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Abstract:



In this paper, the information fusion estimation problem is investigated for a class of multisensor linear systems affected by different kinds of stochastic uncertainties, using both the distributed and the centralized fusion methodologies. It is assumed that the measured outputs are perturbed by one-step autocorrelated and cross-correlated additive noises, and also stochastic uncertainties caused by multiplicative noises and randomly missing measurements in the sensor outputs are considered. At each sampling time, every sensor output is sent to a local processor and, due to some kind of transmission failures, one-step correlated random delays may occur. Using only covariance information, without requiring the evolution model of the signal process, a local least-squares (LS) filter based on the measurements received from each sensor is designed by an innovation approach. All these local filters are then fused to generate an optimal distributed fusion filter by a matrix-weighted linear combination, using the LS optimality criterion. Moreover, a recursive algorithm for the centralized fusion filter is also proposed and the accuracy of the proposed estimators, which is measured by the estimation error covariances, is analyzed by a simulation example.
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1. Introduction


Over the past decades, the use of sensor networks has experienced a fast development encouraged by the wide range of potential applications in many areas, since they usually provide more information than traditional single-sensor communication systems. So, important advances have been achieved concerning the estimation problem in networked stochastic systems and the design of multisensor fusion techniques [1]. Many of the existing fusion estimation algorithms are related to conventional systems (see e.g., [2,3,4,5], and the references therein), where the sensor measured outputs are affected only by additive noises and each sensor transmits its outputs to the fusion center over perfect connections.



However, in a network context, usually the restrictions of the physical equipment or the uncertainties in the external environment, inevitably cause problems in both the sensor outputs and the transmission of such outputs, that can worsen dramatically the quality of the fusion estimators designed without considering these drawbacks [6]. Multiplicative noise uncertainties and missing measurements are some of the random phenomena that usually arise in the sensor measured outputs and motivate the design of new estimation algorithms (see e.g., [7,8,9,10,11], and references therein).



Furthermore, when the sensors send their measurements to the processing center via a communication network some additional network-induced phenomena, such as random delays or measurement losses, inevitably arise during this transmission process, which can spoil the fusion estimators performance and motivate the design of fusion estimation algorithms for systems with one (or even several) of the aforementioned uncertainties (see e.g., [12,13,14,15,16,17,18,19,20,21,22,23,24], and references therein). All the above cited papers on signal estimation with random transmission delays assume independent random delays at each sensor and mutually independent delays between the different sensors; in [25] this restriction was weakened and random delays featuring correlation at consecutive sampling times were considered, thus allowing to deal with some common practical situations (e.g., those in which two consecutive observations cannot be delayed).



It should be also noted that, in many real-world problems, the measurement noises are usually correlated; this occurs, for example, when all the sensors operate in the same noisy environment or when the sensor noises are state-dependent. For this reason, the fairly conservative assumption that the measurement noises are uncorrelated is commonly weakened in many of the aforementioned research papers on signal estimation. Namely, the optimal Kalman filtering fusion problem in systems with noise cross-correlation at consecutive sampling times is addressed, for example, in [19]; also, under different types of noise correlation, centralized and distributed fusion algorithms for systems with multiplicative noise are obtained in [11,20], and for systems where the measurements might have partial information about the signal in [7].



In this paper, covariance information is used to address the distributed and centralized fusion estimation problems for a class of linear networked stochastic systems with multiplicative noises and missing measurements in the sensor measured outputs, subject to transmission random one-step delays. It is assumed that the sensor measurement additive noises are one-step autocorrelated and cross-correlated, and the Bernoulli variables describing the measurement delays at the different sensors are correlated at the same and consecutive sampling times. As in [25], correlated random delays in the transmission are assumed to exist, with different delay rates at each sensor; however, the proposed observation model is more general than that considered in [25] since, besides the random delays in the transmission, multiplicative noises and missing phenomena in the measured outputs are considered; also cross-correlation between the different sensor additive noises is taken into account. Unlike [7,8,9,10,11] where multiplicative noise uncertainties and/or missing measurements are considered in the sensor measured outputs, in this paper random delays in the transmission are also assumed to exist. Hence, a unified framework is provided for dealing simultaneously with missing measurements and uncertainties caused by multiplicative noises, along with random delays in the transmission and, hence, the proposed fusion estimators have wide applicability. Recursive algorithms for the optimal linear distributed and centralized filters under the least-squares (LS) criterion are derived by an innovation approach. Firstly, local estimators based on the measurements received from each sensor are obtained and then the distributed fusion filter is generated as the LS matrix-weighted linear combination of the local estimators. Also, a recursive algorithm for the optimal linear centralized filter is proposed. Finally, it is important to note that, even though the state augmentation method has been largely used in the literature to deal with the measurement delays, such method leads to a significant rise of the computational burden, due to the increase of the state dimension. In contrast to such approach, the fusion estimators proposed in the current paper are obtained without needing the state augmentation; so, the dimension of the designed estimators is the same as that of the original state, thus reducing the computational cost compared with the existing algorithms based on the augmentation method.



The rest of the paper is organized as follows. The multisensor measured output model with multiplicative noises and missing measurements, along with the transmission random one-step delay model, are presented in Section 2. The distributed fusion estimation algorithm is derived in Section 3, and a recursive algorithm for the centralized LS linear filtering estimator is proposed in Section 4. The effectiveness of the proposed estimation algorithms is analyzed in Section 5 by a simulation example and some conclusions are drawn in Section 6.



Notation: The notation throughout the paper is standard. [image: there is no content] and [image: there is no content] denote the n-dimensional Euclidean space and the set of all [image: there is no content] real matrices, respectively. For a matrix A, the symbols [image: there is no content] and [image: there is no content] denote its transpose and inverse, respectively; the notation [image: there is no content] represents the Kronecker product of the matrices [image: there is no content]. If the dimensions of vectors or matrices are not explicitly stated, they are assumed to be compatible with algebraic operations. In particular, I denotes the identity matrix of appropriate dimensions. The notation [image: there is no content] indicates the minimum value of two real numbers [image: there is no content]. For any function [image: there is no content], depending on the time instants k and s, we will write [image: there is no content] for simplicity; analogously, [image: there is no content] will be written for any function [image: there is no content], depending on the sensors i and j. Moreover, for an arbitrary random vector [image: there is no content], we will use the notation [image: there is no content], where [image: there is no content] is the mathematical expectation operator. Finally, [image: there is no content] denotes the Kronecker delta function.




2. Problem Formulation and Model Description


This paper is concerned with the LS linear filtering estimation problem of discrete-time stochastic signals from randomly delayed observations coming from networked sensors using the distributed and centralized fusion methods. The signal measurements at the different sensors are affected by multiplicative and additive noises, and the additive sensor noises are assumed to be correlated and cross-correlated at the same and consecutive sampling times. Each sensor output is transmitted to a local processor over imperfect network connections and, due to network congestion or some other causes, random one-step delays may occur during this transmission process; in order to model different delay rates in the transmission from each sensor to the local processor, different sequences of correlated Bernoulli random variables with known probability distributions are used.



In the distributed fusion method, each local processor produces the LS linear filter based on the measurements received from the sensor itself; afterwards, these local estimators are transmitted to the fusion center over perfect connections, and the distributed fusion filter is generated by a matrix-weighted linear combination of the local LS linear filtering estimators using the mean squared error as optimality criterion. In the centralized fusion method, all measurement data of the local processors are transmitted to the fusion center, also over perfect connections, and the LS linear filter based on all the measurements received is obtained by a recursive algorithm.



Next, we present the observation model and the hypotheses on the signal and noise processes necessary to address the estimation problem.



2.1. Signal Process


The distributed and centralized fusion filtering estimators will be obtained under the assumption that the evolution model of the signal to be estimated is unknown and only information about its mean and covariance functions is available; specifically, the following hypothesis is required:



Hypothesis 1.

The [image: there is no content]-dimensional signal process [image: there is no content] has zero mean and its autocovariance function is expressed in a separable form, E[xkxsT]=AkBsT,s≤k, where [image: there is no content] are known matrices.





Note that, when the system matrix [image: there is no content] in the state-space model of a stationary signal is available, the signal autocovariance function is E[xkxsT]=Φk−sE[xsxsT],s≤k, and Hypothesis 1 is clearly satisfied taking, for example, [image: there is no content] and [image: there is no content]. Similarly, if [image: there is no content], the covariance function can be expressed as E[xkxsT]=Φk,sE[xsxsT],s≤k, where [image: there is no content], and Hypothesis 1 is also satisfied taking [image: there is no content] and [image: there is no content]. Furthermore, Hypothesis 1 covers even situations where the system matrix in the state-space model is singular, although a different factorization must be used in those cases (see e.g., [21]). Hence, Hypothesis 1 on the signal autocovariance function covers both stationary and non-stationary signals, providing a unified context to deal with a large number of different situations and avoiding the derivation of specific algorithms for each of them.




2.2. Multisensor Measured Outputs


Consider m sensors, whose measurements obey the following equations:


zk(i)=θk(i)Hk(i)+εk(i)Ck(i)xk+vk(i),k≥1,i=1,…,m



(1)




where [image: there is no content] is the measured output of the i-th sensor at time k, which is transmitted to a local processor by unreliable network connections, and [image: there is no content], [image: there is no content] are known time-varying matrices of suitable dimensions. For each sensor i=1,…,m,[image: there is no content] is a Bernoulli process describing the missing phenomenon, [image: there is no content] is a scalar multiplicative noise, and [image: there is no content] is the measurement noise.



The following hypotheses on the observation model given by Equation (1) are required:



Hypothesis 2.

The processes [image: there is no content], i=1,…,m, are independent sequences of independent Bernoulli random variables with know probabilities P(θk(i)=1)=θ¯k(i),k≥1.





Hypothesis 3.

The multiplicative noises [image: there is no content], i=1,…,m, are independent sequences of independent scalar random variables with zero means and known second-order moments; we will denote σk(i)≡E(εk(i))2,k≥1.





Hypothesis 4.

The sensor measurement noises {vk(i)}k≥1,i=1,…,m, are zero-mean sequences with known second-order moments defined by:


E[vk(i)vs(j)T]=Rk(ij)δk,s+Rk,k−1(ij)δk−1,s,s≤k;i,j=1,…,m













From Hypothesis 2, different sequences of independent Bernoulli random variables with known probabilities are used to model the phenomenon of missing measurements at each sensor; so, when [image: there is no content], which occurs with known probability [image: there is no content], the state [image: there is no content] is present in the measurement [image: there is no content] coming from the i-th sensor at time k; otherwise, [image: there is no content] and the state is missing in the measured output from the i-th sensor at time k, which means that such observation only contains additive noise [image: there is no content] with probability [image: there is no content]. Although these variables are assumed to be independent from sensor to sensor, such condition is not necessary to deduce either the centralized estimators or the local estimators, but only to obtain the cross-covariance matrices of the local estimation errors, which are necessary to determine the matrix weights of the distributed fusion estimators. Concerning Hypothesis 3, it should be noted that the multiplicative noises involved in uncertain systems are usually gaussian noises. Finally, note that the conservative hypothesis of independence between different sensor measurement noises has been weakened in Hypothesis 4, since such independence assumption may be a limitation in many real-world problems; for example, when all the sensors operate in the same noisy environment, the noises are usually correlated, or even some sensors may have the same measurement noises.




2.3. Observation Model with Random One-Step Delays


For each [image: there is no content], assume that the measured outputs of the different sensors, [image: there is no content], i=1,…,m, are transmitted to the local processors through unreliable communication channels and, due to network congestion or some other causes, random one-step delays with different rates are supposed to exist in these transmissions. Assuming that the first measurement is always available and considering different sequences of Bernoulli random variables, [image: there is no content], i=1,…,m, to model the random delays, the observations used in the estimation are described by:


yk(i)=(1−γk(i))zk(i)+γk(i)zk−1(i),k≥2;y1(i)=z1(i);i=1,…,m



(2)







From Equation (2) it is clear that [image: there is no content] means that [image: there is no content]; that is, the local processor receives the data from the i-th sensor at the sampling time k. When [image: there is no content], then [image: there is no content], meaning that the measured output at time k is delayed and the previous one [image: there is no content] is used for the estimation. These Bernoulli random variables modelling the delays are assumed to be one-step correlated, thus covering many practical situations; for example, those in which consecutive observations transmitted through the same channel cannot be delayed, or situations where there are some sort of links between the different communications channels. Specifically, the following hypothesis is assumed:



Hypothesis 5.

[image: there is no content], i=1,…,m, are sequences of Bernoulli random variables with known means, γ¯k(i)≡E[γk(i)],k≥2. It is assumed that [image: there is no content] and [image: there is no content] are independent for [image: there is no content], and the second-order moments, γ¯k,s(i,j)≡E[γk(i)γs(j)],s=k−1,k, and i,j=1,…,m, are also known.





Finally, the following independence hypothesis is also required:



Hypothesis 6.

For i=1,…,m, the processes [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are mutually independent.





In the following proposition, explicit expressions for the autocovariance functions of the transmitted and received measurements, that will be necessary for the distributed fusion estimation algorithm, are derived.



Proposition 1.

For [image: there is no content], the autocovariance functions [image: there is no content] and [image: there is no content] are given by:


Σkz(i)=θ¯k(i)Hk(i)AkBkTHk(i)T+σk(i)Ck(i)AkBkTCk(i)T+Rk(i),k≥1Σk,sz(ij)=θ¯k(i)θ¯s(j)Hk(i)AkBsTHs(j)T+Rk,k−1(ij)δk−1,s+Rk(ij)δk,s,i≠j,ors<kΣk,sy(ij)=(1−γ¯k(i)−γ¯s(j)+γ¯k,s(i,j))Σk,sz(ij)+(γ¯s(j)−γ¯k,s(i,j))Σk,s−1z(ij)Σk,sy(ij)=+(γ¯k(i)−γ¯k,s(i,j))Σk−1,sz(ij)+γ¯k,s(i,j)Σk−1,s−1z(ij),k,s≥2Σ2,1y(ij)=(1−γ¯2(i))Σ2,1z(ij)+γ¯2(i)Σ1z(ij);Σ1y(ij)=Σ1z(ij)



(3)









Proof. 

From Equations (1) and (2), taking into account Hypotheses 1–6, the expressions given in Equation (3) are easily obtained. ☐







3. Distributed Fusion Linear Filter


In this section, we address the distributed fusion linear filtering problem of the signal from the randomly delayed observations defined by Equations (1) and (2), using the LS optimality criterion. In the distributed fusion method, each local processor provides the LS linear filter of the signal [image: there is no content] based on the measurements from the corresponding sensor, which will be denoted by [image: there is no content]; afterwards, these local filters are transmitted to the fusion center where the distributed filter, [image: there is no content], is designed as a matrix-weighted linear combination of such local filters. First, in Section 3.1, for each i=1,…,m, a recursive algorithm for the local LS linear filter, [image: there is no content], will be deduced. Then, in Section 3.2, the derivation of the cross-correlation matrices between any two local filters, [image: there is no content], i,j=1,…,m, will be detailed. Finally, in Section 3.3, the distributed fusion filter weighted by matrices, [image: there is no content], will be generated from the local filters by applying the LS optimality criterion.



3.1. Local LS Linear Filtering Recursive Algorithm


To obtain the signal LS linear filters based on the available observations from each sensor, we will use an innovation approach. For each sensor i=1,…,m, the innovation at time k, which represents the new information provided by the k-th observation, is defined by μk(i)=yk(i)−y^k/k−1(i),k≥1, where [image: there is no content] is the LS linear estimator of [image: there is no content] based on the previous observations, ys(i),s≤k−1, with [image: there is no content].



As it is known (see e.g., [26]), the innovations, [image: there is no content], constitute a zero-mean white process, and the LS linear estimator of any random vector [image: there is no content] based on the observations y1(i),…,yL(i), denoted by [image: there is no content], can be calculated as a linear combination of the corresponding innovations, μ1(i),…,μL(i); namely


[image: there is no content]



(4)




where [image: there is no content] denotes the covariance matrix of [image: there is no content].



This general expression for the LS linear estimators along with the Orthogonal Projection Lemma (OPL), which guarantees that the estimation error is uncorrelated with all the observations or, equivalently, that it is uncorrelated with all the innovations, are the essential keys to derive the proposed recursive local filtering algorithm.



Taking into account Equation (4), the first step to obtain the signal estimators is to find an explicit formula for the innovation [image: there is no content] or, equivalently, for the observation predictor [image: there is no content].



Using the following alternative expression for the observations [image: there is no content] given by Equation (2),


yk(i)=(1−γ¯k(i))θk(i)(Hk(i)+εk(i)Ck(i))xk+γ¯k(i)θ¯k−1(i)Hk−1(i)xk−1+wk(i),k≥2wk(i)=γ¯k(i)(θk−1(i)−θ¯k−1(i))Hk−1(i)xk−1+γ¯k(i)θk−1(i)εk−1(i)Ck−1(i)xk−1+(1−γ¯k(i))vk(i)+γ¯k(i)vk−1(i)−(γk(i)−γ¯k(i))(zk(i)−zk−1(i)),k≥2



(5)




and taking into account the independence hypotheses on the model, it is easy to see that:


y^k/k−1(i)=(1−γ¯k(i))θ¯k(i)Hk(i)x^k/k−1(i)+γ¯k(i)θ¯k−1(i)Hk−1(i)x^k−1/k−1(i)+w^k/k−1(i),k≥2











Now, taking into account that [image: there is no content] is uncorrelated with [image: there is no content] for [image: there is no content], and using Equation (4) for [image: there is no content], we obtain that:


y^k/k−1(i)=(1−γ¯k(i))θ¯k(i)Hk(i)x^k/k−1(i)+γ¯k(i)θ¯k−1(i)Hk−1(i)x^k−1/k−1(i)+∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1μk−h(i),k≥2



(6)




where Wk,k−h(i)≡E[wk(i)μk−h(i)T],h=1,2.



Equation (6) for the one-stage observation predictor is the starting point to derive the local recursive filtering algorithm presented in Theorem 1; this algorithm provide also the filtering error covariance matrices, [image: there is no content], which measure the accuracy of the estimators [image: there is no content] when the LS optimality criterion is used.



Theorem 1.

Under Hypotheses 1–6, for each single sensor node i=1,…,m, the local LS linear filter, [image: there is no content] and the corresponding error covariance matrix, [image: there is no content], are given by:


x^k/k(i)=AkOk(i),k≥1



(7)




and:


Pk/k(i)=AkBk−Akrk(i)T,k≥1



(8)




where the vectors [image: there is no content] and the matrices [image: there is no content] are recursively obtained from:


Ok(i)=Ok−1(i)+Jk(i)Πk(i)−1μk(i),k≥1;O0(i)=0



(9)






rk(i)=rk−1(i)+Jk(i)Πk(i)−1Jk(i)T,k≥1;r0(i)=0



(10)




and the matrices [image: there is no content] satisfy:


Jk(i)=HBk(i)T−rk−1(i)HAk(i)T−∑h=1(k−1)∧2Jk−h(i)Πk−h(i)−1Wk,k−h(i)T,k≥2;J1(i)=HB1(i)T



(11)







The innovations [image: there is no content], and their covariance matrices, [image: there is no content], are given by:


μk(i)=yk(i)−HAk(i)Ok−1(i)−∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1μk−h(i),k≥2;μ1(i)=y1(i)



(12)




and:


Πk(i)=Σky(i)−HAk(i)(HBk(i)T−Jk(i))−∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1(HAk(i)Jk−h(i)+Wk,k−h(i))T,k≥2Π1(i)=Σ1y(i)



(13)







The coefficients [image: there is no content], [image: there is no content], are calculated as:


Wk,k−1(i)=Σk,k−1y(i)−HAk(i)HBk−1(i)T−Wk,k−2(i)Πk−2(i)−1(HAk−1(i)Jk−2(i)+Wk−1,k−2(i))T,k≥3W2,1(i)=Σ2,1y(i)−HA2(i)HB1(i)TWk,k−2(i)=γ¯k(i)(1−γ¯k−2(i))Rk−1,k−2(i),k≥4;W3,1(i)=γ¯3(i)R2,1(i)



(14)







Finally, the matrices [image: there is no content] are given in Equation (3) and HΨs(i),Ψ=A,B,s=k−1,k, are obtained by:


HΨs(i)=(1−γ¯s(i))θ¯s(i)Hs(i)Ψs+γ¯s(i)θ¯s−1(i)Hs−1(i)Ψs−1,s≥2;HΨ1(i)=θ¯1(i)H1(i)Ψ1



(15)









Proof. 

The local filter [image: there is no content] will be obtained from the general expression given in Equation (4), starting from the computation of the coefficients:


Xk,h(i)=E[xkμh(i)T]=E[xkyh(i)T]−E[xky^h/h−1(i)T],1≤h≤k











The independence hypotheses and the separable structure of the signal covariance assumed in Hypothesis 1 lead to [image: there is no content], with [image: there is no content] given by Equation (15). From Equation (6) for y^h/h−1(i),h≥2, we have:


E[xky^h/h−1(i)T]=(1−γ¯h(i))θ¯h(i)E[xkx^h/h−1(i)T]Hh(i)T+γ¯h(i)θ¯h−1(i)E[xkx^h−1/h−1(i)T]Hh−1(i)T+∑j=1(h−1)∧2Xk,h−j(i)Πh−j(i)−1Wh,h−j(i)T











Hence, using now Equation (4) for [image: there is no content] and [image: there is no content], the filter coefficients are expressed as:


Xk,h(i)=AkHBh(i)T−∑j=1h−1Xk,j(i)Πj(i)−1(1−γ¯h(i))θ¯h(i)Xh,j(i)THh(i)T+γ¯h(i)θ¯h−1(i)Xh−1,j(i)THh−1(i)TXk,h(i)=−∑j=1(h−1)∧2Xk,h−j(i)Πh−j(i)−1Wh,h−j(i)T,2≤h≤kXk,1(i)=AkHB1(i)T








which guarantees that Xk,h(i)=AkJh(i),1≤h≤k, with [image: there is no content] given by:


Jh(i)=H¯Bh(i)T−∑j=1h−1Jj(i)Πj(i)−1Jj(i)TH¯Ah(i)T−∑j=1(h−1)∧2Jh−j(i)Πh−j(i)−1Wh,h−j(i)T,h≥2J1(i)=H¯B1(i)T



(16)







Therefore, by defining [image: there is no content] and [image: there is no content], Equation (7) for the filter follows immediately from Equation (4), and Equation (8) is obtained by using the OPL to express [image: there is no content], and applying Hypothesis 1 and Equation (7).



The recursive Equations (9) and (10) are directly obtained from the corresponding definitions, taking into account that [image: there is no content] which, in turn, from Equation (16), leads to Equation (11) for [image: there is no content].



From now on, using that x^k/k−1(i)=AkOk−1(i),x^k−1/k−1(i)=Ak−1Ok−1(i) and Equation (15), the expression for the observation predictor given by Equation (6) will be rewritten as follows:


y^k/k−1(i)=HAk(i)Ok−1(i)+∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1μk−h(i),k≥2



(17)







From Equation (17), Equation (12) for the innovation is directly obtained and, applying the OPL to express its covariance matrix as [image: there is no content], the following identity holds:


Πk(i)=Σky(i)−HAk(i)E[Ok−1(i)y^k/k−1(i)T]−∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1E[μk−h(i)y^k/k−1(i)T],k≥2Π1(i)=Σ1y(i)











Now, using again Equation (17), and taking Equation (11) into account, it is deduced that [image: there is no content] and, since [image: there is no content] and E[Ok−1(i)μk−h(i)T]=Jk−h(i),h=1,2, Equation (13) for [image: there is no content] is obtained.



To complete the proof, the expressions for Wk,k−h(i)=E[wk(i)μk−h(i)T],h=1,2, with [image: there is no content] given in Equation (5), are derived using that [image: there is no content] is uncorrelated with yh(i),h≤k−3. Consequently, [image: there is no content], and Equation (14) for [image: there is no content] is directly obtained from Equations (1), (2) and (5), using the hypotheses stated on the model.



Next, using Equation (4) for [image: there is no content] in [image: there is no content], we have:


[image: there is no content]



(18)







To compute the first expectation involved in this formula, we write:


[image: there is no content]








and we apply the OPL to rewrite E[xsyk−1(i)T]=E[x^s/k−1(i)yk−1(i)T],s=k,k−1, thus obtaining that [image: there is no content]; then, by expressing [image: there is no content] and using Equations (11) and (17), it follows that [image: there is no content]



The second expectation in Equation (18) is easily computed taking into account that, from the OPL, it is equal to [image: there is no content] and using Equation (17).



So the proof of Theorem 1 is completed. ☐






3.2. Cross-Correlation Matrices between Any Two Local Filters


To obtain the distributed filtering estimator, the cross-correlation matrices between any pair of local filters must be calculated; a recursive formula for such matrices is derived in the following theorem (the notation in this theorem is the same as that used in Theorem 1).



Theorem 2.

Under Hypotheses 1–6, the cross-correlation matrices between two local filters, [image: there is no content], i,j=1,…,m, are calculated by:


Σ^k/k(ij)=Akrk(ij)AkT,k≥1



(19)




with [image: there is no content] satisfying:


rk(ij)=rk−1(ij)+Jk−1,k(ij)Πk(j)−1Jk(j)T+Jk(i)Πk(i)−1Jk(ji)T,k≥1;r0(ij)=0



(20)




where [image: there is no content] are given by:


Jk−1,k(ij)=(rk−1(i)−rk−1(ij))HAk(j)T+∑h=1(k−1)∧2Jk−h(i)Πk−h(i)−1Wk,k−h(ji)T−∑h=1(k−1)∧2Jk−1,k−h(ij)Πk−h(j)−1Wk,k−h(j)T,k≥2J0,1(ij)=0



(21)




and [image: there is no content] for [image: there is no content], satisfy:


Jk,s(ij)=Jk−1,s(ij)+Jk(i)Πk(i)−1Πk,s(ij),k≥2;J1(ij)=J1(i)Π1(i)−1Π1(ij)



(22)







The innovation cross-covariance matrices [image: there is no content] are obtained as:


Πk(ij)=Σky(ij)−HAk(i)(HBk(j)T−Jk(j)−Jk−1,k(ij))−∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1Πk−h,k(ij)Πk(ij)=−∑h=1(k−1)∧2Wk,k−h(ij)Πk−h(j)−1(H¯Ak(j)Jk−h(j)+Wk,k−h(j))T,k≥2Π1(ij)=Σ1y(ij)



(23)




where Πk,s(ij)=E[μk(i)μs(j)T],s=k−2,k−1, are given by:


Πk,s(ij)=HAk(i)(Js(j)−Jk−1,s(ij))+Wk,s(ij)−∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1Πk−h,s(ij),k≥2



(24)







The coefficients Wk,k−h(ij)=E[wk(i)μk−h(j)T],h=1,2, are computed by:


Wk,k−1(ij)=Σk,k−1y(ij)−HAk(i)HBk−1(j)T−Wk,k−2(ij)Πk−2(j)−1(HAk−1(j)Jk−2(j)+Wk−1,k−2(j))T,k≥3W2,1(ij)=Σ2,1y(ij)−HA2(i)HB1(j)TWk,k−2(ij)=γ¯k(i)(1−γ¯k−2(j))Rk−1,k−2(ij),k≥4;W3,1(ij)=γ¯3(i)R2,1(ij)



(25)







Finally, the matrices [image: there is no content], and HAs(l),HBs(l),s=k−1,k,l=i,j, are given in Equations (3) and (15), respectively.





Proof. 

Equation (19) for [image: there is no content] is directly obtained using Equation (7) for the local filters and defining [image: there is no content].



Next, we derive the recursive formulas to obtain the matrices [image: there is no content], which clearly satisfy Equation (20) just by using Equation (9) and defining Js,k(ij)=E[Os(i)μk(j)T],s=k−1,k.



For later derivations, the following expression of the one-stage predictor of [image: there is no content] based on the observations of sensor i will be used; this expression is obtained from Equation (5), taking into account that x^k/s(i)=AkOs(i),s=k−1,k, and defining Wk,k−h(ji)=E[wk(j)μk−h(i)T],h=1,2:


y^k/k−1(j/i)=HAk(j)Ok−1(i)+∑h=1(k−1)∧2Wk,k−h(ji)Πk−h(i)−1μk−h(i),k≥2



(26)







As Equation (17) is a particular case of Equation (26), for [image: there is no content], hereafter we will also refer to it for the local predictors y^k/k−1(i),k≥2.



By applying the OPL, it is clear that [image: there is no content] and, consequently, we can rewrite [image: there is no content]; then, using Equation (26) for both predictors, Equation (21) is easily obtained. Also, Equation (22) for Jk,s(ij),s=k−1,k, is immediately deduced from Equation (9), just defining [image: there is no content].



To obtain Equation (23), first we apply the OPL to express [image: there is no content][image: there is no content]. Then, using Equation (26) for [image: there is no content] and y^k/k−1(i), and the definitions of [image: there is no content] and Πk−h,k(ij), we have:


E[y^k/k−1(i/j)y^k/k−1(j)T]=HAk(i)E[Ok−1(j)y^k/k−1(j)T]+∑h=1(k−1)∧2Wk,k−h(ij)Πk−h(j)−1E[μk−h(j)y^k/k−1(j)T]E[y^k/k−1(i)μk(j)T]=H¯Ak(i)Jk−1,k(ij)+∑h=1(k−1)∧2Wk,k−h(i)Πk−h(i)−1Πk−h,k(ij)








so Equation (23) is obtained taking into account that [image: there is no content] and [image: there is no content] as it has been shown in the proof of Theorem 1.



Equation (24) for [image: there is no content] with [image: there is no content], is obtained from [image: there is no content], and using Equation (26) in [image: there is no content].



Finally, the reasoning to obtain Equation (25) for the coefficients Wk,k−h(ij)=E[wk(i)μk−h(j)T],h=1,2, is also similar to that used to derive [image: there is no content] in Theorem 1, so it is omitted and the proof of Theorem 2 is then completed. ☐






3.3. Derivation of the Distributed LS Fusion Linear Filter


As it has been mentioned previously, a matrix-weighted fusion linear filter is now generated from the local filters by applying the LS optimality criterion. The distributed fusion filter at any time k is hence designed as a product, [image: there is no content], where X^k/k=x^k/k(1)T,…,x^k/k(m)TT is the vector constituted by the local filters, and [image: there is no content] is the matrix obtained by minimizing the mean squared error, [image: there is no content].



As it is known, the solution of this problem is given by [image: there is no content] and, consequently, the proposed distributed filter is expressed as:


[image: there is no content]



(27)




with Σ^k/k≡E[X^k/kX^k/kT]=Σ^k/k(ij)i,j=1,…,m, where [image: there is no content] are the cross-correlation matrices between any two local filters given in Theorem 2.



The distributed fusion linear filter weighted by matrices is presented in the following theorem.



Theorem 3.

Let X^k/k=(x^k/k(1)T,…,x^k/k(m)T)T denote the vector constituted by the local LS filters given in Theorem 1, and Σ^k/k=Σ^k/k(ij)i,j=1,…,m , with [image: there is no content] given in Theorem 2. Then, the distributed filtering estimator, [image: there is no content], and the error covariance matrix, [image: there is no content], are given by:


x^k/k(D)=Σ^k/k(1),…,Σ^k/k(m)Σ^k/k−1X^k/k,k≥1



(28)




and:


Pk/k(D)=AkBkT−Σ^k/k(1),…,Σ^k/k(m)Σ^k/k−1Σ^k/k(1),…,Σ^k/k(m)T,k≥1



(29)









Proof. 

As it has been discussed previously, Equation (28) is immediately derived from Equation (27), since the OPL guarantees that E[xkX^k/kT]=E[x^k/k(1)x^k/k(1)T],…,E[x^k/k(m)x^k/k(m)T]=Σ^k/k(1),…,Σ^k/k(m). Equation (29) is obtained from [image: there is no content], using Hypothesis 1 and Equation (28). Then, Theorem 3 is proved. ☐







4. Centralized LS Fusion Linear Filter


In this section, using an innovation approach, a recursive algorithm is designed for the LS linear centralized fusion filter of the signal, [image: there is no content], which will be denoted by [image: there is no content].



4.1. Stacked Observation Model


In the centralized fusion filtering, the observations of the different sensors are jointly processed at each sampling time to yield the filter [image: there is no content]. To carry out this process, at each sampling time [image: there is no content] we will deal with the vector constituted by the observations from all sensors, yk=(yk(1)T,…yk(m)T)T, which, from Equation (2), can be expressed as:


yk=I−Γkzk+Γkzk−1,k≥2;y1=z1



(30)




where zk=(zk(1)T,…zk(m)T)T is the vector constituted by the sensor measured outputs given in Equation (1), and Γk=Diag(γk(1),…,γk(m))⊗I.



Let us note that the stacked vector [image: there is no content] is affected by random matrices [image: there is no content] and Ek=Diag(εk(1),…,εk(m))⊗I, and by a measurement additive noise vk=(vk(1)T,…vk(m)T)T; so, denoting Hk=(Hk(1)T,…Hk(m)T)T and Ck=(Ck(1)T,…Ck(m)T)T, we have:


zk=ΘkHk+EkCkxk+vk,k≥1



(31)







Hence, the problem is to obtain the LS linear estimator of the signal, [image: there is no content], based on the observations [image: there is no content], and this problem requires the statistical properties of the processes involved in Equations (30) and (31), which are easily inferred from the model Hypotheses 1–6:



Property 1.

[image: there is no content] is a sequence of independent random parameter matrices whit known means Θ¯k≡E[Θk]=Diag(θ¯k(1),…,θ¯k(m))⊗I.





Property 2.

[image: there is no content] is a sequence of independent random parameter matrices whose entries have zero means and known second-order moments.





Property 3.

The noise [image: there is no content] is a zero-mean sequence with known second-order moments defined by the matrices Rk,s≡(Rk,s(ij))i,j=1,…,m.





Property 4.

The matrices [image: there is no content] have known means, Γ¯k≡E[Γk]=Diag(γ¯k(1),…,γ¯k(m))⊗I,k≥2, and [image: there is no content] and [image: there is no content] are independent for [image: there is no content].





Property 5.

The processes [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are mutually independent.






4.2. Recursive Filtering Algorithm


In view of Equations (30) and (31) and the above properties, the study of the LS linear filtering problem based on the stacked observations is completely similar to that of the local filtering problem carried out in Section 3. Therefore, the centralized filtering algorithm described in the following theorem is derived by an analogous reasoning to that used in Theorem 1 and its proof is omitted.



Theorem 4.

The centralized LS linear filter, [image: there is no content] is given by:


x^k/k(C)=AkOk,k≥1








where the vectors [image: there is no content] and the matrices [image: there is no content] are recursively obtained from:


Ok=Ok−1+JkΠk−1μk,k≥1;O0=0










rk=rk−1+JkΠk−1JkT,k≥1;r0=0











The matrices [image: there is no content] satisfy:


Jk=HBkT−rk−1HAkT−∑h=1(k−1)∧2Jk−hΠk−h−1Wk,k−hT,k≥2;J1=HB1T.











The innovations, [image: there is no content], and their covariance matrices, [image: there is no content], are given by:


μk=yk−HAkOk−1−∑h=1(k−1)∧2Wk,k−hΠk−h−1μk−h,k≥2;μ1=y1,








and:


Πk=Σky−HAk(HBkT−Jk)−∑h=1(k−1)∧2Wk,k−hΠk−h−1HAkJk−h+Wk,k−hT,k≥2;Π1=Σ1y,








respectively, and the coefficients [image: there is no content][image: there is no content], satisfy:


Wk,k−1=Σk,k−1y−HAkHBk−1T−Wk,k−2Πk−2−1HAk−1Jk−2+Wk−1,k−2T,k≥3W2,1=Σ2,1y−HA2HB1TWk,k−2=Γ¯kRk−1,k−2(I−Γ¯k−2),k≥4;W3,1=Γ¯3R2,1.











In the above formulas, the matrices [image: there is no content] and [image: there is no content] are computed by [image: there is no content], [image: there is no content], with [image: there is no content] given in Equation (3), and [image: there is no content], with [image: there is no content] defined in Equation (15).





The performance of the LS linear filters x^k/k(C),k≥1, is measured by the error covariance matrices [image: there is no content], whose computation, not included in Theorem 3, is immediate from Hypothesis 1 and expression [image: there is no content] of the filter:


Pk/k(C)=AkBk−AkrkT,k≥1











Note that these matrices only depend on the matrices [image: there is no content] and [image: there is no content], which are known, and the matrices [image: there is no content], which are recursively calculated and do not depend on the current set of observations. Hence, the filtering error covariance matrices provide a measure of the estimators performance even before we get any observed data.





5. Numerical Simulation Example


In this section, a numerical example is shown to examine the performance of the proposed distributed and centralized filtering algorithms and how the estimation accuracy is influenced by the missing and delay probabilities. Let us consider that the system signal to be estimated is a zero-mean scalar process, [image: there is no content], with autocovariance function E[xkxj]=1.025641×0.95k−j,j≤k, which is factorizable according to Hypothesis 1 just taking, for example, [image: there is no content] and [image: there is no content]



Sensor measured outputs. The measured outputs of this signal are assumed to be provided by three different sensors and described by Equation (1):


zk(i)=θk(i)Hk(i)+εk(i)Ck(i)xk+vk(i),k≥1,i=1,2,3,








where

	
[image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content]



	
The processes [image: there is no content], [image: there is no content], are independent sequences of independent Bernoulli random variables with constant and identical probabilities for the three sensors [image: there is no content].



	
[image: there is no content] is a zero-mean Gaussian white process with unit variance.



	
The additive noises [image: there is no content], [image: there is no content] are defined as vk(i)=ci(ηk+ηk+1),i=1,2,3, where [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] is a zero-mean Gaussian white process with unit variance.








Note that there are only missing measurements in sensors 1 and 2, and both missing measurements and multiplicative noise in sensor 3. Also, it is clear that the additive noises [image: there is no content], [image: there is no content] are only correlated at the same and consecutive sampling times, with Rk(ij)=2cicj,Rk,k−1(ij)=cicj,i,j=1,2,3.



Observations with transmission random one-step delays. Next, according to our theoretical observation model, it is supposed that, at any sampling time [image: there is no content], the data transmissions are subject to random one-step delays with different rates and such delays are correlated at consecutive sampling times. More precisely, let us assume that the available measurements [image: there is no content] are given by:


yk(i)=(1−γk(i))zk(i)+γk(i)zk−1(i),k≥2,i=1,2,3








where the variables [image: there is no content] modeling this type of correlated random delays are defined using two independent sequences of independent Bernoulli random variables, [image: there is no content], [image: there is no content], with constant probabilities, [image: there is no content], for all [image: there is no content]; specifically, we define [image: there is no content] for [image: there is no content], and [image: there is no content]



It is clear that the sensor delay probabilities are time-invariant: [image: there is no content], for [image: there is no content], and [image: there is no content]. Moreover, the independence of the sequences [image: there is no content], [image: there is no content], together with the independence of the variables within each sequence, guarantee that the random variables [image: there is no content] and [image: there is no content] are independent if [image: there is no content], for any [image: there is no content]. Also, it is clear that, at each sensor, the variables [image: there is no content] are correlated at consecutive sampling times and [image: there is no content], for [image: there is no content] and [image: there is no content]. Finally, we have that [image: there is no content] is independent of [image: there is no content], but correlated with [image: there is no content] at consecutive sampling times, with [image: there is no content] and [image: there is no content].



Let us observe that, for each sensor [image: there is no content], if [image: there is no content], then [image: there is no content]; this fact guarantees that, when the measurement at time k is delayed, the available measurement at time [image: there is no content] is well-timed. Therefore, this correlation model covers those situations where the possibility of consecutive delayed observations at the same sensor is avoided.



To illustrate the feasibility and analyze the effectiveness of the proposed filtering estimators, the algorithms were implemented in MATLAB, and a hundred iterations were run. In order to measure the estimation accuracy, the error variances of both distributed and centralized fusion estimators were calculated for different values of the probability [image: there is no content] of the Bernoulli random variables which model the missing measurements phenomena, and for several values of the delay probabilities, [image: there is no content], [image: there is no content] obtained from several values of [image: there is no content]. Let us observe that the delay probabilities, [image: there is no content], for [image: there is no content], are the same if [image: there is no content] is used instead of [image: there is no content]; for this reason, only the case [image: there is no content] was analyzed.



Performance of the local and fusion filtering algorithms. Let us assume that [image: there is no content], and consider the same delay probabilities, [image: there is no content], for the three sensors obtained when [image: there is no content], [image: there is no content]. In Figure 1, the error variances of the local, distributed and centralized filters are compared; this figure shows that the error variances of the distributed fusion filtering estimator are lower than those of every local estimator, but slightly greater than those of the centralized one. However, this slight difference is compensated by the fact that the distributed fusion structure reduces the computational cost and has better robustness and fault tolerance. Analogous results are obtained for other values of the probabilities [image: there is no content] and [image: there is no content].


Figure 1. Filtering error variances for [image: there is no content], and [image: there is no content], [image: there is no content].



[image: Mathematics 05 00045 g001]






Influence of the missing measurements. Considering again [image: there is no content], [image: there is no content], in order to show the effect of the missing measurements phenomena, the distributed and centralized filtering error variances are displayed in Figure 2 for different values of the probability [image: there is no content]; specifically, when [image: there is no content] is varied from 0.1 to 0.9. In this figure, both graphs (corresponding to the distributed and centralized fusion filters, respectively) show that the performance of the filters becomes poorer as [image: there is no content] decrease, which means that, as expected, the performance of both filters improves as the probability of missing measurements, [image: there is no content], decreases. This figure also confirms that both methods, distributed and centralized, have approximately the same accuracy for the different values of the missing probabilities, thus corroborating the previous comments.


Figure 2. (a) Distributed and (b) centralized filtering error variances for different values of [image: there is no content], when [image: there is no content], [image: there is no content].



[image: Mathematics 05 00045 g002]






Influence of the transmission delays. For [image: there is no content], different values for the probabilities [image: there is no content], [image: there is no content], of the Bernoulli variables modelling the one-step delay phenomenon in the transmissions from the sensors to the local processors have been considered to analyze its influence on the performance of the distributed and centralized fusion filters. Since the behavior of the error variances is analogous for all the iterations, only the results at a specific iteration ([image: there is no content]) are displayed here. Specifically, Figure 3 shows a comparison of the filtering error variances at [image: there is no content] in the following cases:

	(I)

	
Error variances versus [image: there is no content], when [image: there is no content]. In this case, the values [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], lead to the values γ¯(1)=γ¯(3)=0.09,0.16,0.21,0.24 and [image: there is no content], respectively, for the delay probabilities of sensors 1 and 3, whereas the delay probability of sensor 2 is constant and equal to [image: there is no content].




	(II)

	
Error variances versus [image: there is no content], when [image: there is no content]. Now, as in Figure 2, the delay probabilities of the three sensors are equal, and they all take the aforementioned values.








Figure 3. (a) Distributed and (b) centralized filtering filtering error variances at [image: there is no content], versus [image: there is no content].



[image: Mathematics 05 00045 g003]






Figure 3 shows that the performance of the distributed and centralized estimators is indeed influenced by the probability [image: there is no content] and, as expected, better estimations are obtained as [image: there is no content] becomes smaller, due to the fact that the delay probabilities, [image: there is no content], decrease with [image: there is no content]. Moreover, this figure shows that the error variances in case (II) are less than those of case (I). This is due to the fact that, while the delay probabilities of the three sensors are varied in case (II), only two sensors vary their delay probabilities in case (I); since the constant delay probability of the other sensor is assumed to take its greatest possible value, this figure confirms that the estimation accuracy improves as the delay probabilities decrease.



Comparison. Next, we present a comparative analysis of the proposed centralized filter and the following ones:

	-

	
The centralized Kalman-type filter [4] for systems without uncertainties.




	-

	
The centralized filter [8] for systems with missing measurements.




	-

	
The centralized filter [25] for systems with correlated random delays.









Assuming the same probabilities [image: there is no content] and [image: there is no content] as in Figure 1, and using one thousand independent simulations, the different centralized filtering estimates are compared using the mean square error (MSE) at each sampling time k, which is calculated as [image: there is no content] where xk(s);1≤k≤100 denotes the s-th set of artificially simulated data and [image: there is no content] is the filter at the sampling time k in the s-th simulation run. The results are displayed in Figure 4, which shows that: (a) the proposed centralized filtering algorithm provides better estimations than the other filtering algorithms since the possibility of different simultaneous uncertainties in the different sensors is considered; (b) the centralized filter [8] outperforms the filter [25] since, even though the latter accommodates the effect of the delays during transmission, it does not take into account the missing measurement phenomenon in the sensors; (c) the filtering algorithm in [4] provides the worst estimations, a fact that was expected since neither the uncertainties in the measured outputs nor the delays during transmission are taken into account.


Figure 4. Filtering mean square errors when [image: there is no content] and [image: there is no content].



[image: Mathematics 05 00045 g004]






Six-sensor network. Finally, according to the anonymous reviewers suggestion, the feasibility of the proposed estimation algorithms is tested for a larger number of sensors. More specifically, three additional sensors are considered with the same characteristics as the previous ones, but a probability [image: there is no content], [image: there is no content], for the Bernoulli random variables modelling the missing measurements phenomena. The results are shown in Figure 5, from which similar conclusions to those from Figure 1 are deduced.


Figure 5. Filtering error variances when [image: there is no content], [image: there is no content] and [image: there is no content].



[image: Mathematics 05 00045 g005]







6. Conclusions


In this paper, distributed and centralized fusion filtering algorithms have been designed in multi-sensor systems from measured outputs with both multiplicative and additive noises, assuming correlated random delays in transmissions. The main outcomes and results can be summarized as follows:

	
Covariance information approach. The evolution model generating the signal process is not required to design the proposed distributed and centralized fusion filtering algorithms; nonetheless, they are also applicable to the conventional formulation using the state-space model.



	
Measured outputs with multiplicative and additive noises. The sensor measured outputs are assumed to be affected by different stochastic uncertainties (namely, missing measurements and multiplicative noises), besides cross-correlation between the different sensor additive noises.



	
Random one-step transmission delays. The fusion estimation problems are addressed assuming that random one-step delays may occur during the transmission of the sensor outputs through the network communication channels; the delays have different characteristics at the different sensors and they are assumed to be correlated and cross-correlated at consecutive sampling times. This correlation assumption covers many situations where the common assumption of independent delays is not realistic; for example, networked systems with stand-by sensors for the immediate replacement of a failed unit, thus avoiding the possibility of two successive delayed observations.



	
Distributed and centralized fusion filtering algorithms. As a first step, a recursive algorithm for the local LS linear signal filter based on the measured output data coming from each sensor has been designed by an innovation approach; the computational procedure of the local algorithms is very simple and suitable for online applications. After that, the matrix-weighted sum that minimizes the mean-squared estimation error is proposed as distributed fusion estimator. Also, using covariance information, a recursive centralized LS linear filtering algorithm, with an analogous structure to that of the local algorithms, is proposed. The accuracy of the proposed fusion estimators, obtained under the LS optimality criterion, is measured by the error covariance matrices, which can be calculated offline as they do not depend on the current observed data set.
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