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Abstract: With fractional differential equations (FDEs) rising in popularity and methods for solving
them still being developed, approximations to solutions of fractional initial value problems (IVPs)
have great applications in related fields. This paper proves an extension of Picard’s Iterative
Existence and Uniqueness Theorem to Caputo fractional ordinary differential equations, when the
nonhomogeneous term satisfies the usual Lipschitz’s condition. As an application of our method,
we have provided several numerical examples.
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1. Introduction

Fractional differential equations (FDEs) are seeing a rapid rise in utility including applications in
engineering, physics, economics, and chemistry [1–7]. From a modeling point of view, FDEs or
dynamic systems have been better compared with its counterpart of integer derivatives [3,6,7].
However, analytic or numerical computation of the solution of fractional dynamic equations has
been challenging. This is mainly because some of the basic properties enjoyed by integer derivatives
such as the product rule and separation of variables are not available. Because of this, standard
methods to numerically approximate solutions to FDEs are in high demand. In [8], Euler’s method
for numerically solving FDEs has been developed. In [9], Picard’s method has been developed to
solve fractional initial value problems (IVPs) when the forcing term satisfies a Lipschitz condition
where the Lipschitz’s constant is time dependent and thus, these conditions are not global. In this
work, we develop Picard’s method for Caputo FDEs with initial conditions, when the nonlinear term
satisfies a time independent (global) Lipschitz’s condition. Another advantage of time independent
Lipschitz condition is in proving global uniqueness and in computing global solutions when they exist.
This is obviously true for population models and ecological models, which can be established using
coupled lower upper solutions which act as bounds. As an application of the Picard’s method, we
develop a numerical scheme and provide several numerical examples. Each iteration of this scheme is
a solution of a particular integral equation which has been extensively studied numerically as in [10].
Our method removes the complexity of computing fractional derivatives using the matrix method
developed in [11]. Our numerical method also provides a formula to compute the inverse Laplace
transform of product functions. Unlike most methods, our method can be extended to a generalized
monotone method using coupled lower and upper solutions where the solution’s interval of existence
is guaranteed. The numerical examples provide some insight on the behavior of Picard Iterates.

2. Preliminary Results

Before we begin, we must define a few terms starting with the commonly used Gamma and Beta
Functions. We use the following definitions for these functions.
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Definition 1. The Gamma Function, Γ(x), is defined by

Γ(x) =
∫ ∞

0
sx−1e−sds,

and the Beta Function, β(x, y), is defined by

β(x, y) =
∫ 1

0 (1− s)x−1sy−1ds, where Re(x), Re(y) > 0.

It should also be known that the Beta and Gamma Functions have the following relationship:

β(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.

See [12] for more information on this relationship.
In this work, we develop the Picard’s iterative method for Caputo FDEs. Thus, we only consider

Caputo’s definition of a fractional derivative:

Definition 2. Let α > 0, and u(t) : (0, ∞) −→ R. Then the Caputo derivative of order α is given by

cDαu(t) =
1

Γ(n− α)

∫ t

0

u(n)(s)
(t− s)α−n+1 ds,

where n ∈ N such that n− 1 < α ≤ n. In particular, if α = n, an integer, then cDαu = u(n)(t).

To compare, we define the Riemann-Liouville integral of order α for 0 < α < 1.

Definition 3. The Riemann-Liouville fractional integral of arbitrary order α defined by

D−αu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

where 0 < α ≤ 1.

Note that the definition of Riemann-Lioville integral of order α for 0 < α < 1, is the same as the
Caputo integral of order α.

Consider the Caputo fractional IVP: {
cDαu = f (t, u)

u(t0) = u0
, (1)

where 0 < α ≤ 1, and f (t, u) ∈ C[[t0, t0 + T]×R,R]. The integral representation of (1) is given by

u(t) = u0 +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, u(s))ds. (2)

In order to prove that the solution of the IVP (1) exists and is unique on some interval, it is enough
to prove that the solution of the integral Equation (2) exists and is unique. This is precisely what is
done in this work.

In [13], they have proved the Peano’s theorem for the IVP (1) which guarantees the existence of a
solution on some interval. For completeness, we state the result below.

Theorem 1. Assume that f ∈ C(J × B,R), where J = [t0 − a, t0 + a] and B = [u0 − b, u0 + b],
and let | f (t, u)| ≤ M. Then, the IVP (1) posses at least one solution, u(t) on [t0, t0 + h] where
h := min{a, b

M Γ(α + 1)1/α}.
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Theorem 1 guarantees the existence of a solution to the IVP (1). Although Peano’s theorem proves
the existence of a solution locally, it is not a constructive method to compute the solution analytically
or numerically. In this work, our goal is to develop an iterative method which converges to the unique
solution of the IVP (1). In order to develop the iterative method, namely Picard’s iterative method,
we need the Lipschitz’s condition definition for the function f (t, u) in the IVP (1).

Definition 4. A function, f (t, u) ∈ C[[t0, t0 + T]×R,R], is said to be a Lipschitz function in u if for any
u1, u2, there exists an L > 0 such that

| f (t, u1)− f (t, u2)| ≤ L |u1 − u2| .

The condition above is called the global Lipschitz condition. However, if u1 and u2 are in a known
closed interval containing u0, then we say that f (t, u) is locally Lipshitzian.

The next definition is related to the Mittag-Leffler function which is useful in computing linear
ordinary FDEs with initial conditions.

Definition 5. The two parameter Mittag-Leffler function is defined as

Eα,β(λ(tα)) =
∞

∑
k=0

(λtα)k

Γ(kα + β)
, (3)

where α, β > 0, and λ is a constant. Furthermore, for α = β, (3) reduces to

Eα,α(λtα) =
∞

∑
k=0

(λtα)k

Γ(α(k + 1))
. (4)

In particular, if β = 1 in (3), then we have:

Eα,1(λtα) =
∞

∑
k=0

(λtα)k

Γ(kα + 1)
, (5)

and if α = 1, then
E1,1(λt) = eλt, (6)

where eλt is the usual exponential function.
For more information and details on Mittag-Leffler functions see [3,7,14,15].

3. Main Result

In this section, we develop Picard’s iterative method for the Caputo FDE. Our results yield the
integer result as a special case. Although the result developed in this work is for scalar Caputo
FDEs, it can be easily extended to systems of Caputo FDEs with initial conditions. Next, we state our
main result.

Theorem 2. Consider the IVP (1), where f is a continuous Lipschitzian function on the closed rectangle
R := {(t, x) | t ∈ [t0 − a, t0 + a], x ∈ [u0 − b, u0 + b]}. Let M > 0 be such that | f (t, u)| < M.
Then, the IVP (1) has a unique solution on I = [t0, t0 + h] where 0 < α < 1 and h := min{a, b

M Γ(α + 1)1/α}.
Furthermore, the iterations

un(t) = u0 +
1

Γ(α)

∫ t

t0

(t− s)α−1 f (s, un−1(s))ds, (7)

with the initial approximation being u0(t) = u0, converge uniformly to the solution to the IVP (1).
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We first prove the following lemmas which will be useful in the proof of Theorem 2.

Lemma 1. Under the hypothesis of Theorem 2, ∀n ∈ N, un(t), defined as in (7), is a continuous function for
all t ∈ [t0, t0 + h] = I.

Proof. This proof follows by method of induction. Clearly, u0(t) = u0 is continuous on I, as it is
constant. Since f is continuous,

u1(t) = u0 +
1

Γ(α)

∫ t

t0

(t− s)α−1 f (s, u0(s))ds,

is also continuous. Now, if we assume for some k ∈ N, uk is continuous on I, then it follows

uk+1(t) = u0 +
1

Γ(α)

∫ t

t0

(t− s)α−1 f (s, uk(s))ds,

is also continuous on I. Thus by induction, the result holds for all n ∈ N.

Lemma 2. Under the hypothesis of Theorem 2, n ∈ N, the sequence {un(t)}, where un(t), defined in (7),
converges uniformly on I.

Proof. It is easy to observe that
un = u0 + Σn

i=1(ui − ui−1). (8)

Our goal is to show that the absolute value of the series defined by |u0 + Σ∞
i=1(ui − ui−1)|

converges uniformly. This will imply, via the Weierstrass M-test, the sequence {un} is uniformly
convergent. As a byproduct, we obtain that the sequence {un} is uniformly bounded.

First, since f is a continuous function over a compact set, there exist an M > 0 such that
| f (t, u(t))| < M. Since f (t, u) is Lipschitzian in u, we aim to prove by method of induction that

|un+1(t)− un(t)| ≤
1

Γ((n + 1)α + 1)
(MLn(t− t0)

(n+1)α). (9)

Starting with n = 0, we have

|u1(t)− u0(t)| =
∣∣∣∣ 1
Γ(α)

∫ t

t0

(t− s)α−1 f (s, u0(s))ds
∣∣∣∣

≤ 1
Γ(α)

∫ t

t0

(t− s)α−1 | f (s, u0(s))| ds

≤ M
Γ(α)

∫ t

t0

(t− s)α−1ds

≤ −M(t− s)α

Γ(α)α

∣∣∣∣t
t0

=
M(t− t0)

α

Γ(α + 1)
.

Thus, our claim (9) is true for n = 0. Now assume (9) holds for some n = k, that is,

|uk+1(t)− uk(t)| ≤
1

Γ((k + 1)α + 1)
(MLk(t− t0)

(k+1)α). (10)
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Consider,

|uk+2(t)− uk+1(t)| =
∣∣∣∣ 1
Γ(α)

∫ t

t0

(t− s)α−1( f (s, uk+1)(s))− f (s, uk(s)))ds
∣∣∣∣

≤ 1
Γ(α)

∫ t

t0

(t− s)α−1| f (s, uk+1(s))− f (s, uk(s))|ds.

Since f (t, u) is Lipschitzian in u and using assumption (10), we see

1
Γ(α)

∫ t

t0
(t− s)α−1| f (s, uk+1)(s))− f (s, uk(s))|ds ≤ L

Γ(α)

∫ t

t0
(t− s)α−1 |uk+1(s)− uk(s)| ds

≤ Lk+1 M
Γ(α)Γ((k + 1)α + 1)

∫ t

t0
(t− s)α−1(s− t0)

(k+1)αds.

Using the substitution s− t0 = σ(t− t0), we have

Lk+1 M
Γ(α)Γ((k + 1)α + 1)

∫ t

t0
(t− s)α−1(s− t0)

(k+1)αds =
Lk+1 M(t− t0)

(k+2)α

Γ(α)Γ((k + 1)α + 1)

∫ 1

0
(1− σ)α−1σ(k+1)αdσ

=
Lk+1 M(t− t0)

(k+2)α

Γ(α)Γ((k + 1)α + 1)
β(α, (k + 1)α + 1)

=
Lk+1 M(t− t0)

(k+2)α

Γ(α)Γ((k + 1)α + 1)
Γ(α)Γ((k + 1)α + 1)

Γ((k + 2)α + 1)

=
Lk+1 M(t− t0)

(k+2)α

Γ((k + 2)α + 1)
.

Hence,

|uk+2(t)− uk+1(t)| ≤
Lk+1M(t− t0)

(k+2)α

Γ((k + 2)α + 1)
,

and the induction is complete. Thus, the inequality (9) holds for all n ∈ N.
Now considering the absolute value of the series (8), we can show that the sequence {un} is

uniformly convergent if the absolute value of the series (8) converges uniformly.
By (9), we have

|un| = |u0 + Σn
i=1(ui − ui−1)|

≤ |u0|+ Σn
i=1 |ui − ui−1|

≤ |u0|+ Σn
i=0

1
Γ((i + 1)α + 1)

(MLi(t− t0)
(i+1)α)

= |u0|+ ML(t− t0)
αEα,1(L(t− t0)

α)

≤ |u0|+
M
L

hαEα,1(Lhα).

Thus, from the Weierstrass M-test, we get that the series (8) converges uniformly on I.
Therefore, the sequence {un} is uniformly convergent on I to some continuous function say u(t).

With these lemmas, what is left to prove of Theorem 2 is the sequence {un} converges to the
solution of the IVP (1).

Proof of Theorem 2. It is enough to show that the sequence {un} converge to the solution of
the integral Equation (2). Now taking the limit on both sides of the equation (7) and using
Lebesgue Dominated Convergence Theorem, we get (2). This proves there exists a solution on I.
Thus, {un} converges uniformly to u(t), the solution of the IVP (1). We claim that this solution is
unique. If not, let u∗(t) be another solution to the IVP (1). Consider the function m(t) = |u(t)− u∗(t)|.
Since both u and u∗ are solutions to the IVP (1), we see that m(t0) = 0. Furthermore, we see that



Mathematics 2017, 5, 65 6 of 9

m(t) = |u(t)− u∗(t)| =
∣∣∣∣ 1
Γ(α)

∫ t

t0

(t− s)α−1( f (s, u(s))− f (s, u∗(s)))ds
∣∣∣∣

≤
∫ t

t0

(t− s)α−1| f (s, u(s))− f (s, u∗(s))|ds

≤
∫ t

t0

(t− s)α−1L|u(s)− u∗(s)|ds

=
∫ t

t0

(t− s)α−1Lm(s)ds.

Since L > 0 and m(t) ≥ 0, the above inequality satisfies all the conditions of the Gronwall type
inequality given as in [16]. Thus, we have

m(t) ≤ m(t0)Eα,1(L(t− t0)
α) = 0.

Therefore, we can conclude that u(t) = u∗(t) and hence, the solution of the IVP (1) exists on I
and is unique. Therefore, the proof of Theorem 2 is complete. (It is easy to see that if α = 1, the proof is
similar to Picard’s original proof for natural ordinary differential equations.)

Note that our result can be easily extended to systems of Caputo FDEs with initial conditions.
The proof follows on the same lines as Theorem 2 except that || · || is to be used in place of
absolute value.

4. Numerical Results and Applications

In this section, we present several numerical examples to demonstrate our method. It is to be
noted that in a simple example in ordinary differential equation such as

u′ = u2, u(0) = u0, (11)

one can compute the solution explicitly as u(t) = u0
(1−tu0)

. It is easy to see that this solution blows up at

t∗ = 1
u0

. This result is used as a tool (in fact as a lower solution) so that the corresponding reaction
diffusion equation with the nonhomogeneous term as u2 blows up at t∗∗ where t∗∗ ≤ t∗. In order to
study blow up results for fractional reaction diffusion equation, one easy approach is to show that the
corresponding ordinary Caputo FDE blows up at some time t. Unfortunately, we cannot compute the
solution of the ordinary Caputo FDE explicitly. In Figure 1, we provide an example and compute the
Picard iterates. We see from our examples the iterates form an increasing sequence of functions.

Here, one can easily show, using the method of mathematical induction, that the nth Picard iterate
of the ordinary Caputo FDE is greater or equal to the corresponding nth Picard iterate of the ordinary
natural differential equation when the initial condition u0 ≥ 1. In order to establish this, we need

tq

(γq+1) ≥ t, which is true for 0 < t ≤ 1. It is to be noted that the solution of (11) blows up at some t∗

where t∗ ≤ 1, when u0 ≥ 1. Also note that we cannot establish a similar result when u2 is replaced by
u

1
2 , as in (11), since the solution blows up only as t→ ∞.

One can use Picard iterates to numerically approximate solutions to FDEs. The method is similar
to the numerical scheme given in solving the Volterra integral equation of the second kind in [10].
For comparison, we plot the solution given by FLMM2.m in red. More information on this code can be
found in [17].

In Figure 2, we graph 50 iterations of our developed Picard’s Method with a step size of h = 0.01
of the IVP problems {

cDqu = u
1
2

u(0) = 1
, (12)

for q = 0.25, 0.5, and 0.75.
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(a) (b)

(c)

Figure 1. Graphs of cDqu = u2, u(0) = 1 from t = 0 to t = 1. (a) Graph of cD.25u = u2, u(0) = 1.
(b) Graph of cD.5u = u2, u(0) = 1. (c) Graph of cD.75u = u2, u(0) = 1.

(a) (b)

(c)

Figure 2. Graphs of cDqu = u.5, u(0) = 1 from t = 0 to t = 1. (a) Graph of cD.25u = u.5, u(0) = 1.
(b) Graph of cD.5u = u.5, u(0) = 1. (c) Graph of cD.75u = u.5, u(0) = 1.
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In Figure 3, we graph 50 iterations of our developed Picard’s Method with a step size of h = 0.01
of the IVP problems {

cDqu = −u2

u(0) = 1
, (13)

for q = 0.25, 0.5, and 0.75.

(a) (b)

(c)

Figure 3. Graphs of cDqu = −u2, u(0) = 1 from t = 0 to t = 1. (a) Graph of cD.25u = −u2, u(0) = 1.
(b) Graph of cD.5u = −u2, u(0) = 1. (c) Graph of cD.75u = −u2, u(0) = 1.

Notice the peculiar behavior in the last examples ( f (t, u) = −u2), where the iterates oscillate
from above the solution to below the solution. The alternate behavior is a natural consequence of the
comparison result for nonhomogeneous decreasing functions. This is a special case of the result in [18]
for Caputo FDE. For similar results for ordinary differential equations, see [19,20]. It has been called
an alternating sequence or intertwined sequence [18,20].

5. Conclusions

Analytical solutions are rarely possible for even simple nonlinear FDEs. One can use
numerical methods directly on the differential equation without using its integral form. However,
the approximation for the derivative has to be done using the definition of derivatives of
Grünwald-Letinikow type. It is easy to observe that this approximation is global in nature unlike in the
case of ordinary derivatives. The Picard’s method we develop in this paper provides a relatively easier
way to compute the approximation to the solution, mainly because we are approximating a Volterra
type of integral. In addition, these integrals are of the convolution type. Numerical methods to compute
such integrals are available in literature, as in [10]. Of course, the methods need modification depending
on the forcing function involved. In addition to the theoretical existence and uniqueness result,
we provide numerical examples which are useful to develop blow up results. The numerical results we
provide, also strongly support the theoretical results of the special case of the generalized monotone
method where the forcing function is written as the sum of increasing and decreasing functions.
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The Picard’s method we develop can also easily be extended to systems. Numerical applications of
systems are useful in studying a variety of modeling problems.
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