), for all j ∈ Z, with

τj

(
un

j

)
= ωn

(
ψ(qj)

)n c n
2
, (6.1)

where ωn are in the sense of (3.3), equivalently,

kj
n
(
uj, ..., uj

)
=

{
ψ(qj)

2 if n = 2,
0 otherwise,

for all n ∈ N, for all j ∈ Z, by (4.16) and (4.17).
Moreover, one can construct corresponding semicircular elements
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Uj =
1

ψ(qj)
uj in LQ(j), (6.2)

for all j ∈ Z, by (5.3), under A 5.1.
Now, we will construct the free product Banach ∗-probability space (LQ(Z), τ), by

(
LQ(Z), τ

) de f
= ?

j∈Z
LQ(j)

=

(
?

j∈Z
LQ, ?

j∈Z
τj

)
,

(6.3)

satisfying

LQ(Z) = ?
j∈Z

LQ
∗-iso
=
(
LQ
)?|Z| , and τ = ?

j∈Z
τj,

where (?) means free product (over C) in the sense of [3,9].
Note that the free product of [3,9] is different from a pure-algebraic free product. It is totally

depending on given linear functionals.

Definition 9. The free product Banach ∗-probability space (LQ(Z), τ) of (6.3) is called the free filterization
of Q. Sometimes, the Banach ∗-algebra LQ(Z) is also said to be the free filterization of Q.

By the very construction (6.3) of the free filterization (LQ(Z), τ) of Q, we obtain the following
proposition immediately.

Proposition 3. Let (LQ(Z), τ) be the free filterization (6.3), and let uj and Uj be in the sense of (6.1) and
(6.2), respectively, for all j ∈ Z.

The family {uj ∈ LQ(j)}j∈Z is a free weighted-semicircular family in LQ(Z). (6.4)

The family {Uj ∈ LQ(j)}j∈Z is a free semicircular family in LQ(Z), under A 5.1. (6.5)

Proof. By the very definition (6.3) of free filterizations, ujs are free from each other in (LQ(Z), τ), for
all j ∈ Z. Indeed, each uj is taken from the free block LQ(j) of

(
LQ(Z), τ

)
. Therefore, the family

{uj ∈ LQ(j)}j∈Z forms a free family in LQ(Z). Since each uj is ψ(qj)
2-semicircular in LQ(j), it is

ψ(qj)
2-semicircular in (LQ(Z) τ) because

τ
(

un
j

)
= τj

(
un

j

)
= ωnψ(qj)

nc n
2
,

for all n ∈ N, for all j ∈ Z. Thus, this family is a free weighted-semicircular family in LQ(Z). Therefore,
statement (6.4) holds.

Similarly, one can conclude the family {Uj ∈ LQ(j)}j∈Z is a free semicircular family in LQ(Z),
showing that the statement (6.5) holds.

7. Weighted-Semicircularity on Affiliated Free Filterizations

Let (A, ψ) be a fixed C∗-probability space, and let Q = {qj}j∈Z be a family in A, consisting of
all mutually orthogonal projections. Let Q be the C∗-subalgebra C∗(Q) of A generated by Q, and LQ,
the corresponding radial projection algebra on Q, inducing the corresponding j-th filtered probability
spaces LQ(j) =

(
LQ, τj

)
, for all j ∈ Z. Remember that, by A 5.1,

ψ(qj) ∈ R× in C, for all j ∈ Z.

Let
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LQ(Z) denote
=

(
LQ(Z), τ

)
of Q,

be the free filterization (6.3), and let

WS
de f
= {uj ∈ LQ(j)}j∈Z, (7.1)

and

S
de f
= {Uj =

1
ψ(qj)

uj ∈ ZQ(j)}j∈Z

be the free weighted-semicircular family (6.4), respectively, the free semicircular family (6.5).
Now, we fix j ∈ Z, and focus on the free block LQ(j) =

(
LQ, τj

)
of the free filterization LQ(Z).

In addition, consider the compressed C∗-subalgebra Aj,

Aj
de f
= qj Aqj, for all j ∈ Z, (7.2)

be C∗-subalgebras of A.

Remark 2. Remark that if the C∗-algebra A is ∗-isomorphic to Q = C∗(Q), then each C∗-subalgebra Aj of
(7.2) is ∗-isomorphic to C · qj, for j ∈ Z, which is not so interesting. However, if A is ∗-isomorphic to M⊗C Q,
for a certain non-trivial C∗-algebra M, then every C∗-subalgebra Aj of (7.2) is ∗-isomorphic to M · qj = M,
for j ∈ Z, which are interested.

Motivated by the above remark, we now fix an arbitrary unital tracial W∗-probability space
(M, tr), consisting of the von Neumann algebra M, and a bounded linear functional tr on M; i.e.,

tr(1M) = 1, for the identity operator 1M of M,

and

tr(m1m2) = tr(m2m1), for all m1, m2 ∈ M.

Remark 3. There are no typical reasons why we take a unital tracial W∗-probability space (M, tr). One
may / can regard (M, tr) as a unital tracial C∗-probability space. However, on the von Neumann algebra M,
trace-depending operator theory, and operator algebra theory work well, and have been widely studied (as in I I1,
I I∞, I I Iλ-factor theories, etc.), and such structures have lots of interesting applications not only in operator
theory but also in related science fields like quantum physics (under W∗-topological settings).

One of the possible reasons would be from the main results of [1]. We want to mimic the constructions,
and apply the main results of [1] here, as applications of our results in Sections 4–7. In addition, we want to
allow a variety of topological settings in our Banach ∗-probability structures, as generalizations of the results in
previous sections.

Now, for our j-th filtered probability space LQ(j) = (LQ, τj), a free block of the free
filterization LQ(Z), for j ∈ Z, construct the tensor product Banach ∗-algebra,

LM
Q

de f
= M ⊗C LQ, (7.3)

and define a linear functional τM
j on LM

Q , by a linear morphism,

τM
j

de f
= tr⊗ τj on LM

Q , (7.4)

in the sense that
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τM
j

(
m⊗ un

j

) de f
= τj

(
tr(m)un

j

)
= tr(m)τj

(
un

j

)
,

for all n ∈ N0, for all m ∈ (M, tr), for all generators uj = l⊗ qj of the radial projection algebra LQ.

Then, one has well-defined Banach ∗-probability spaces
(
LM

Q , τM
j

)
, for all j ∈ Z.

Definition 10. The Banach ∗-algebra LM
Q of (7.3) is called the M(-affiliated)-radial projection algebra.

The Banach ∗-probability spaces
(
LM

Q , τM
j

)
of the M-radial projection algebra LM

Q , and the linear functionals

τM
j of (7.4) are said to be the j-th M(-affiliated)-filtered probability spaces, for all j ∈ Z. For convenience, we

denote our j-th M-filtered probability spaces
(
LM

Q , τM
j

)
by LM

Q (j), i.e.,

LM
Q (j) denote

=
(
LM

Q , τM
j

)
, for all j ∈ Z. (7.5)

Now, let LM
Q (j) = (LM

Q , τM
j ) be our j-th M-filtered probability space (7.5), for all j∈ Z. Construct

the free-product Banach ∗-probability space
(
LM

Q (Z), τM
)

by

LM
Q (Z) denote

=
(
LM

Q (Z), τM
) de f

= ?
j∈Z

LM
Q (j)

=

(
?

j∈Z
LM

Q , ?
j∈Z

τM
j

)
.

(7.6)

Definition 11. The free-product Banach ∗-probability space

LM
Q (Z) =

(
LM

Q (Z), τM
)

of (7.6) is called the M(-affiliated)-free filterization of Q = W∗(Q).

It is not difficult to check that the elements

1M ⊗ uj ∈ LM
Q (Z), for all j ∈ Z,

are ψ(qj)
2-semicircular elements in the M-free filterization LM

Q (Z) =
(
LM

Q (Z), τM
)

.

Proposition 4. Let LM
Q (Z) be an M-free filterization (7.6) of Q, where (M, tr) is a fixed unital tracial

W∗-probability space.

Let uo
j = 1M ⊗ uj ∈ LM

Q (j) in LM
Q (Z), where 1M is the identity element of M, and uj = l⊗ qj ∈ LQ(j),

for all j ∈ Z. Then, uo
j are ψ(qj)

2-semicircular in the M-free filterization LM
Q (Z). (7.7)

Let Uo
j = 1M ⊗Uj ∈ LM

Q (j) in LM
Q (Z), where Uj =

1
ψ(qj)

uj ∈ LQ(j), under A 5.1, for all j ∈ Z. Then,

Uo
j are semicircular in LM

Q (Z). (7.8)

Proof. Let uo
j = 1M ⊗ uj ∈ LM

Q (j) in LM
Q (Z), for j ∈ Z. Since uo

j is contained in the j-th block LM
Q (j)

of the M-free filterization LM
Q (Z), one obtains that
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τM
((

uo
j

)n)
= τM

(
1M ⊗ un

j

)
= tr(1M) τ

(
un

j

)
= tr(1M) τj

(
un

j

)
(7.9)

= 1 ·
(

ωnψ(qj)
nc n

2

)
= ωnψ(qj)

nc n
2
,

by (7.5) and (7.6), for all n ∈ N. Therefore, by (7.9), (3.1) and (3.3), the free random variables uo
j are

ψ(qj)
2-semicircular in the M-free filterization LM

Q (Z), for all j ∈ Z, i.e., the statement (7.7) holds.
Similarly, since Uo

j is in the free block LM
Q (j) of LM

Q (Z), one obtains that

τM
((

Uo
j

)n)
= tr(1M) τj

(
Un

j

)
= ωn c n

2
, (7.10)

for all n ∈ N. Therefore, by (7.10), (3.2) and (3.4), the free random variables Uo
j are semicircular

in LM
Q (Z).

By (7.7) and (7.8), we obtain the following corollary immediately.

Corollary 2. Let LM
Q (Z) be M-free filterization (7.6) of Q and (M, tr), and suppose LM

Q (j) are the free
blocks (7.5) of LM

Q (Z), for all j ∈ Z.

The family {1M ⊗ uj ∈ LM
Q (j)}j∈Z is a free weighted-semicircular family in LM

Q (Z). (7.11)

The family {1M ⊗Uj ∈ LM
Q (j)}j∈Z is a free semicircular family in LM

Q (Z). (7.12)

Proof. By (7.7) and (7.8), the operators

uo
j = 1M ⊗ uj ∈ LM

Q (j)

are ψ(qj)
2-semicircular in the M-free filterization LM

Q (Z), and the operators

Uo
j = 1M ⊗Uj ∈ LM

Q (j)

are semicircular in LQ(Z), respectively.
Moreover, since all elements uo

j (or Uo
j ) are contained in the mutually-distinct free blocks LM

Q (j)
of LM

Q (Z), for all j ∈ Z, the free random variables uo
j (resp., Uo

j ) are mutually free from each other
in LQ(Z). Therefore, the statements (7.11) and (7.12) hold.

Now, we take

Q
de f
=
{

uo
j = 1M ⊗ uj ∈ LM

Q (j)
}

j∈Z
, (7.13)

and

X
de f
=
{

Uo
j = 1M ⊗Uj ∈ LM

Q (j)
}

j∈Z

in the M-free filterization LM
Q (Z) of Q and (M, tr).

By (7.11) and (7.12), the familyQ (resp.,X ) of (7.13) is a free weighted-semicircular (Respectively,
semicircular) family in LM

Q (Z).
From the free familiesQ and X of (7.13), let us construct families,

{mj⊗ uj ∈ LM
Q (j)}j∈Z, (7.14)
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and

{mj⊗Uj ∈ LM
Q (j)}j∈Z,

where mj are elements of M, satisfying

mj 6= 0M , and mj 6= 1M ,

where 0M means the zero element of M, for all j ∈ Z.
Note that, by (7.6), the families (7.14) are free families in LM

Q (Z). Now, consider certain type of
free families (7.14).

Theorem 5. Let m ∈ (M, tr) be nonzero, and assume that (i) m is self-adjoint, and (ii) there exists t0 ∈ C×,
such that

tr(mn) = tn
0 , for all n ∈ N.

The family {m⊗Uj ∈ LM
Q (j)}j∈Z in the sense of (7.14) is a free t2

0-semicircular family in LM
Q (Z). (7.15)

The family {m⊗ uj ∈ LM
Q (j)}j∈Z in the sense of (7.14) is a free weighted-semicircular family in LM

Q (Z).

In particular, each element m⊗ uo
j is

(
t0ψ(qj)

)2-semicircular in LM
Q (Z), for all j ∈ Z. (7.16)

Proof. For convenience, let us denote the two families of (7.15) and (7.16) by

mX , respectively, mQ,

whereQ and X are in the sense of (7.13), where m ∈ (M, tr) is given as above.
First of all, by the self-adjointness of x ∈ Q∪X , since m is assumed to be self-adjoint in M,

all elements

m⊗ uj, m⊗Uj ∈ mX ∪ mQ

are self-adjoint in LM
Q (Z).

All elements m⊗Uo
j ∈ mX are contained in the mutually-distinct free blocks,

LM
Q (j) =

(
LM

Q , τM
j

)
=
(

M⊗C LQ, tr⊗ τj
)

,

for all j ∈ Z, these operators m⊗Uj are mutually free from each other in LM
Q (Z), for all j ∈ Z.

Observe now that

τM ((m⊗Uj
)n)

= τM
(

mn⊗Un
j

)
= τM

j

(
mn⊗Un

j

)
= tr (mn) τ0

j

(
Un

j

)
= tn

0 ωn c n
2
= ωn tn

0 c n
2
,

for all n ∈ N, by the assumption that tr(mn) = tn
0 , for all n ∈ N, for some t0 ∈ C×.

It shows that the self-adjoint free random variables m⊗Uj ∈mX are t2
0-semicircular in the M-free

filterization LM
Q (Z), by (3.3). Therefore, the family mX is a free t2

0-semicircular family in LM
Q (Z).

Similarly, since uo
j = ψ(qj)Uo

j ∈ LM
Q (j) in LM

Q (Z), for all j ∈ Z, the family mQ is a free family
in LM

Q (Z) because mX is. By A 5.1, and by the condition m is self-adjoint, all entries m⊗ uj of mQ
are self-adjoint in LQ(Z).

In addition, one has that
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τM ((m⊗ uj
)n)

= tr (mn) τj

(
un

j

)
= tn

0

(
ωnψ(qj)

nc n
2

)
= ωn

(
t0ψ(qj)

)n c n
2
,

for all n ∈ N.
Therefore, by (3.4), each entry m ⊗ uj of the family is

(
t0ψ(qj)

)2-semicircular in LM
Q (Z),

for all j ∈ Z, and, hence, the family mQ is a free weighted-semicircular family in the M-free
filterization LM

Q (Z).

Let’s denote the families

{mj⊗Uj ∈ LM
Q (j)}j∈Z, and {mj⊗ uj ∈ LM

Q (j)}j∈Z

of (7.14), by

XM , respectively,QM ,

for mj ∈ (M, tr), for all j ∈ Z.
Under A 5.1, every semicircular element Uj (which is a tensor-factor of mj ⊗ Uj ∈ XM) is

well-defined as the scalar-product 1
ψ(qj)

uj of the ψ(qj)
2-semicircular element uj in the free block

LQ(j) of the free filterization LQ(Z) of Q (which is a tensor-factor of LM
Q (Z)), for all j ∈ Z. Thus, one

can understand uj as ψ(qj)Uj, and, hence,

mj⊗ uj = mj⊗
(
ψ(qj)Uj

)
= ψ(qj)

(
mj⊗Uj

)
=
(
ψ(qj)mj

)
⊗Uj,

in LM
Q (Z), for all j ∈ Z.
It means that the family QM (or XM) is generated by the family XM (resp., QM). Therefore,

in the following, we concentrate on studying properties of the operators of LM
Q (Z) induced by XM

(covering the properties of those induced byQM in the above senses).

8. Free Distributions on Affiliated Free Filterizations

In this section, we fix a M-free filterization LM
Q (Z) = (LM

Q (Z), τM) in the sense of (7.6) for a
fixed unital tracial W∗-probability space (M, tr), and study free-distributional data of certain free
random variables of LM

Q (Z).
Let X = {1M ⊗Uj ∈ LM

Q (j)}j∈Z be a free semicircular family of (7.12) in LM
Q (Z), where LM

Q (j)
are the free blocks of LM

Q (Z), for all j ∈ Z. Now, we construct free random variables T of LM
Q (Z)

induced by M and X ,

T = ∑
j∈Z

mj⊗U
kj
j , (8.1)

with mj ∈ (M, tr), and kj ∈ N, where the summands of (8.1) satisfy

mj⊗U
kj
j = (mj⊗ 1LQ(Z))(1M ⊗U

kj
j ), (8.1)′

where 1M ⊗Uj ∈ X , for all j ∈ Z.
For an operator T of (8.1), define the support of T , denoted by Supp(T), by

Supp(T) = {j ∈ Z : mj 6= 0M} in Z. (8.2)

Proposition 5. Let T be a free random variable (8.1) in the M-free filterization LM
Q (Z). Then,
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τM (T) = ∑
j∈Supp(T)

ωkj tr
(
mj
)

c kj
2

, (8.3)

where ωk are in the sense of (3.3), for all k ∈ N, and Supp(T) is the support (8.2) of T in Z.

Proof. Observe that

τM(T) = ∑
j∈Z

τM
(

mj⊗U
kj
j

)

= ∑
j∈Z

tr
(
mj
)

τ
(

U
kj
j

)
= ∑

j∈Z
tr
(
mj
)

τj

(
U

kj
j

)
by (8.1)

= ∑
j∈Z

tr
(
mj
) (

ωkj c kj
2

)
,

by (8.1)′

= ∑
j∈Supp(T)

tr
(
mj
) (

ωkj c kj
2

)
.

Therefore the formula (8.3) holds.

Observe first that if T is in the sense of (8.1) in the M-free filterization LM
Q (Z), then each

summand mj ⊗U
kj
j , such that mj 6= 0M , equivalently, with j ∈ Supp(T), are contained in a free

block LM
Q (j) =

(
LM

Q , τM
j

)
, for all j ∈ Supp(T), in LM

Q (Z). Therefore, one can conclude the
following result.

Proposition 6. Let T be in the sense of (8.1) induced by a fixed W∗-probability space (M, tr), and the free
semicircular familyX of (7.12) in LM

Q (Z). Then, all nonzero summands mj⊗U
nj
j of T are free from each other

in the M-free filterization LM
Q (Z), for all j ∈ Supp(T). Equivalently, this operator T is a free sum in LM

Q (Z).

Proof. The proof is straightforward from the very construction (8.1) of the operator T in LM
Q (Z), as

we discussed in the very above paragraph.

Now, we concentrate on studying the free distribution of a free sums T of (8.1). Consider first that

τM (Tn) = τM

((
∑

j∈Supp(T)
mj⊗U

kj
j

)n)

= τM

(
∑

(j1,...,jn)∈Supp(T)n

(
n
Π

l=1
(mjl ⊗U

kjl
jl

)

))
,

where

Supp(T)n = Supp(T) × · · · × Supp(T)︸ ︷︷ ︸
n-times

,

the Cartesian product of n-copies of Supp(T)
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= ∑
(j1,...,jn)∈Supp(T)n

τM
(

n
Π

l=1
(mjl ⊗U

kjl
jl

)

)

= ∑
(j1,...,jn)∈Supp(T)n

τM
((

n
Π

l=1
mjl

)
⊗
(

n
Π

l=1
U

kjl
jl

))

by (7.6),

= ∑
(j1,...,jn)∈Supp(T)n

tr
(

n
Π

l=1
mjl

)
τ

(
n
Π

l=1
U

kjl
jl

)
. (8.4)

Lemma 1. Let T be a free sum (8.1) in the M-free filterization LM
Q (Z). Then,

τM(Tn) = ∑
(j1,...,jn)∈Supp(T)n

tr
(

n
Π

l=1
mjl

)
τ

(
n
Π

l=1
U

kjl
jl

)
, (8.5)

for all n ∈ N, where τ is the trace of (6.3) on the free filterization LQ(Z) of Q.

Proof. The proof of (8.5) is done by (8.4).

The above formula (8.5) shows that computing free moments of the free sum T of (8.1) is reduced
to compute the joint free moments of semicircular elements

{Uj ∈ LQ(j)}j∈Z

of the free filterization LQ(Z) of Q.

Lemma 2. Let XQ = {Uj ∈ LQ(j)}j∈Z be the free semicircular family (6.5) in the free filterization LQ(Z)
of Q, and let

U =
n
Π

l=1
Ukl

jl
∈ LQ(Z), for kl ∈ N, (8.6)

where j1, ..., jn ∈ Z, for n ∈ N.

If j1 = ... = jn = j in Z, then the operator U of (8.6) satisfies that

τ(U) = τ(U∗) = ωN c N
2

, with N = ∑n
l=1 kl in N. (8.7)

If the sequence (j1, ..., jn) is alternating in Z, in the sense that

j1 6= j2, j2 6= j3, ..., jn−1 6= jn in Z, (8.8)

then

τ (U) = τ (U∗) =
n
Π

l=1
ωnl c nl

2
.

Proof. Let U be an operator (8.6) in the free filterization LQ(Z) of Q. If j1 = ... = jn = j in Z, then

τ(U) = τ
(

Uk1
j ...Ukn

j

)
= τ

(
UN

j

)
with N = ∑n

l=1 kl in N
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= τj

(
UN

j

)
= ωN c N

2
,

by the semicircularity (6.5) of Uj in LQ(Z).
Similarly, by the self-adjointness of Uj, one can get that

U∗ =
(

Uk1
j ...Ukn

j

)∗
= Ukn

j Ukn−1
j ...Uk1

j in LQ(Z),

and, hence,

τ(U∗) = τ
(

Ukn
j Ukn−1

j ...Uk1
j

)
= τ

(
UN

j

)
= ωN c N

2
,

with N = ∑n
l=1 kl as above in N.

Thus, the statement (8.7) holds.

Assume now that the sequence (j1, ..., jn) is alternating in Z. Then, by the freeness (6.5) of the
family XQ in LQ(Z), one obtains that

τ (U) = τ

(
n
Π

l=1
Unl

jl

)
=

n
Π

l=1
τjl

(
Unl

jl

)
=

n
Π

l=1
ωnl c nl

2
,

by the semicircularity on XQ in LQ(Z). In addition, one can get that

τ (U∗) = τ

(
n
Π

l=1
Unl−n+1

jn−l+1

)
=

n
Π

l=1
τjn−l+1

(
Unl−n+1

jn−l+1

)
= τ(U).

Therefore, the statement (8.8) holds.

The above results (8.7) and (8.8) in fact characterize the free distributions of the product operators
of LQ(Z) in XQ because of the freeness on the free semicircular family XQ. Indeed, every product T
in XQ has its unique form,

T =
n
Π

l=1
Unl

jl
in LQ(Z),

where (j1, ..., jn) is alternating in Z. The resulted unique forms under product are said to be the free
reduced words of LQ(Z) in XQ.

For instance, if X is a product,

X = U−1U−1U0U−1U4U4U4 ∈ LQ(Z) in XQ,

then it is in fact

X = U2
−1U0U−1U3

4 in LQ(Z),

satisfying

U2
−1 ∈ LQ(−1), U0 ∈ LQ(0),

U−1 ∈ LQ(−1), and U3
4 ∈ LQ(4)

in LQ(Z), where LQ(j) are the j-th filtered probability spaces, the free blocks of LQ(Z). In other
words, this product operator X in the free familyXQ is the free reduced word U2

−1U0U−1U3
4 in LQ(Z).

Therefore, indeed, the above lemma characterizes the full free-distributional data obtained from
the free semicircular family XQ of (6.5) in LQ(Z).

However, more precisely, we may refine the above results as follows. First, observe that if (j1,
..., jn) is an alternating n-tuple in Z, and if there exists a unique partition of the n-tuple (j1, ..., jn) with
N-many noncrossing blocks(

(j1, ..., jn1), (jn1+1, ..., jn1+n2), ..., (jn1+...+nN−1+1, ..., jn1+...+nN−1+nN )
)

,



Mathematics 2017, 5, 74 21 of 37

where

j1 = ... = jn1 ,
jn1+1 = ... = jn1+n2 ,

...,

jn1+...+nN−1+1 = ... = jn1+...+nN

satisfying

j1 6= jn1+1, jn1+1 6= jn1+n2+1, ..., jn1+...+nN−1 6= jn1+...+nN−1+1

in Z.
Then, we call such maximal partition of (j1, ..., jn), the alternating partition.
For example, in the very above product operator X, one can induce the corresponding

integer-sequence,

(−1,−1, 0,−1, 4, 4, 4),

with its alternating partition,

((−1, − 1), (0), (−1), (4, 4, 4)) .

It is trivial that if an integer-sequence (j1, ..., jn) is alternating in Z, then its alternating partition is

((j1), (j2), (j3), ..., (jn)) .

Now, let W = (j1, ..., jn) be a finite integer sequence regarded as its unique alternating partition,

W = ([jl1 ]1, ..., [jlN ]N),

where [jl1 ], ..., [jlN ] are the blocks of the alternating partition of W , with N ≤ n in N, satisfying

[jls ]s = (jls , jls , ..., jls) in W ,

for all s = 1, ..., N, with

[jl1 ]1 = [j1]1.

We say that the cardinality N of blocks in W the (alternating-)partition size of W . One can define
the following quantities |[jls ]| for a fixed size-N alternating partition of the sequence W

|[jls ]s|= the cardinality of [jls ]s in W

for all l = 1, ..., N. We call these quantities |[jls ]s| the block-sizes of W , for all s = 1, ..., N.
For example, if the product operator X is a free reduced word, U2

−1U0U−1U3
4 of LQ(Z) is as

above inducing the size-4 alternating partition of its integer-sequence,

([−1]1, [0]2, [−1]3, [4]4) = ((−1, − 1), (0), (−1), (4, 4, 4)) ,

then

|[−1]1|= 2, |[0]2|= 1 = |[−1]3| ,

and

|[4]4|= 3.
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We can realize that the block-sizes are identical to the powers of free-factors of X.

Example 1. LetXQ = {Uj ∈ LQ(j)}j∈Z be the free semicircular family (6.5) in the free filterization LQ(Z)
of Q, and let

X = U−1U−1U0U−1U4U4U4 ∈ LQ(Z)

be a product operator of LQ(Z) in XQ. Then, this operator X is identical to the free reduced word

X = U2
−1U0U−1U3

4 in LQ(Z),

inducing the size-4 alternating partition of the corresponding integer-sequence,

([−1]1, [0]2, [−1]3, [4]4) ,

with

[−1]1 = (−1,−1), [0]2 = (0), [−1]3 = (−1),

and

[4]4 = (4, 4, 4),

having the block-sizes

2, 1, 1, and 3,

respectively.

Based on the above new concepts we discussed, let’s refine the computations (8.7) and (8.8).

Lemma 3. Let U =
n
Π

l=1
Ujl be a product operator of LQ(Z) in the free semicircular family XQ of (6.5), for

n ∈ N. Assume that U induces the size-N alternating-partition ([jl1 ]1, ..., [jlN ]N) of its integer-partition
(j1, ..., jn), with the block-sizes

|[jls ]s|= Ns, for all s = 1, ..., N,

with

n = N1 + N2 + ... + NN in N,

for some N ≤ n in N. Then, this product U is the free reduced word,

U =
N
Π

s=1
UNs

jls
∈ LQ(Z), (8.9)

satisfying

τ (U) =
N
Π

s=1

(
ωNs c Ns

2

)
= τ (U∗) . (8.10)

Proof. Let U be given as above in the free filterization LQ(Z) of Q. Then, by the very above discussion,

this product operator U inXQ is the free reduced word
N
Π

s=1
UNs

jls
in LQ(Z), where Ns are the block-sizes

of the size-N alternating partition of (j1, ..., jn) in Z. Thus, the product U is identified with the free
reduced word of (8.9) in LQ(Z).

By (8.9), (8.7) and (8.8), the free-moment computation (8.10) holds.
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By the above three lemmas, we obtain the following free-distributional data of the free sum T in
the sense of (8.1) in the M-free filterization LM

Q (Z).

Theorem 6. Let T = ∑
j∈Supp(T)

(mj⊗U
kj
j ) be the free sum (8.1) in the M-free filterization LM

Q (Z). Then,

τM(Tn) = ∑
(j1,...,jn)∈Supp(T)n

tr
(

n
Π

l=1
mjl

)
τ

(
n
Π

l=1
U

kjl
jl

)
, (8.11)

for all n ∈ N. In particular, for any fixed (j1, ..., jn) ∈ Supp(T)n, one has the corresponding integer-sequence

Wj1,...,jn =

j1, ...., j1︸ ︷︷ ︸
kj1

, j2, ..., j2︸ ︷︷ ︸
kj2

, ..., jn, ..., jn︸ ︷︷ ︸
kjn

 .

Then, the integer-sequence Wj1,...,jn has its unique alternative-partition,

Wj1,...,jn =
(
[jl1 ]1, ..., [jlN ]N

)
,

with

|[jls ]s|= Ns, for all s = 1, ..., N,

such that ∑N
s=1 Ns = ∑n

l=1 kjl in N, inducing the free reduced word,

n
Π

l=1
U

kjl
jl

=
n
Π

s=1
UNs

jls
in LQ(Z), (8.12)

satisfying

τ

(
n
Π

l=1
U

kjl
jl

)
=

N
Π

s=1
ωNs c Ns

2
.

Proof. The formula (8.11) is proven by (8.5). The computation (8.12) is shown by (8.9) and (8.10).

The following corollary is a direct consequence of the above theorem.

Corollary 3. Let T be the free sum (8.1) in the M-free filterization LM
Q (Z). Then,

τM ((T∗)n) = ∑
(j1,...,jn)∈Supp(T)n

tr
(

n
Π

l=1
m∗jl

)
τ

(
n
Π

l=1
U

kjl
jl

)
, (8.13)

where τ

(
n
Π

l=1
U

kjl
jl

)
satisfy (8.12), for all (j1, ..., jn) ∈ Supp(T)n, for all n ∈ N.

Proof. Since T = ∑
j∈Supp(T)

(mj⊗U
kj
j ) is a free sum in LM

Q (Z), one can get that

T∗ = ∑
j∈Supp(T)

(
m∗j ⊗U

kj
j

)
in LM

Q (Z),

by the self-adjointness of the semicircular elements Uj in the free filterization LQ(Z) (under A 5.1), for
all j ∈ Z.

Therefore, similar to (8.11) and (8.12), the formula (8.13) holds.

The following result is immediately obtained by (8.12) and (8.13).



Mathematics 2017, 5, 74 24 of 37

Corollary 4. Let T be the free sum (8.1) in LM
Q (Z). Assume that mj ∈ (M, tr) are self-adjoint in M,

for all j ∈ Supp(T) in Z. Then, the free distribution of T is characterized by the free-moment sequence,(
τM(Tn)

)∞

n=1, whose entries are determined by (8.12).

Proof. Under hypothesis, the free sum T is self-adjoint in LM
Q (Z) in the sense that T∗ = T . Thus, by

(8.12) and (8.13), this corollary is proven.

Now, we generalize the free-distributional data (8.12) and (8.13).
Let ZN = {(jk)

N
k=1 : jk ∈ Z}, for all N ∈ N. Define a subset Alt

(
ZN) of ZN by

Alt
(
ZN) de f

=
{
(jk)

N
k=1 ∈ ZN

∣∣∣ (jk)
N
k=1 is alternating

}
, (8.14)

for all N ∈ N.
For an arbitrarily fixed N-tuple W = (j1, ..., jN) in ZN , let X be an ordered N-tuple

X = (mj1 , ..., mjN ),

whose entries are from (M, tr), i.e., mjk ∈ (M, tr), for all k = 1, ..., N.
In addition, for the N-tuple W , let

η = (nj1 , ..., njN )

be an N-tuple of natural numbers, njk ∈ N, for all k = 1, ..., Nk, where j1, ..., jN are the entries of W .

For such N-tuples W , X and η, define an operator TX,η
W by

TX,η
W =

N
Π

k=1

(
mk⊗Unk

jk

)
= Π

j∈W

(
mj⊗U

nj
j

)
, (8.15)

in the M-free filterization LM
Q (Z), for all k = 1, ..., n.

Now, let a fixed N-tuple W is taken from Alt
(
ZN) of (8.14), and let

TX,η
W = Π

j∈W

(
mj⊗U

nj
j

)
, (8.16)

be in the sense of (8.15), contained in the Banach ∗-subalgebra

⊗C
j∈W

LM
Q (j) of LM

Q (Z)

(again, see [2,3,9]).

Remark 4. If W is not an alternating N-tuple in ZN , for some N ∈ N, equivalently, if

W ∈ ZN \ Alt
(
ZN) ,

then one can decide the maximal partition of W , whose blocks consist only of same integers. For instance, if

W = (−1,−1, 2, 3, 3,−1) ∈ Z6 \W /∈ Alt
(
Z6) ,

then one has the partitioned sequence,

Wo = ((−1, − 1), (2), (3, 3), (−1)) ,

and give reduction on (8.8) for each block of Wo. i.e.,
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TX,η
W

equi
=

(
m−1⊗Un−1

−1

)(
m′−1⊗U

n′−1
−1

)
⊗
(
m2⊗Un2

2
)
⊗
(
m3⊗Un3

3
) (

m′3⊗Un′3
3

)
⊗
(

m′′−1⊗U
n′′−1
−1

)
,

and, hence,

TX,η
W

equi
=

(
m−1m′−1⊗U

n−1+n′−1
−1

)
⊗
(
m2⊗Un2

2
)

⊗
(

m3m′3⊗Un3+n′3
3

)
⊗
(

m′′−1⊗U
n′′−1
−1

)
in the free block

LM
Q (−1)⊗C LM

Q (2)⊗C LM
Q (3)⊗C LM

Q (−1),

in LM
Q (Z), which is identified with

TX,η
W =

(
m−1m′−1⊗U

n−1+n′−1
−1

) (
m2⊗Un2

2
)

·
(

m3m′3⊗Un3+n′3
3

)(
m′′−1⊗U

n′′−1
−1

)
in LM

Q (Z).
As we considered above, if W ∈ ZN , then there exists a unique W ′ ∈ Alt

(
ZN), such that

TX,η
W = TX′,η′

W ′ ∈ LM
Q (Z),

as a free reduced word.
It shows that, without loss of generality, one can reduce his interests in alternating sequences (instead of all

sequences in ZN ) in Alt(ZN), for N ∈ N.

Consider free distributions of free random variables TX,η
W of (8.16), for W ∈ Alt

(
ZN) .

Theorem 7. Let W ∈ Alt
(
ZN) , for some N ∈N, and let TX,η

W be the operator (8.16) in the M-free filterization
LM

Q (Z). Then,

τM
(

TX,η
W

)
= Π

j∈W
ωnj c nj

2
tr
(
mj
)
, (8.17)

and

τM
((

TX,η
W

)∗)
= Π

j∈W

(
ωnj c nj

2
tr
(

m∗j
))

.

Moreover, if the fixed alternating N-tuple W = (j1, ..., jN) satisfies

j1 6= jN in Z,

then

τM
((

TX,η
W

)n)
= Π

j∈W

(
ωnj c nj

2
tr(mj)

)n
, (8.18)

and
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τM
(((

TX,η
W

)∗)n
)
= Π

j∈W

(
ωnj c nj

2
tr(m∗j )

)n
,

for all n ∈ N.

Proof. By the alternating-ness of W , the operator TX,,η
W forms a free reduced word in LM

Q (Z), by (7.6).
Therefore, one can get that

τM
(

TX,η
W

)
= Π

j∈W
τM

j

(
mj⊗U

nj
j

)

= Π
j∈W

(
tr(mj)

) (
τj

(
U

nj
j

))
= Π

j∈W
ωnj c nj

2
tr
(
mj
)

,

by the semicircularity of Uj’s in LQ(Z). Similarly,

τM
((

TX,η
W

)∗)
= Π

j∈W
τM

j

(
m∗j ⊗U

nj
j

)
= Π

j∈W
ωnj c nj

2
tr
(

m∗j
)

.

Thus, the free-distributional data (8.17) are obtained.
Assume now that a fixed alternating N-tuple W = (j1, ..., jN) satisfies

j1 6= jN in Z.

Under this additional condition, one can realize that the nN-tuples

Wn =

W , W , ..., W︸ ︷︷ ︸
n-times

 ∈ ZnN

satisfy

Wn ∈ Alt
(
ZnN) , for all n ∈ N,

i.e., Wn are alternating in Z, for all n ∈ N. It guarantees that the operators
(

TX,η
W

)n
form free reduced

words in LM
Q (Z), for all n ∈ N. Therefore,

τM
((

TX,η
W

)n)
= τM

TX,η
W · · · ·TX,η

W︸ ︷︷ ︸
n-times


=
(

τM
(

TX,η
W

))n
=

(
Π

j∈W
ωnj c nj

2
tr
(
mj
))n

,

and, similarly,

τM
(((

TX,η
W

)∗)n
)
=

(
Π

j∈W
ωnj c nj

2
tr
(

m∗j
))n

for all n ∈ N, by (8.17).
Therefore, the free-probabilistic information (8.18) is obtained.
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As we have seen above, our main results of Section 8, the free-distributional data induced by the
free semicircular family X , are affected by the freeness (6.3) on the free filterization LQ(Z) of Q in
the M-free filterization LM

Q (Z). In Section 9, let us consider freeness conditions and corresponding
free-distributional information on LM

Q (Z) affected by the freeness on (M, tr).

9. Certain Freeness Conditions on
(
LM

Q (Z), τM
)

In this section, we consider freeness conditions on our M-free filterization

LM
Q (Z) =

(
LM

Q (Z), τM
)

,

affected by the freeness on a fixed unital tracial W∗-probability space (M, tr).
Since LQ(Z) is defined to be the free product of j-th filtered probability spaces {LQ(j)}j∈Z, the

freeness (6.3) on the free filterization LQ(Z) of Q affects the free-distributional information on LM
Q (Z)

canonically (see Section 8; e.g., (8.12), (8.13), (8.17) and (8.18)), and it affects the freeness on LM
Q (Z)

(see Section 7; e.g., (7.11), (7.12), (7.15) and (7.16)).Therefore, it is natural to ask how the freeness on the
other tensor-factor (M, tr) affects the freeness on the M-free filterization LM

Q (Z).

Assume that a fixed W∗-probability space (M, tr) satisfies

(M, tr) = (M1 ? M2, tr1 ? tr2)

= (M1, tr1) ? (M2, tr2).
(9.1)

Then, the free blocks LM
Q (j) of the M-free filterization LM

Q (Z) satisfies that

LM
Q (j)

de f
= M ⊗C LQ(j),

where LQ(j) are the j-th filtered probability spaces, the free blocks of the free filterization LQ(Z) of Q

= (M1 ? M2)⊗C LQ(j)
by (9.1)

= (M1 ? M2)⊗C (L⊗C Q)

because, as a Banach ∗-algebra, LQ(j) = LQ, the projection radial algebra (for each j ∈ Z), where L

is the radial algebra (3.12), by (3.14)

∗-iso
= (M1 ? M2)⊗C

(
L⊗C C⊕|Z|

)
by (3.8)

∗-iso
= (M1 ? M2)⊗C

(
L⊕|Z|

)
∗-iso
= ((M1 ? M2)⊗C L)⊕|Z|

de f
=

(
(M1 ? M2) ⊗C C[{l}]‖.‖

)⊕|Z|
by (3.12)

∗-iso
=
(
(M1 ? M2)[{l}]

)⊕|Z|
,

where M[{l}] means the polynomial-algebra in l with M-coefficients, and where Y means the
norm-topology-closure under the product topology for the W∗-topology for M1 ? M2 (or that for

M) and the Banach-topology for C[{l}]‖.‖ in the sense of (3.12)
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∗-iso
=
(

M1[{l}] ? M2[{l}]
)⊕|Z|

=
(

M1[{l}] ? M2[{l}]
)⊕|Z|

∗-iso
= ((M1⊗C L) ? (M2⊗C L))⊕|Z|

∗-iso
= (M1⊗C L)⊕|Z| ? (M2⊗C L)⊕|Z| (9.2)

∗-iso
=
(

M1⊗C L⊕|Z|
)
?
(

M2⊗C L⊕|Z|
)

∗-iso
=
(

M1⊗C LQ
)
?
(

M2⊗C LQ
)

=
(

M1⊗C LQ(j)
)
?
(

M2⊗C LQ(j)
)

= LM1
Q (j) ? LM2

Q (j),

where L
Ml
Q (j) are in the sense of (7.3), equipped with their linear functionals

τ
Ml
j = trl ⊗ τj (9.3)

in the sense of (7.4), for all l = 1, 2, for all j ∈ Z.
By (9.2) and (9.3), we obtain the following structure theorems.

Theorem 8. Let j ∈ Z be arbitrarily fixed, and let LM
Q (j) be the corresponding free block of the M-free

filterization LM
Q (Z) of Q. Assume that a fixed unital tracial W∗-probability space (M, tr) satisfies the

freeness (9.1). Then,

LM
Q (j) = LM1?M2

Q (j) ∗-iso
= LM1

Q (j) ? LM2
Q (j), (9.4)

where

L
Ml
Q (j) =

(
L

Ml
Q , τ

Ml
j

)
=
(

M⊗C LQ, trl ⊗ τj
)

,

for all l = 1, 2.

Proof. The structure theorem (9.4) is proven by (9.2), where L
Ml
Q (j) are the Banach ∗-algebras LMl

Q in

the sense of (7.3) equipped with their linear functionals τ
Ml
j of (9.3) as in (7.4).

By (9.4), one can get the following corollary immediately.

Corollary 5. Suppose a given W∗-probability space (M, tr) is the free product W∗-probability space,

(M, tr) = ?
s∈Λ

(Ms, trs), (9.5)

for an countable (finite or infinite) index set Λ (under suitable product topology). Then, the free blocks LM
Q (j) of

the M-free filterization LM
Q (Z) of Q satisfy that

LM
Q (j) ∗-iso

= ?
s∈Λ

LMs
Q (j), for all j ∈ Z, (9.6)
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where

LMs
Q (j) =

(
LMs

Q = Ms⊗C LQ(j), τMs
j = trs⊗ τj

)
,

for all s ∈ Λ.

Proof. The structure theorem (9.6) is obtained by the induction on (9.4), where (M, tr) satisfies the
freeness (9.5).

By (9.4) and (9.6), one can get the following structure theorem for our M-free filterization LM
Q (Z)

in terms of the freeness on (M, tr).

Corollary 6. Let (M, tr) = ?
s∈Λ

(Ms, trs), and let LM
Q (Z) be the M-free filterization of Q, where Λ is a

(finite, or infinite) countable index set. Then,

LM
Q (Z) = ∗-iso

= ?
j∈Z

(
?

s∈Λ
LMs

Q (j)
)
= ?

s∈Λ

(
?

j∈Z
LMs

Q (j)
)

. (9.7)

Proof. Observe that

LM
Q (Z)

de f
= ?

j∈Z
LM

Q (j) = ?
j∈Z

(
L

?
s∈Λ

Ms

Q (j)
)

∗-iso
= ?

j∈Z

(
?

s∈Λ
LMs

Q (j)
)
= ?

s∈Λ

(
?

j∈Z
LMs

Q (j)
)

,

by (9.6). Thus, the ∗-isomorphic relation (9.7) holds.

The above structure theorem (9.7) characterizes the freeness on the M-free filterization LM
Q (Z) by

the freeness on (M, tr). In fact, it shows how the freeness both on (M, tr) and on the free filterization
LQ(Z) of Q affect the free structure of LM

Q (Z).
In addition, the structure theorem (9.4), and its generalization (9.6) shows the following results

as well.

Theorem 9. Let y1, y2 be free random variables in a fixed W∗-probability space (M, tr), and suppose they are
free in (M, tr). Then, the corresponding operators

yn1
1,j = y1⊗Un1

j and yn2
2,j = y2⊗Un2

j (9.8)

are free in the M-free filterization LM
Q (Z) of Q, for any arbitrarily fixed j ∈ Z, for all n1, n2 ∈ N. i.e., for all j

∈ Z,

y1 and y2 are free in (M, tr)⇒ yn1
1,j and yn2

2,j are free in LM
Q (Z). (9.9)

Proof. Now, let ynl
l,j ∈ LM

Q (Z) be in the sense of (9.8), for all l = 1, 2, where the tensor-factors yl of
them are free in (M, tr). Now, construct W∗-subalgebras Myl of M by

Myl = W∗
(
{yl , y∗l }

)
, for all l = 1, 2,

and consider the restricted linear functionals

trl = tr |Myl
, for all l = 1, 2.

Then, it is not difficult to check that the W∗-subalgebra
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My1,y2 = W∗ ({y1, y∗1 , y2, y∗2 })

satisfies

My1,y2 = My1 ? My2 in (M, tr)

with respect to the linear functional

tr1,2 = tr |My1,y2
on My1,y2 ,

satisfying

tr1,2 = tr1 ? tr2 on My1,y2 .

Now, we consider My1,y2 -free filterization L
My1,y2
Q (Z), as a Banach ∗-subalgebra of LM

Q (Z).

Then, by (9.4) and (9.6), we obtain that the free blocks L
My1,y2
Q (j) of L

My1,y2
Q (Z) satisfy

L
My1,y2
Q (j) = L

My1?My2
Q (j) = L

My1
Q (j) ?L

My2
Q (j), (9.10)

in L
My1,y2
Q (Z) (inside LM

Q (Z)), for all j ∈ Z.
Note that

ynl
l,j,
(

ynl
l,j

)∗
∈ L

Myl
Q (j)⊂ L

My1,y2
Q (j)⊂ LM

Q (j), (9.11)

in LM
Q (Z), for all l = 1, 2.
By (9.10) and (9.11), the subsets

{yn1
1,j, (yn1

1,j)
∗} and {yn2

2,j, (yn2
2,j)
∗}

are contained in the distinct free blocks L
My1
Q (j), respectively L

My2
Q (j), in the free block LM

Q (j)
of LM

Q (Z). It shows that these two subsets are free in LM
Q (Z) (e.g., [9–11]), equivalently, the operators

yn1
1,j and yn2

2,j of (9.8) are free in LM
Q (Z).

Therefore, the statement (9.9) holds.

The true statement (9.9) shows that the freeness conditions on (M, tr) implies the freeness on
free blocks of the M-free filterization LM

Q (Z) of Q. Note that the freeness condition (9.9) is slightly
different from the structure theorem (9.7). The above statement (9.9) shows that the “embedded” free
structures in (M, tr) affects the freeness on LM

Q (Z); meanwhile, the structure theorem (9.7) says the
freeness on (M, tr) affects the freeness on LM

Q (Z).
By (9.7), or by (9.9), we obtain the following free-distributional data.

Theorem 10. Let y1, y2 be free random variables in a given W∗-probability space (M, tr), and suppose that
they are free in (M, tr). Let yl,j = y1

l,j is in the sense of (9.8) in the M-free filterization LM
Q (Z) of Q, for all

l = 1, 2. Assume that

(i1, ..., in) ∈ {1, 2}n, for n ∈ N (9.12)

is an alternating n-tuple in {1, 2}. Let

T =
n
Π

s=1
ylis ,j ∈ LM

Q (Z). (9.13)

Then,

τM (T) = ωnc n
2

(
n
Π

s=1
tr(ylis

)

)
. (9.14)
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Moreover, if i1 6= in in {1, 2}, where i1 and in are the entries of the n-tuple of (9.12), then

τM(T N) =
(

ωnc n
2

)N n
Π

s=1

(
tr(ylis

)
)N

, for all N ∈ N. (9.15)

Proof. Suppose T be in the sense of (9.13) in LM
Q (Z) under the alternating condition (9.12). Then, this

operator T is contained in the free block LM
Q (j) of LM

Q (Z). By regarding T as an element in LM
Q (j),

it is regarded as a free reduced word in LM
Q (j) by (9.9) and (9.10) (e.g., [2,3,9]). Therefore,

τM (T) = τM
j

(
n
Π

s=1
ylis ,j

)
= τM

j

(
n
Π

s=1
(ylis
⊗Uj)

)

= τM
j

((
n
Π

s=1
ylis

)
⊗Un

j

)
= tr

(
n
Π

s=1
ylis

)(
τj

(
Un

j

))

=
(

ωnc n
2

)
tr
(

n
Π

s=1
ylis

)

=
(

ωnc n
2

) ( n
Π

s=1
tr
(

ylis

))
,

by the alternating-ness of (i1, ..., in) in {1, 2}. Therefore, the free-distributional data (9.14) holds.
Now, assume that (i1, ..., in) is not only alternating in {1, 2}, but also

i1 6= in in {1, 2}.

Under this assumption, the operators T N ∈ LM
Q (Z) are understood as free reduced words in the

free block LM
Q (j), for all N ∈ N. Therefore, one obtains that

τM (T N)= (
τM(T)

)N , for all N ∈ N.

Therefore, the free-momental information (9.15) holds.

Remark 5. Free-distributional data (8.11), (8.12), (8.13), (8.17) and (8.18) shows how the freeness on the free
filterization LQ(Z) of Q affect the free-distributional data on the M-free filterization LM

Q (Z). In addition, the
free-distributional data (9.14) and (9.15) illustrate how the freeness on (M, tr) affects the free-distributional
information on LM

Q (Z). By combining these results with (9.7), or with (9.9), one can characterize the
free-probabilistic information of operators of LM

Q (Z), under freeness on (M, tr), and that on LQ(Z).

10. Application

Let (M, tr) be an arbitrarily fixed unital tracial W∗-probability space, and let

LM
Q (Z) =

(
LM

Q (Z), τM
)

be the M-free filterization of Q, where Q is the C∗-subalgebra of a
C∗-probability space (A, ψ) generated by mutually-orthogonal |Z|-many projections in A.

Now, we will apply our main results of Sections 7, 8 and 9 to a special case, where a von Neumann
algebra M is given to be a free group factor, i.e.,

M = L(Fn),

generated by the free group Fn of n-generators for n ∈ N>1
∞ , where

N>1
∞

de f
= (N \ {1}) ∪ {∞}
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(e.g., [1,11]). For example, the free group factor L(Fn) is a group von Neumann algebra generated
by Fn, as a W∗-subalgebra of the operator algebra B

(
l2(Fn)

)
, where l2(Fn) is the l2-Hilbert space

generated by the group Fn, satisfying the following factor-ness.
A von Neumann algebra M (contained in the operator algebra B(H) of all operators on a Hilbert

space H) is a factor, if

M ∩M′ = C · 1B(H)
∗-iso
= C,

where M′ is the commutant of M in B(H),

M′
de f
= {T ∈ B(H) : Tm = mT , ∀m ∈ M}.

Recall that every von Neumann algebra M is decomposed by factors of different types. For more
about von Neumann algebras and factors, see [11]. Note also that the free group factors L(Fn) are
indeed well-determined factors (e.g., [1] because Fn is an i.c.c. group), for all n ∈ N>1

∞ .
By construction, all elements m of L(Fn) are expressed by

m = ∑
g∈Fn

tg g, with tg ∈ C,

in L(Fn) (as finite sums or infinite sums under limit), with their adjoint,

m∗ = ∑
g∈Fn

tg g∗ = ∑
g∈Fn

tg g−1,

where g∗ is the adjoint of g (as an operator in L(Fn)), and g−1 is the group-inverse of g (as a
group-element of Fn).

The free group factors L(Fn) are equipped with their canonical traces trn on them, defined by

trn

(
∑

g∈Fn

tg g

)
de f
= ten , (10.1)

where en are the group-identities of Fn, for all n ∈ N>1
∞ . i.e., if m ∈ L(Fn), as a (possibly infinite) linear

combination in Fn, then trn(m) is regarded as the process taking the coefficient ten of m, for the group
identity en of Fn.

Therefore, every free group factor L(Fn) is automatically understood as a W∗-probability space
(L(Fn), trn), where trn is the canonical trace (10.1) on L(Fn), for all n ∈ N>1

∞ . From below, if we
write L(Fn), then it means either the free group factor, or the corresponding W∗-probability space
(L(Fn), trn).

It is not hard to check that L(Fn) forms a unital tracial W∗-probability spaces, for all n ∈ N>1
∞ .

Thus, under our settings, one can establish the corresponding L(Fn)-free filterization L
L(Fn)
q (Z) of Q.

Notation Denote the L(Fn)-free filterizations LL(Fn)
Q (Z) simply by LQ(n,Z), for all n ∈ N>1

∞ . �

It is well-known that, if n ∈ N>1
∞ , and if n1, n2 ∈ N∞ = N ∪ {∞}, such that

n = n1 + n2 in N∞,

then

L(Fn)
∗-iso
= L(Fn1) ? L(Fn2) (10.2)

(e.g., see [1,3]), where “∗-iso
= ” means “being W∗-algebra-isomorphic”.

More generally, if n1 + n2 + ... + nk = n in N>1
∞ , with n1, ..., nk ∈ N∞, for k ∈ N, then
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L(Fn)
∗-iso
=

k
?

l=1
L(Fnl), (10.3)

by the induction on (10.2). For instance, by (10.3),

L(Fn)
∗-iso
= L(Z) ? L(Z) ? ... ? L(Z)︸ ︷︷ ︸

n-times

, (10.3)′

for all n ∈ N>1
∞ , by regarding Z as the infinite cyclic abelian group (Z, +) (up to group-isomorphisms).

Radulescu showed in [8] that either the statement (10.4) or (10.5) holds true, where

L(Fn1)
∗-iso
= L(Fn2), for all n1, n2 ∈ N>1

∞ , (10.4)

L(Fn1)
∗-iso
6= L(Fn2), whenever n1 6= n2 in N>1

∞ . (10.5)

Unfortunately, we do not know which one holds yet.
By (10.3) and (9.7), we obtain the following structure theorem of LQ(n,Z), for n ∈ N>1

∞ .

Corollary 7. Let LQ(n,Z) be the L(Fn)-free filterization of Q, for n ∈ N>1
∞ , and assume that

n = n1 + ... + nk in N∞, for n1, ..., nk ∈ N∞. (10.6)

Then,

LQ(n,Z) ∗-iso
=

k
?

l=1

(
?

j∈Z

(
L(Fnl)⊗C LQ(j)

))
∗-iso
= ?

j∈Z

(
n
?

l=1

(
L(Fnl)⊗LQ(j)

))
,

(10.7)

where LQ(j) are the j-th filtered probability spaces, the free blocks of the free filterization LQ(Z) of Q.
Furthermore, one obtains that

LQ(n,Z) ∗-iso
=

n
?

l=1

(
?

j∈Z

(
L(Z)l ⊗C LQ(j)

))
∗-iso
= ?

j∈Z

(
n
?

l=1

(
L(Z)l ⊗C LQ(j)

))
,

(10.8)

with

L(Z)l = L(Z), for all l = 1, ..., n,

for all n ∈ N>1
∞ .

Proof. The structure theorem (10.7) are immediately obtained by (9.7) with help of (10.2) and (10.3),
under the assumption (10.6). In addition, the structure theorem (10.8) is shown by (9.7) and (10.3)′.

The above isomorphism theorems (10.7) and (10.8) let us have the following corollary.

Corollary 8. Let n ∈ N>1
∞ , and let LQ(n,Z) be the L(Fn)-free filterization of Q.

If n = n1 + ... + nk as in (10.6) in N∞, then

LQ(n,Z) ∗-iso
=

k
?

l=1

(
LQ(nl ,Z)

)
, (10.9)

where LQ(nl ,Z) are the L(Fnl)-free filterizations of Q, for all l = 1, ..., k.
We have that



Mathematics 2017, 5, 74 34 of 37

LQ(n,Z) ∗-iso
=

n
?

l=1

(
LQ(1,Z)

)
, (10.10)

where LQ(1,Z) is the L(Z)-free filterization L
L(Z)
Q (Z) of Q.

Proof. By (10.7), one has that

LQ(n,Z) =
k
?

l=1

(
?

j∈Z

(
L(Fnl)⊗C LQ(j)

))
=

k
?

l=1
LQ(nl ,Z),

under (10.6). Therefore, the statement (10.9) holds.
In addition, the statement (10.10) holds as a special case of (10.9).

From below, let’s fix n ∈ N>1
∞ and the corresponding L(Fn)-free filterization LQ(n,Z).

Corollary 9. Let Tl = gl ⊗Unl
jl
∈ LQ(n,Z), where gl ∈ Fn (and hence, they are generating operators of

L(Fn)), and Ujl ∈ LQ(jl) are semicircular elements in the free filterization LQ(Z), and nl ∈ N, for all l = 1,
..., N, for N ∈ N. Let

T =
N
Π

l=1
Tl ∈ LQ(n,Z). (10.11)

Assume first that N = 1 in N, and hence T = g1⊗Un1
j1
∈ LQ(n,Z). Then,

τL(Fn)
(
Tk)= τL(Fn)

(
(T∗)k)= {

ωkn1 c kn1
2

if g1 = en,

0 if g1 6= en,
(10.12)

for all k ∈ N, where en is the group-identity of Fn (and, hence, the identity element of L(Fn)).

Suppose N > 1 in N, and assume that T is in the sense of (10.11) in LQ(n,Z), and the corresponding
N-tuple (j1, ..., jN) is alternating in Z. Then,

τL(Fn) (T) =


N
Π

l=1
ωnl c nl

2
if gl = en, ∀l = 1, ..., N,

0 otherwise,

= τL(Fn) (T∗) .

(10.13)

Under the same hypothesis of (10.13), assume further that j1 6= jN in Z. Then,

τL(Fn)
(
Tk) =


N
Π

l=1

(
ωnl c nl

2

)k
if gl = en, ∀l = 1, ..., N,

0 otherwise,

= τL(Fn)
(
(T∗)k

)
,

(10.14)

for all k ∈ N.

Proof. Let T = g1⊗Un1
j1
∈ LQ(n,Z), for g1 ∈ Fn, Uj1 ∈ LQ(j1). Then, this operator T is contained

in the free block L
L(Fn)
Q (j1) in the L(Fn)-free filterization LQ(n,Z). Thus,

Tk =
(

g1⊗Un1
j1

)k
= gk

1 ⊗Ukn1
j1
∈ L

L(Fn)
Q (j1),
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in LQ(n,Z), and, hence,

(T∗)k = g−k
1 ⊗Ukn1

j1
∈ L

L(Fn)
Q (j1),

for all k ∈ N, where g−k
1 = (g−1

1 )k in Fn (and, hence, it is identical to (g∗1 )
k in L(Fn)). Therefore, one

can get that

τL(Fn)
(
Tk)= (

ωkn1 c kn1
2

)
trn

(
gk

1

)
by (8.17) and (8.18)

=

(
ωkn1 c kn1

2

)
δgk

1 ,en
,

where δ is the Kronecker delta

=

{
ωkn1 c kn1

2
if g1 = en in Fn,

0 if g1 6= en in Fn,
(10.15)

for all k ∈ N.
Similarly, one obtains that

τL(Fn)
(
(T∗)k)= {

ωkn1 c kn1
2

if g−1
1 = en in Fn,

0 if g−1
1 6= en in Fn,

(10.16)

for all k ∈ N.
Note that the conditions for (10.15) and (10.16) are obtained by the very construction of free groups.

For example, the generators of free groups have no relations.
Therefore, by (10.15) and (10.16), the statement (10.12) holds true.

Now, let T be in the sense of (10.11), and suppose (j1, ..., jN) is an alternating N-tuple in Z.
Then, this operator T forms a free reduced word in LQ(n,Z). Thus, by (8.17) and (8.18), one can
get that

τL(Fn) (T) =
N
Π

l=1
τ

L(Fn)
jl

(
gl ⊗Unl

jl

)

=
N
Π

l=1
trn (gl)

(
ωnl c nl

2

)
=

N
Π

l=1
δgl ,en ωnl c nl

2
. (10.17)

Similarly,

τL(Fn)(T∗) =
N
Π

l=1
δg−1

l ,en
ωnl c nl

2
. (10.18)

Therefore, by (10.17) and (10.18), the statement (10.13) also holds true.

Finally, a given operator T of (10.11) is a free reduced word of the L(Fn)-free filterization LQ(n,Z),
as in (10.13). Assume more now that

j1 6= jN in Z.

Then, one can check that the operators Tk and (T∗)k are free reduced words in LQ(n,Z). It
allows us to have

τL(Fn)
(
Tk)= (

τL(Fn)(T)
)k

,

and

τL(Fn)
(
(T∗)k

)
=
(

τL(Fn)(T∗)
)k

,

for all k ∈ N.
Therefore, by (10.13), the statement (10.14) holds true.
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The above corollary characterizes how to compute free-distributional data. Different from the
above corollary, we also obtain the following free-moment computations from (9.14) and (9.15).

Corollary 10. Let j ∈ Z, and N ∈ N be fixed, and let LQ(n,Z) be the given L(Fn)-free filterization of Q. Let

yl = gl ⊗Unl
j ∈ LQ(n,Z), with nl ∈ N,

where gl ∈ L(Fn), for all l = 1, ..., N, and let

T =
N
Π

l=1
yl ∈ LQ(n,Z). (10.19)

Then,

τL(Fn) (T) = τL(Fn) (T∗) = δgT ,en ωnT c nT
2

, (10.20)

with

gT =
N
Π

l=1
gl ∈ Fn, and nT = ∑N

l=1 nl in N.

Moreover, we have that:

if N = 1, then τL(Fn)(T) = δg1,en ωn1 c n1
2

. (10.21)

if N > 1 is odd in N, and if

(g1, ..., gN) ∈ Fn × · · · × Fn (10.22)

contains either no identity element en as its entry, or even-many identity elements as its entries, then τL(Fn)(T) = 0.
if N is even in N, and if there exists x1, ..., x N

2
∈ Fn, such that

(g1, g2, ..., gN) =

(
x1, x−1

1 , x2, x−1
2 , ..., x N

2
, x−1

N
2

)
(10.23)

in Fn × · · · × Fn, then

τL(Fn)(T) = ωnT c nT
2
= τL(Fn)(T∗),

where nT is in the sense of (10.20). For the fixed even number N,

τL(Fn)(T) = 0 = τL(Fn)(T∗),

otherwise.

Proof. Suppose T is an operator (10.19) in LQ(n,Z). From the very construction (10.19) of T , one

can realize that this operator T is contained in the free block L
L(Fn)
Q (j) of LQ(n,Z), for the fixed

integer j, since

T =

(
N
Π

l=1
gl

)
⊗UnT

j , with nT = ∑N
l=1 nl ∈ N,

is contained in L
L(Fn)
Q (j).

Therefore by (9.14) and (9.15), one has that

τL(Fn) (T) = ωnT c nT
2

trn

(
N
Π

l=1
gl

)
.
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Similarly,

τL(Fn)(T∗) = ωnT c nT
2

trn

((
N
Π

l=1
gl

)−1
)

.

Therefore, the free-distributional data (10.20) holds.
The statements (10.21), (10.22) and (10.23) are nothing but a re-expression of (10.20).

The above free-distributional data (10.12), (10.13), (10.14) and (10.20) provide the general ways to
compute free distributions of operators in the L(Fn)-free filterization LQ(n,Z), for n ∈ N>1

∞ .
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