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1. Introduction

We present here a brief introduction to the subject of measures on infinite dimensional spaces.
The author’s background is mathematical physics and quantum field theory, and that is likely to be
reflected in the text, but an hopefully successful effort was made to produce a review of interest to a
broader audience. We have references [1–3] as our main inspiration. Obviously, some important topics
are not dealt with, and others are discussed from a particular perspective, instead of another. Notably,
we do not discuss the perspective of abstract Wiener spaces, emerging from the works of Gross and
others [4–7]. Instead, we approach measures in general linear spaces from the projective perspective
(see below).

For the sake of completeness, we include in Section 2 fundamental notions and definitions
from measure theory, with particular attention to the issue of σ-additivity. We start by considering
in Section 3 the infinite product of a family of probability measures. In Section 4 we consider
projective techniques, which play an important role in applications (see e.g., [8,9] for applications to
gauge theories and gravity). Sections 5 to 7 are devoted to measures on infinite dimensional linear
spaces. In Section 6 results concerning the support of the measure are presented, which partly justify,
in this context, the interest of nuclear spaces and their (topological) duals. The particular case of
Gaussian measures is considered in Section 7. There are of course several possible approaches to
the issue of measures in infinite dimensional linear spaces, and to Gaussian measures in particular,
including the well known and widely used framework of Abstract Wiener Spaces or other approaches
working directly with Banach spaces (see, e.g., [10–12]). We follow here the approach of Ref. [1],
taking advantage of the facts that the algebraic dual of any linear space is a projective limit (of
finite dimensional spaces) and that any consistent family of measures defines a measure on the
projective limit. In Section 8 we present the main definitions and some fundamental results concerning
transformation properties of measures, discussing briefly quasi-invariance and ergodicity. Finally,
in Section 9 we consider in particular measures on the space of tempered distributions.

Generally speaking, and except when explicitly stated otherwise, we consider only finite
(normalized) measures. (A notable exception is the Lebesgue measure on Rn, to which we
refer occasionally.)
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2. Measure Space

We review in this section some fundamental aspects of measure theory, focusing (although not
exclusively) on finite measures. A very good presentation of these subjects can be found in [13–17].

Definition 1. Given a set M, a family F of subsets of M is said to be a (finite) algebra if it is closed under the
operations of taking the complement and finite unions, i.e., if B ∈ F implies Bc ∈ F and B1 ∈ F , . . . , Bn ∈ F
implies ∪iBi ∈ F .

Definition 2. A non-negative real function µ on an algebra F is said to be a measure if for any finite set of
mutually disjoint elements B1, B2, . . . , Bn of F (Bi ∩ Bj = ∅ for i 6= j) the following additivity condition
is satisfied:

µ
(
∪iBi

)
= ∑

i
µ (Bi). (1)

Particularly important is the notion of measures on σ-algebras, in which case the measure is
required to satisfy the so-called σ-additivity condition.

Definition 3. Given a set M, a family B of subsets of M is said to be a σ-algebra if it is closed under complements
and countable unions, i.e., B ∈ B implies Bc ∈ B and Bi ∈ B, i ∈ N, implies ∪∞

i Bi ∈ B. The pair (M,B ) is
called a measurable space and the elements of B are called measurable sets.

It is obvious that for any measurable space (M,B ) the σ-algebra B contains M and the empty
set, and it is also closed under countable intersections. Another operation of interest in a σ-algebra
(or finite algebra) is the symmetric difference of sets A4B := (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

Definition 4. Given a measurable space (M,B ), a function µ : B → [0, ∞], with µ(∅) = 0, is said to be a
measure if it satisfies the σ-additivity property, i.e., if for any sequence of mutually disjoint measurable sets
{Bi}i∈N one has

µ
(
∪∞

i Bi
)
=

∞

∑
i

µ (Bi), (2)

where the right hand side denotes either the sum of the series or infinity, in case the sum does not converge.
The structure (M,B, µ) is called a measure space. The measure is said to be finite if µ(M) < ∞, and normalized
if µ(M) = 1, in which case (M,B, µ) is said to be a probability space.

An important property following from σ-additivity is the following.

Theorem 1. Let µ be a σ-additive finite measure and B1 ⊃ B2 ⊃ . . . a decreasing sequence of measurable
sets. Then

µ
(
∩nBn

)
= lim

n→∞
µ (Bn). (3)

also,
µ
(
∪n An

)
= lim

n→∞
µ (An), (4)

for any increasing sequence A1 ⊂ A2 ⊂ . . . of measurable sets.

Let us consider the problem of the extension of measures on finite algebras to (σ-additive)
measures on σ-algebras. Note first that given any family A of subsets of a set M there is a minimal
σ-algebra containing A. We will denote this σ-algebra by B(A), the σ-algebra generated by A.

Theorem 2 (Hopf [18]). A finite measure µ on an algebra F can be extended to σ-additive finite measure
on the σ-algebra B(F ) if and only if for any given decreasing sequence B1 ⊃ B2 ⊃ . . . of elements of F the
condition limn→∞ µ (Bn) > 0 implies ∩nBn 6= ∅.
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Theorem 3. If it exists, the extension of a finite measure on F to a σ-additive finite measure on B(F ) is unique.

Among non-finite measures, so-called σ-finite measures are particularly important.

Definition 5. A measure is said to be σ-finite if the measure space M is a countable union of mutually disjoint
measurable sets, each of which with finite measure.

The Lebesgue measure on Rn is of course σ-additive and σ-finite.

Definition 6. Let (M, τ) be a topological space, τ being the family of open sets. The σ-algebra B(τ) generated
by open sets is called a Borel σ-algebra. The measurable space

(
M,B(τ)

)
is said to be Borel (with respect to τ).

A measure on
(

M,B(τ)
)

is called a Borel measure.

Except when explicitly said otherwise, Rn and Cn are considered to be equipped with the usual
topology and corresponding Borel σ-algebra.

Definition 7. A Borel measure µ is said to be regular if for any Borel set B one has:

µ(B) = inf {µ(O) | O ⊃ B, O open}
= sup {µ(K) | K ⊂ B, K compact and Borel}. (5)

Proposition 1. Any Borel measure on a separable and complete metric space is regular.

Definition 8. Let (M,B, µ) be a measure space and Nµ := {B ∈ B | µ(B) = 0} the family of zero measure
sets. Two sets B1, B2 ∈ B are said to be equivalent modulo zero measure sets, B1 ∼ B2, if and only if
B14 B2 ∈ Nµ.

The family Nµ of zero measure sets is an ideal on the ring of measurable sets B defined by the
operations4 and ∩, and therefore the quotient B/Nµ is also a ring. It is straightforward to check that
the measure is well defined on B/Nµ. From the strict measure theoretic point of view, the fundamental
objects are the elements of B/Nµ, and naturally defined transformations between measure spaces
(M,B, µ) and (M′,B′, µ′) are maps between the quotients B/Nµ and B′/Nµ′ .

Definition 9. Two measure spaces (M,B, µ) and (M′,B′, µ′) are said to be isomorphic if there exists a bijective
transformation between B/Nµ and B′/Nµ′ , mapping µ into µ′.

In the above sense, zero measure sets are irrelevant. (When the measure is defined in a topological
space, a more restricted notion of support of the measure is sometimes adopted, namely the smallest
closed set with full measure. We do not adhere to that definition of support.)

Definition 10. Let (M,B, µ) be a measure space. A (not necessarily measurable) subset S ⊂ M is said to be a
support of the measure if any measurable subset in its complement has zero measure, i.e., Y ⊂ Sc and Y ∈ B
implies µ(Y) = 0.

Given a measurable space (M,B) and a subset N ⊂ M, let us consider the σ-algebra of measurable
subsets of N,

B ∩ N := {B ∩ N | B ∈ B}. (6)

If (M,B, µ) is a measure space and N ⊂ M is measurable, there is a naturally defined measure
µ|N on (N,B ∩ N), by restriction of µ to B ∩ N, µ|N (B∩ N) := µ(B∩ N), ∀B ∈ B. The restriction of the
measure is also well defined for subsets S ⊂ M supporting the measure, even if S is not a measurable
set. In this case we have µ|S(B ∩ S) = µ(B). One can in fact show the following [1].
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Proposition 2. If µ is a measure on (M,B) and S is a support of the measure then µ|S(B ∩ S) := µ(B),
∀B ∈ B, defines a (σ-additive) measure on (S,B ∩ S). The measure spaces (M,B, µ) and (S,B ∩ S, µ|S)

are isomorphic.

[The measure on S is well defined, since B1 ∩ S = B2 ∩ S implies (B14 B2) ∩ S = ∅, which in
turns leads to µ(B14 B2) = 0, given that S supports the measure.]

Definition 11. A transformation ϕ : M1 → M2 between two measurable spaces (M1,B1) and (M2,B2) is
said to be measurable if ϕ−1B2 ⊂ B1, i.e., if ϕ−1B ∈ B1, ∀B ∈ B2, where ϕ−1B is the preimage of B.

Given a measurable transformation ϕ : M1 → M2 between measurable spaces (M1,B1) and
(M2,B2), one gets a map ϕ̃ : B2 → B1, defined by ϕ̃(B) = ϕ−1B. If µ is a measure on (M1,B1), the
composition map µ ◦ ϕ̃ is therefore a measure on (M2,B2), defined by:

(µ ◦ ϕ̃)(B) = µ(ϕ−1B), ∀B ∈ B2. (7)

This measure is usually called the push-forward of µ with respect to ϕ. [Given that a measure
µ on (M,B) is in fact a function on B, the measure µ ◦ ϕ̃ is actually the pull-back of µ by ϕ̃; we will
use however the usual expression “push-forward”.] Besides µ ◦ ϕ̃, we will use also the alternative
notations ϕ∗ µ and µϕ to denote the push-forward of a measure.

Measure theory is naturally connected to integration. From this point of view, the
(in general complex) measurable functions f : M → C are particularly important, in a measure
space (M,B, µ). More precisely, the relevant objects are equivalence classes of measurable functions.

Definition 12. Given a measure space (M,B, µ), a condition C(x), x ∈ M, is said to be satisfied almost
everywhere if the set:

{x ∈ M | C(x) is f alse}

is contained in a zero measure set.

Definition 13. Two measurable complex functions f and g on a measure space are said to be equivalent if the
condition f (x) = g(x) is satisfied almost everywhere.

The set of equivalence classes of measurable functions is naturally a linear space. With a finite
measure µ, the integral defines a family of norms, by:

‖ f ‖p :=
(∫
| f |pdµ

)1/p
, (8)

with p ≥ 1. With the norm ‖ ‖p, the linear space of equivalence classes of measurable functions is
denoted by Lp(M, µ). The space Lp is defined analogously for non-finite measures, considering only
functions such that the integral over the whole space is finite,

∫
| f |pdµ < ∞. Let us recall still that in

the particular case p = 2 the norm comes from an inner product, ( f , g) =
∫

f ∗gdµ, and therefore the
space L2(M, µ) of (classes of) square integrable (complex) functions on (M,B, µ) is an inner product
space. In this context, the interest of σ-additive measures is rooted in the crucial fact that the Lp

spaces associated with these measures are complete. Except when explicitly stated (namely when the
question of σ-additivity is explicitly concerned), we will drop the qualifier “σ-additive” when referring
to measures on σ-algebras.

The next result, which follows from the definition of integral, generalizes the usual change
of variables.
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Proposition 3. Let (M,B, µ) be a measure space, (M′,B′) a measurable space and ϕ : M→ M′ a measurable
transformation. Consider the measure space (M′,B′, µϕ), where µϕ denotes the push-forward with respect to
ϕ. Then, for any µϕ-integrable function f : M′ → C, the function f ◦ ϕ : M → C is integrable with respect
to µ and: ∫

M
( f ◦ ϕ)dµ =

∫
M′

f dµϕ. (9)

3. Product Measures

Let
{
(M1,B1, µ1), . . . , (Mn,Bn, µn)

}
be a finite set of probability spaces. Consider the

Cartesian product:

Mn :=
n

∏
k=1

Mk, (10)

the projections:
pk

n : Mn → Mk (11)

and the σ-algebra of subsets of Mn:

Bn := B
( n⋃

k=1

(pk
n)
−1Bk

)
. (12)

The measurable product space of the spaces
{
(M1,B1), . . . , (Mn,Bn)

}
is the pair (Mn,Bn). Note

that Bn is the smallest σ-algebra such that all projections pk
n are measurable.

The σ-algebra Bn obviously contains the Cartesian products of measurable sets ωk ∈ Bk,
k = 1, . . . , n, i.e., Bn contains all sets of the form:

(ω1, . . . , ωn) =:
n

∏
k=1

ωk, ωk ∈ Bk, k = 1, . . . , n. (13)

It is a classic result that there exists a unique probability measure µn in (Mn,Bn) such that:

µn

( n

∏
k=1

ωk
)
=

n

∏
k=1

µk(ωk), (14)

which is called the product measure and is represented by:

µn =
n

∏
k=1

µk. (15)

Let us consider now the infinite product, not necessarily countable. As we will see immediately,
the existence and uniqueness of the product measure continue to take place.

Definition 14. Let
{
(Mλ,Bλ)

}
λ∈Λ be a family of measurable spaces labeled by a set Λ and let MΛ be the

Cartesian product of the spaces Mλ, λ ∈ Λ. For each λ ∈ Λ let pλ
Λ be the projection from MΛ to Mλ.

The measurable product space of the family
{
(Mλ,Bλ)

}
λ∈Λ is defined as the pair (MΛ,BΛ), where:

BΛ := B
( ⋃

λ∈Λ

(pλ
Λ)
−1Bλ

)
(16)

is the smallest σ-algebra such that all projections pλ
Λ are measurable.
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Consider now a family
{
(Mλ,Bλ, µλ)

}
λ∈Λ of probability spaces and let L be the family of finite

subsets of Λ. For each L ∈ L let us consider the (finite) product probability space (ML,BL, µL) defined
as above, i.e.,

ML = ∏
λ∈L

Mλ, (17)

BL = B
(⋃

λ∈L
(pλ

L)
−1Bλ

)
(18)

(where pλ
L is the projection from ML to Mλ) and,

µL = ∏
λ∈L

µλ. (19)

Consider still the natural measurable projections,

pL,Λ : MΛ → ML. (20)

The following result can be found in [1].

Theorem 4. There is a unique (σ-additive) probability measure µΛ in (MΛ,BΛ) such that:

(pL,Λ)∗ µΛ = µL, ∀L ∈ L. (21)

The measure defined by this theorem is called the product measure.

Example: A simple but important example of a product measure on an infinite dimensional space
is the following, which generalizes the notion of product Gaussian measures in Rn. Consider the
countable family of measurable spaces

{
(Mk,Bk)

}
k∈N, where, for each k, (Mk,Bk) coincides with R

equipped with the Borel σ-algebra. The measurable product space is the space RN of all real sequences:

x = (xk) = (x1, x2, . . .), (22)

equipped with the smallest σ-algebra such that all projections x 7→ xk are measurable. Let us consider
in each of the spaces R of the family the same Gaussian measure of covariance ρ ∈ R+, i.e.,

dµk(xk) = e−x2
k /2ρ dxk√

2πρ
, ∀k ∈ N. (23)

According to the Theorem 4, the product measure, here denoted by µρ,

dµρ(x) =
∞

∏
k=1

e−x2
k /2ρ dxk√

2πρ
, (24)

is uniquely determined by its value on the sets of the form ∏k∈N ωk, where only for a finite subset of N
the Borel sets (in R) ωk differ from R.

Obviously, the above example can be generalized for any infinite sequence of probability measures
on R, not necessarily identical. The correspondent of the Lebesgue measure, “∏∞

k=1 dxk”, however,
does not exist, i.e., the infinite product of Lebesgue measures in R does not define a measure.

Given any product measure, defined by a not necessarily countable family of probability spaces,
it is also trivial to determine the measure of sets of the form:

Z
(
{ωλ}

)
:= ∏

λ∈Λ
ωλ, ωλ ∈ Bλ, (25)
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where only for a countable subset Λ0 = {λi}i∈N ⊂ Λ the sets ωλ differ from Mλ. Since it is a typical
argument in measure theory, we present it next in some detail. Let us start by showing that the sets (25)
are measurable. Consider the finite subsets of Λ0, Ln := {λ1, . . . , λn}, n ∈ N, and let Zn be the sets
defined as in (25), but where ωλk (λk ∈ Λ0) is replaced by Mλk for k > n. It is clear that:

Zn = p−1
Ln ,Λ

n

∏
k=1

ωλk , (26)

and it follows that Zn is measurable. Since Zn′ ⊂ Zn for n′ > n, the sets {Zn}n∈N form a decreasing
sequence of measurable sets. The intersection ∩NZn is therefore measurable, since BΛ is a σ-algebra.
But Z

(
{ωλ}

)
coincides precisely with ∩NZn. Invoking the σ-additivity of the measure we then get

from theorem 1 and (21):

µΛ

(
Z
(
{ωλ}

))
= limn→∞µΛ(Zn)

= limn→∞µΛ

(
p−1

Ln ,Λ

n

∏
k=1

ωλk

)
= limn→∞µLn

( n

∏
k=1

ωλk

)
= limn→∞

n

∏
k=1

µλk (ωλk ). (27)

4. Projective Limits

We present in this section the notion of measurable projective limit space.
Let us start by recalling that a set L is said to be partially ordered if it is equipped with a partial

order relation, i.e., there is a binary relation “≥” such that:

(1) (reflexivity) L ≥ L, ∀L ∈ L
(2) (transitivity) L ≥ L′ and L′ ≥ L′′ ⇒ L ≥ L′′

(3) (anti-symmetry) L ≥ L′ and L′ ≥ L⇒ L = L′.

Recall still that a set L, partially ordered with respect to the partial order relation “≥”, is said to
be directed if ∀L′, L′′ ∈ L there exists L ∈ L such that L ≥ L′ and L ≥ L′′.

Definition 15. Let L be a directed set and {ML}L∈L a family of sets labeled by L. Suppose that for each pair
L′, L such that L′ ≥ L there are surjective maps:

pL,L′ : ML′ → ML (28)

satisfying:
pL,L′ ◦ pL′ ,L′′ = pL,L′′ , for L′′ ≥ L′ ≥ L. (29)

The family {ML, pL,L′}L,L′∈L of sets ML and maps pL,L′ is called a projective family.

>From now on, the maps pL,L′ of the projective family will be called projections. Let us consider
the Cartesian product of the sets ML:

ML := ∏
L∈L

ML, (30)

and denote its generic element by (xL)L∈L, xL ∈ ML.

Definition 16. The projective limit of the family {ML, pL,L′}L,L′∈L is the subset M∞ of the Cartesian product
ML defined by:

M∞ :=
{
(xL)L∈L ∈ ML | L′ ≥ L⇒ pL,L′ xL′ = xL

}
. (31)
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The projective limit is therefore formed by consistent families of elements xL ∈ ML, in the sense
that xL is defined by xL′ , for L′ ≥ L.

Definition 17. A family
{
(ML,BL), pL,L′

}
L,L′∈L is said to be a measurable projective family if each pair

( ML,BL ) is a measurable space and if {ML, pL,L′} is a projective family such that all projections pL,L′

are measurable.

Given a measurable projective family, the structure of measurable space in the projective limit
M∞ is defined as follows. Let BL be the product σ-algebra defined in the previous section, i.e., BL is
the smallest σ-algebra of subsets of the product space ML such that all the projections from ML to ML
are measurable (note that, with respect to the product, the spaces ML play here the role of the spaces
Mλ of the previous section). Let us consider the σ-algebra B∞ of subsets of M∞ given by:

B∞ := BL ∩M∞ = {B ∩M∞ | B ∈ BL}. (32)

The family B∞ is closed under countable unions, since:

⋃
n

(
Bn
⋂

M∞

)
=
(⋃

n Bn

)⋂
M∞. (33)

Let us also show that B∞ is closed under the operation of taking the complement, i.e.,
that M∞\(B ∩M∞) ∈ B∞, ∀B ∈ BL. Taking M∞ and B ∩M∞ as subsets of ML we get:

M∞\(B ∩M∞) = M∞ ∩
(

ML\(B ∩M∞)
)

= M∞ ∩
(
(ML\B) ∪ (ML\M∞)

)
= M∞ ∩ (ML\B),

which proves the statement, since ML\B ∈ BL. It follows that B∞ as defined above is indeed a
σ-algebra.

Definition 18. The pair (M∞,B∞) is called the measurable projective limit of the measurable projective family{
(ML,BL), pL,L′

}
L,L′∈L.

Let πL be the projection from ML to ML and pL the restriction of πL to M∞, i.e.,

pL = πL ◦ i∞, (34)

where i∞ is the inclusion of M∞ in ML. Since the maps πL and i∞ are measurable by construction,
pL is measurable ∀L ∈ L. The consistency conditions that define M∞ are equivalent to:

pL = pL,L′ ◦ pL′ , ∀L, L′ : L′ ≥ L, (35)

which in particular shows that:
F∞ :=

⋃
L∈L

p−1
L BL (36)

is an algebra. The algebra F∞ is formed by all the sets of the type p−1
L BL, BL ∈ BL, L ∈ L, which are

called cylindrical sets. One can further show that:

B∞ = B(F∞), (37)

and it follows that B∞ is the smallest σ-algebra such that all projections pL : M∞ → ML are
measurable [1].
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Suppose now that we are given a measure µ on (M∞,B∞). The push-forward:

µL := (pL)∗ µ (38)

of µ by pL is a measure on (ML,BL). Explicitly:

µL(BL) = µ
(

p−1
L BL

)
, ∀BL ∈ BL. (39)

From (35) it follows that the family of measures {µL}L∈L satisfy the self-consistency conditions:

µL = (pL,L′)∗ µL′ , ∀L, L′ : L′ ≥ L. (40)

The problem of introducing a measure on a projective limit space is the inverse problem, i.e.,
we look to define a measure on (M∞,B∞) starting from a self-consistent family of measures {µL}.

Note that given a self-consistent family {µL} one can always define, by means of (39), an additive
measure µ, called cylindrical, in F∞. So, the problem consists in the extension of additive measures
on F∞ to σ-additive measures on B(F∞). An important case where the cylindrical measure can be
extended to a σ-additive measure is that of the product measure of probability measures, discussed
in the previous section. In fact, the product space can be seen as the projective limit of the family of
finite products. In general, the existence of measure on (M∞,B∞) depends on topological conditions
on the projective family. Another particularly interesting situation where the extension is ensured is
the following [1,8].

Definition 19. A projective family {ML, pL,L′}L,L′∈L of compact Hausdorff spaces is said to be a compact
Hausdorff family if all the projections pL,L′ are continuous.

One can show that the projective limit of a compact Hausdorff family is a compact Hausdorff
space, with respect to the topology induced from the Tychonov topology (in the product space (30)) [19].

Theorem 5. Let {ML, pL,L′}L,L′∈L be a compact Hausdorff projective family. Any self-consistent family of
regular Borel probability measures {µL}L∈L in the family of spaces {ML}L∈L defines a regular Borel probability
measure on the projective limit M∞.

Let us conclude this section with the notion of cylindrical functions and a typical application of
σ-additivity, analogous to the result (27) of the previous section. Let us suppose then that we are given
a measure µ on (M∞,B∞) and let {µL} be the corresponding self-consistent family of measures in the
spaces ML. Given an integrable function F on ML0 , one gets by pull-back an integrable function F ◦ pL0

on M∞. Functions of this type are called cylindrical and they are the simplest integrable functions on
M∞. From Proposition 3 we get: ∫

M∞

(
F ◦ pL0

)
dµ =

∫
ML0

FdµL0 . (41)

As a typical example of the construction of a non-cylindrical measurable set whose measure is
trivially determined, let us consider a countable subset L0 of L, i.e., L0 = {L1, L2, . . .}, with Ln+1 ≥ Ln

and let {Bn ∈ BLn}n∈N be a sequence such that:

p−1
Ln ,Ln+1

Bn ⊂ Bn+1. (42)

It is then clear from (35) that:
p−1

Ln
Bn ⊂ p−1

Ln+1
Bn+1, (43)
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and
{

p−1
Ln

Bn
}

is therefore an increasing sequence of cylindrical sets. The union of the sets p−1
Ln

Bn is a
measurable set which is in general non-cylindrical (it may be cylindrical if all sets p−1

Ln
Bn coincide after

some order). From Theorem 1 one therefore gets:

µ
(⋃

n p−1
Ln

Bn

)
= lim

n→∞
µLn

(
Bn
)
. (44)

Example: The space known as the Bohr compactification of the line admits a projective characterization
as follows (see [20,21] for details). For arbitrary n ∈ N, let us consider sets γ = {k1, . . . , kn} of real
numbers k1, . . . , kn, such that the condition:

n

∑
i=1

miki = 0, mi ∈ Z, (45)

can only be satisfied with mi = 0, ∀i. (These are of course sets of linearly independent real numbers,
with respect to the field of rationals.) For each set γ = {k1, . . . , kn}, let us consider the subgroup of R
freely generated by γ:

Gγ :=

{
n

∑
i=1

miki, mi ∈ Z

}
. (46)

Let now T denote the group of unitaries in the complex plane, and for each γ consider the group
Rγ of all group morphisms from Gγ to T,

Rγ := Hom[Gγ, T]. (47)

It can be checked that this family of spaces Rγ is a (compact Hausdorff) projective family, and
that the projective limit of this family is the set of all, not necessarily continuous, group morphisms
from R to T. This coincides of course, with the dual group of the discrete group R, which is one of
the known characterizations of the Bohr compactification of the line. Let us denote this space by
R̄ ≡ Hom[R, T]. Being a (commutative) group, R̄ is naturally equipped with the Haar measure. From
the above discussion, and in particular from Theorem 5, it follows that the Haar measure is fully
determined by the family of measures obtained by push-forward, with respect to the projections:

pγ : R̄→ Rγ, x̄ 7→ x̄|γ, (48)

where x̄|γ denotes the restriction of x̄ to the subgroup Gγ. Because each Gγ is freely generated,
it follows that each space Rγ is homeomorphic to a n-torus Tn, where n is the cardinality of the set
γ = {k1, . . . , kn}. Furthermore, one can check that the push-forward with respect to the projections (48)
produces precisely the Haar measure on the corresponding torus Tn, ∀γ. Thus, the measure space R̄
with corresponding Haar measure can be seen as the projective limit of a projective family of finite
dimensional tori, each of which equipped with the natural Haar measure.

5. Measures on Linear Spaces

The infinite dimensional real linear space where a measure can be defined in the most natural
way is the algebraic dual of some linear space. We will start by showing that, given any real linear
space E, its algebraic dual Ea is a projective limit.

Let then E be a real linear space and let us denote by L the set of all finite dimensional linear
subspaces L ⊂ E. The set L is directed when equipped with the partial order relation “≥”:

L ≥ L′ if and only if L ⊃ L′, (49)

Let us consider the family {La}L∈L of all spaces dual to subspaces L ∈ L. For each pair L, L′

such that L′ ≥ L let pL,L′ : L′a → La be the linear transformation such that each element of L′a is
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mapped to its restriction to L. The transformations pL,L′ are surjective, since any linear functional on L
can be extended to a linear functional on L′ ⊃ L, and the following conditions are satisfied:

pL,L′′ = pL,L′ ◦ pL′ ,L′′ for L′′ ≥ L′ ≥ L. (50)

It follows that {La, pL,L′}L,L′∈L is a projective family of linear spaces. Let E∞ be the corresponding
projective limit. It is clear that E∞ is a linear subspace of the direct product of all spaces La, since the
projections pL,L′ are linear. Let φ be a generic element of Ea and φ|L its restriction to L. Given that, for
L′ ≥ L, φ|L coincides with the restriction of φ|L′ to the subspace L, one gets a linear injective map:

v : Ea → E∞ (51)

φ 7→
(
φ|L
)

L∈L. (52)

On the other hand, the consistency conditions that define E∞ ensure that any element of E∞ defines
a linear functional on E. So, the map v is also surjective, and therefore establishes an isomorphism
between the linear spaces Ea and E∞.

Let us consider the measurable projective family
{
(La,BL), pL,L′

}
, where BL is the Borel σ-algebra

in La (recall that La is finite dimensional ∀L). Let (E∞,B∞) be the measurable projective limit of this
family and define:

BEa := v−1B∞. (53)

The measurable spaces (E∞,B∞) and (Ea,BEa) are therefore isomorphic, and we will make no
distinction between them. The σ-algebra BEa is the smallest σ-algebra such that all the real functions:

Ea 3 φ
ξ7−→ φ(ξ), ξ ∈ E (54)

are measurable, i.e.,

BEa = B
(⋃

ξ∈E
ξ−1B(R)

)
, (55)

where ξ−1B(R) denotes the family of inverse images of Borel sets of R by the map (54).
The fundamental result concerning the existence of measures on infinite dimensional real linear

spaces is the following [1].

Theorem 6. Any self-consistent family of finite Borel measures µL on the subspaces La ⊂ Ea defines a
(σ-additive) finite measure on (Ea,BEa).

The above result can be presented in a different way, invoking Bochner’s classical theorem.

Definition 20. Let E be a real linear space and µ a finite measure on (Ea,BEa) (if E is finite dimensional,
then E ∼= Ea ∼= Rn, BEa is the Borel σ-algebra in Rn and µ is a Borel measure). The Fourier transform, or
characteristic function, of the measure is the (in general complex) function on E given by:

E 3 ξ 7−→
∫

Ea
eiφ(ξ)dµ(φ). (56)

Definition 21. A complex function χ on a real linear space E is said to be of the positive type if
∑m

k,l=1 ck c̄lχ(ξk − ξl) ≥ 0, ∀m ∈ N, c1, . . . , cm ∈ C and ξ1, . . . , ξm ∈ E.

Theorem 7 (Bochner). A complex function χ on Rn is the Fourier transform of a finite Borel measure on Rn if
and only if it is continuous and of positive type. The measure is normalized if and only if χ(0) = 1.

Bochner’s theorem is generalizable to the infinite dimensional situation as follows.
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Theorem 8. Let χ be a complex function on an infinite dimensional real linear space E. The function χ is the
Fourier transform of a finite measure on (Ea,BEa) if and only if it is of the positive type and continuous on every
finite dimensional subspace. The measure is normalized if and only if χ(0) = 1.

This result can be proved using Theorem 6 and Bochner’s theorem. We present next the essential
arguments. The fact that the Fourier transform of a measure µ on (Ea,BEa) is necessarily of the positive
type on E is a consequence of: ∫

Ea

∣∣∣ m

∑
k

ckeiφ(ξk)
∣∣∣2dµ(φ) ≥ 0. (57)

From (9) and (38) one can see that the restriction of the Fourier transform of µ to a finite
dimensional subspace L ⊂ E coincides with:∫

La
eiφL(ξ)dµL(φL), ξ ∈ L, (58)

and it is therefore the Fourier transform of µL, hence continuous. Conversely, a function χ of the
positive type on E defines, by restriction, a family {χL} of positive type functions on the subspaces L:

χL := χ|L, ∀L. (59)

If χ is continuous in each L one then have well-defined measures on La, whose self-consistency is
ensured by (59).

To conclude this section, note that for the existence of a measure on Ea, Theorem 8 requires
only continuity of the characteristic function on the finite dimensional subspaces. Analogously to
the situation in finite dimensions, one can expect that a smoother Fourier transform will produce
a measure supported in proper subspaces of Ea. The support of the measure is indeed related to
continuity properties of the Fourier transform [1–3,22,23]. As an extreme example of this relation,
consider the weakest possible topology in E, having only the empty set and E itself as open sets. The
only continuous functions in this topology are the constant functions, and it should be clear that a
measure with constant Fourier transform is a Dirac-like measure, supported on the null element of
Ea. In the next section we will discuss two important cases where the characteristic functions are
continuous with respect to a weaker topology than the one defined by continuity in finite dimensional
subspaces. In these cases, the measure is supported in a proper (infinite dimensional) subspace of Ea,
which is equivalent to give a measure on that subspace, by Proposition 2 of Section 2.

6. Minlos’ Theorem

In this section we consider the relation between continuity of the characteristic function and the
support of the corresponding measure, for two situations of interest.

In the first case the characteristic function is continuous in a nuclear topology. In the second case
the characteristic function is continuous with respect to fixed inner product.

Let us start by recalling that any family of norms {‖ ‖α}α∈Γ in a linear space E defines a locally
convex topology (see, e.g., [24], where the more general case of semi-norms is also considered). In fact,
one can take as basis of the topology the finite intersections of sets of the form:

V(α, n) =
{

ξ ∈ E | ‖ ξ ‖α < 1/n
}

, α ∈ Γ, n ∈ N. (60)

Also, any family of norms in the same space E is partially ordered by the natural order relation
‖ ‖α′ ≥ ‖ ‖α if and only if ‖ ξ ‖α′ ≥ ‖ ξ ‖α, ∀ξ ∈ E. For typical applications, it is sufficient to consider
the case where the topology is defined by a countable and ordered family of norms, i.e., we consider
sequences of norms {‖ ‖k}k∈N such that ‖ ‖k ≥ ‖ ‖l , for k > l. (In this case the corresponding topology
is actually metrizable, see, e.g., [14].)
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For the current application, we restrict attention further to the situation where the ordered
sequence of norms {‖ ‖k}k∈N is associated with a sequence of inner products {〈 , 〉k}k∈N, ‖ · ‖k =√
〈· , ·〉k, ∀k ∈ N. With this set-up, letHk be the completion of E with respect to the inner product 〈 , 〉k.

For k > l we have Hk ⊂ Hl , since the topology defined by ‖ ‖k is stronger. One can show that the
topological linear space E defined in this way is complete if and only if E =

⋂∞
k=1Hk [14].

Definition 22. An operator H on a separable Hilbert space
(
H, ( , )

)
is said to be a Hilbert-Schmidt operator

if given an (in fact any) orthonormal basis {ek} we have:

∞

∑
k=1

(Hek, Hek) < ∞. (61)

We next define the notion of nuclear space, following [1]. (Note however that [1] considers a
more general notion, admitting non-countable families of semi-norms, associated with degenerate
inner products.)

Definition 23. Let E =
⋂∞

k=1Hk be a complete linear space, with respect to the topology defined by an ordered
sequence of norms {‖ ‖k}k∈N associated with a sequence of inner products {〈 , 〉k}k∈N. The space E is said
to be nuclear if ∀l there is k > l and an Hilbert-Schmidt operator H on Hk such that 〈ξ, η〉l = 〈Hξ, Hη〉k,
∀ξ, η ∈ Hk.

The most common examples of nuclear spaces are the following.

Example 1: Consider the space S of rapidly decreasing real sequences y = (yn)n∈N such that
limn→∞ nkyn = 0, ∀k ∈ N, with inner products:

〈y, z〉k =
∞

∑
n=1

n2kynzn, k ∈ N. (62)

For any k, the operator H onHk (the completion of S by means of 〈 , 〉k) defined by (Hy)n = yn/n
is obviously Hilbert-Schmidt. On the other hand, it is clear that 〈ξ, η〉k = 〈Hξ, Hη〉k+1, and it follows
that S is nuclear.

Example 2: The real Schwartz space S(Rd) of C∞-functions f on Rd such that:

sup
x∈Rd

∣∣∣∣xk1
1 . . . xkd

d
∂j1

∂xj1
1

. . .
∂jd

∂xjd
d

f (x)
∣∣∣∣ < ∞, ∀k1, . . . , kd, j1, . . . , jd ∈ N (63)

is a nuclear space for an appropriate sequence of inner products, whose topology coincides with
the topology defined by the system of norms (63) [1,22] (see also [25] for more information on the
Schwartz space).

We present next the classical Bochner-Minlos theorem (whose proof can be found, e.g., in [1]),
which partially justifies the relevance of nuclear spaces in measure theory. According to this result,
a characteristic function which is continuous in a nuclear space E is equivalent to a measure on the
topological dual of E. Note that a linear functional φ on a space of the type E = ∩∞

k=1Hk is continuous
if and only if it is continuous with respect to (any) one of the inner products 〈, 〉k [14]. Equivalently,
φ belongs to the topological dual E′ if and only if ∃k such that φ ∈ H−k, where H−k denotes the
(Hilbert space) dual ofHk. So, the topological dual of a space E = ∩∞

k=1Hk is a union of Hilbert spaces,
E′ = ∪∞

k=1H−k, whereH−l ⊂ H−k, for k > l. In the case of the space S of example 1, the dual S ′ can
be seen as the linear space of real sequences x = (xn) for which there exists k ∈ N such that:

∞

∑
n=1

n−2kx2
n < ∞. (64)
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In the case of the space S(Rd) of example 2, the dual is the space S ′(Rd) of tempered distributions,
which includes “Dirac delta functions” and derivatives thereof (see, e.g., [22]).

Theorem 9 (Bochner-Minlos). Let E be a real nuclear space and µ a measure on (Ea,BEa). If the characteristic
function of the measure is continuous in the nuclear topology, then the measure is supported on the topological
dual E′ ⊂ Ea. So, a function of the positive type and continuous on a nuclear space E defines a measure on
(E′,BE′), where BE′ := BEa ∩ E′ is the smallest σ-algebra such that all functions on E′ of the type φ 7→ φ(ξ),
ξ ∈ E, are measurable.

Measure theory in S ′(Rd) plays a distinguished role in applications. The following result
establishes the relation between the σ-algebra BS ′(Rd) and the strong topology in S ′(Rd) [26]

(see also [23]). Recall that the strong topology in S ′(Rd) is generated by the family of semi-norms
{ρA | A ⊂ S(Rd) and bounded}, with ρA(φ) = supξ∈A |φ(ξ)|, φ ∈ S ′(Rd).

Lemma 1. The σ-algebra BS ′(Rd) generated by the functions φ 7→ φ(ξ), φ ∈ S ′(Rd), ξ ∈ S(Rd), coincides

with the Borel σ-algebra associated with the strong topology in S ′(Rd).

Corollary 1. A continuous function of the positive type on S(Rd) is equivalent to a Borel measure on S ′(Rd).

In particular situations, namely for Gaussian measures, the characteristic function is continuous
in a topology defined by a single inner product. In that case Minlos’ theorem applies. Minlos’ theorem
is presented in the literature in several different ways (see, e.g., [1,22,23,27]), being most commonly
formulated for the case of nuclear spaces. We start by presenting a more general version, following [1],
considering next the nuclear space case.

Theorem 10 (Minlos). Let E be a real linear space, E1 ⊂ E a subspace, ( , ) a inner product in E and ( , )1 a
inner product in E1 such that the corresponding topology in E1 is stronger than the one induced from

(
E, ( , )

)
.

Let
(
E1, ( , )1

)
be the completion of E1 with respect to ( , )1. Let H be a Hilbert-Schmidt operator on

(
E1, ( , )1

)
such that:

(ξ, η) = (Hξ, Hη)1, ∀ξ, η ∈
(
E1, ( , )1

)
. (65)

Then, a characteristic function χ on E continuous with respect to ( , ), defines a measure supported on the
subspace of Ea of those functionals whose restriction to E1 is continuous with respect to ( , )1.

In the case of a nuclear space E, let us suppose that the characteristic function χ is continuous
with respect to one of the inner products 〈 , 〉k0 of the family {〈 , 〉k}k∈N that defines the topology of E.
By the very definition of nuclear space, there exist k1 > k0 and a Hilbert-Schmidt operator H such that
〈· , ·〉k0 = 〈H·, H·〉k1 . The measure is therefore supported inH−k1 , the dual of the completionHk1 of E
with respect to 〈 , 〉k1 . More generally we have the following

Corollary 2. Let E be a real nuclear space and ( , ), ( , )1 two inner products in E such that the corresponding
topologies are weaker than the nuclear topology. Assume that the ( , )-topology is weaker than the ( , )1-topology.
Let

(
E, ( , )1

)
be the completion of E with respect to ( , )1 and H a Hilbert-Schmidt operator on

(
E, ( , )1

)
such that:

(ξ, η) = (Hξ, Hη)1, ∀ξ, η ∈
(
E, ( , )1

)
. (66)

Then, a characteristic function χ on E continuous with respect to ( , ), defines a measure supported on the
subspace of E′ of the functionals which are continuous with respect to ( , )1.
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7. Gaussian Measures

In this section we consider Gaussian measures on infinite dimensional real linear spaces,
following [1–3]. In this approach, and following the lines of Section 5, we start with a characteristic
function—determined in this case by an inner product—in a linear space E, thus defining the
measure initially on the algebraic dual Ea. As already mentioned in the Introduction, in other
approaches [7,11,12], Gaussian measures are defined directly on topological vector spaces. The
two perspectives are nevertheless equivalent: the algebraic dual Ea is simply the “universal home”
for Gaussian measures associated with inner products defined in E. The space where the measure is
actually supported is at the end determined by the inner product itself, regardless of what space one
initially considers the measure to be defined in.

As in finite dimensions, Gaussian measures are associated with inner products, defining the
measure’s covariance. (Note that positive semi-definite bilinear forms also give rise to measures, with
the peculiarity that the measure degenerates into a Dirac measure along the null directions. We shall
not consider that generalization.)

The fact that the Fourier transform of a Gaussian function (centered at zero) is also Gaussian
allows one to define Gaussian measures on Rn as follows.

Definition 24. Let C = (Cij) be a n× n positive definite symmetric matrix. The Gaussian measure µC on Rn

of covariance C is the Borel measure whose Fourier transform is:

χC(y1, . . . , yn) = exp
(
− 1

2 ∑i,jCijyiyj
)
. (67)

Using the Lebesgue measure dnx, the Gaussian measure of covariance C is given by:

dµC(x1, . . . , xn) = (2π)−n/2(det C)−1/2 exp
(
− 1

2 ∑i,jC
−1
ij xixj

)
dnx. (68)

A positive definite symmetric matrix is equivalent to an inner product, and therefore Gaussian
measures on Rn are determined by inner products. One can define Gaussian measures on infinite
dimensional spaces in exactly the same way.

Definition 25. Let E be an infinite dimensional real linear space and ( , ) an inner product in E. The measure
on (Ea,BEa) with Fourier transform χ(ξ) = e−(ξ, ξ)/2, ξ ∈ E, is called a Gaussian measure, of covariance ( , ).

The existence and uniqueness of the measure are ensured by Theorem 8 of Section 5. The following
characterization of Gaussian measures, sometimes taken as definition, is crucial.

Theorem 11. A measure µ on (Ea,BEa) is Gaussian if and only if the push-forward µξ of µ by the map:

Ea 3 φ 7−→ φ(ξ) ∈ R (69)

is a Gaussian measure on R, ∀ξ ∈ E.

The theorem is easily proved. Note first that for any Gaussian measure µ on Ea, the push-forward
µξ is a Gaussian measure on R of covariance (ξ, ξ). Conversely, let µ be a measure on Ea such that µξ

is a Gaussian measure on R, ∀ξ. Let cξ be the covariance of µξ . The Fourier transform χ of the measure
µ is then:

χ(ξ) = e−cξ /2, ∀ξ, (70)

where:
cξ =

∫
R

x2dµξ(x) =
∫

Ea

(
φ(ξ)

)2dµ(φ). (71)
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On the other hand, it is clear that:

(ξ1, ξ2) :=
∫

Ea
φ(ξ1)φ(ξ2)dµ(φ) , ξ1, ξ2 ∈ E (72)

defines an inner product, thus proving that χ(ξ) is of the required form χ(ξ) = exp
(
−(ξ, ξ)/2

)
.

Expression (72) for the moments of the Gaussian measure of covariance ( , ) is easily generalized.
The result is the well-known Wick’s theorem (see [3]). If ξ1, . . . , ξ2n+1 is an odd set of elements
of E then: ∫

Ea
φ(ξ1) . . . φ(ξ2n+1)dµ = 0. (73)

If on the other hand ξ1, . . . , ξ2n is an even set of elements of E then:∫
Ea

φ(ξ1) . . . φ(ξ2n)dµ = ∑
pairs

(ξi1 , ξ j1) . . . (ξin , ξ jn), (74)

where ∑pairs stands for the sum over all possible ways of pairing the 2n labels 1, . . . , 2n into n pairs.
Let us note the following. Independently of the linear space E where the covariance ( , ) is

originally defined, a characteristic function of the type χ(ξ) = e−(ξ,ξ)/2 is always obviously extendable
to the Hilbert space completionH of E. So, the inner product ( , ), taken as a covariance in the Hilbert
spaceH, defines a Gaussian measure on

(
Ha,BHa

)
, whereHa is the algebraic dual ofH and:

BHa = B
( ⋃

ξ∈H
ξ−1B(R)

)
. (75)

One can show that the natural map fromHa to Ea (defined by the restriction to E of the elements
ofHa) is an isomorphism of measure spaces. (From Proposition 3, the push-forward of the measure
on Ha is the Gaussian measure on Ea of covariance ( , ), and it follows that Ha ⊂ Ea is a support of
the Gaussian measure on Ea. To be precise, this map is not strictly measurable, but it establishes an
isomorphism between the families of measurable sets modulo zero measure sets, which maps the
measure on Ha to the measure on Ea.) Thus, whenever necessary, one can always assume that the
covariance of a Gaussian measure is defined in a Hilbert space.

Example 1: As in the example of Section 3, let us consider the space RN of real sequences and the
measures µρ, given by the product of an infinite sequence of identical Gaussian measures on R, each of
covariance ρ. Let RN

c ⊂ RN be the linear space of those sequences that are zero after some order, i.e.,

RN
c := {(xn) | ∃Nx ∈ N such that xn = 0 for n > Nx}. (76)

The space RN is naturally seen as the algebraic dual of RN
c , with the action:

x(y) = ∑
n

xnyn, x ∈ RN, y ∈ RN
c , (77)

and it is clear that the product σ-algebra in RN coincides with σ-algebra associated with the
interpretation of RN as a projective limit. The Fourier transform of the measure µρ is easily seen
to be:

χρ(y) :=
∫
RN

eix(y)dµρ(x) = e−
1
2 ρ ∑n y2

n , ∀y ∈ RN
c . (78)

So, the product measure µρ coincides with the Gaussian measure associated with the
inner product:

〈y′, y〉ρ := ρ
∞

∑
n=1

y′nyn, (79)
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which we assume to be defined on the real Hilbert space `2 of square summable sequences. Consider
now the space S of rapidly decreasing sequences (Example 1, Section 6). Like RN

c , S is dense in `2

with respect to the topology defined by 〈 , 〉ρ (which is in fact the natural `2 topology). Moreover, the
restriction of χρ to S is continuous in the nuclear topology, since the latter is stronger than the topology
induced in S from the `2-norm. It then follows from the Bochner-Minlos theorem that the measure µρ

is supported on the topological dual S ′ of the nuclear space S , for any value of ρ. Furthermore, Minlos’
theorem allows us to find proper subspaces of S ′ that still support the measure. Let us now describe
this application of Theorem 10. Let then a = (an) be an element of `2 such that 1 ≥ an > 0, ∀n and let
( , )a be the inner product in RN

c given by:

(y′, y)a = ∑
n

y′nyn

a2
n

. (80)

It is clear that the ( , )a-topology is stronger than the `2 topology in RN
c . Let Ha be the operator on

RN
c defined by:

(Hay)n := anyn. (81)

The operator Ha is clearly Hilbert-Schmidt with respect to ( , )a, and we have 〈y′, y〉1 =

(Hay′, Hay)a. Then, using the usual characterization of continuous functionals on a Hilbert space,
it follows from Theorem 10 that the measure µρ is supported on the subspace of RN of sequences x
such that:

∞

∑
n=1

a2
nx2

n < ∞. (82)

The subspace defined by (82) is H−1
a `2, i.e., the space of sequences x = (xn) of the form xn = zn/an,

with z = (zn) ∈ `2. [Since a ∈ `2, one could be tempted to conclude that the measure is supported on
the space `∞ of bounded sequences, but that is not the case. It is true that the intersection

⋂
a∈`2 H−1

a `2

of all the spaces H−1
a `2 coincides with `∞, but in fact the space `∞ is contained in a zero measure set.

There is no contradiction with σ-additivity, since the intersection is not countable.]
Let us remark that given any Gaussian measure µ of covariance ( , ) in a (real, infinite dimensional

and separable) Hilbert spaceH, it is always possible to construct an isomorphism (of measure spaces)
mapping the given measure to the Gaussian measure on RN of the example above, with ρ = 1 [1,3].
This can be understood as follows. Let {ξn}n∈N be an orthonormal basis inH and consider the map
θ : Ha → RN defined by:

θ(φ) =
(
φ(ξn)

)
. (83)

Let θ∗ µ be the measure on RN obtained by push-forward of µ. We then have (see Proposition 3):

∫
RN

ei ∑n ynxn d(θ∗ µ) =
∫
Ha

e
iφ
(

∑n ynξn

)
dµ, ∀(yn) ∈ RN

c . (84)

Given that: ∫
Ha

e
iφ
(

∑n ynξn

)
dµ = e−

1
2 ∑n y2

n , (85)

it follows that θ∗ µ coincides with the Gaussian measure of the above example, with ρ = 1.

Example 2: An important family of Gaussian measures on S ′(Rd) is defined by the following family
of inner products:

〈 f , g〉m =
∫

f (m2 − ∆)−1g ddx, f , g ∈ S(Rd), (86)

where m ∈ R+ and ∆ is the Laplacian operator. These measures are relevant e.g., in quantum theory
and in certain stochastic processes.
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We conclude this section with a variant of Minlos’ theorem tailored for Gaussian measures,
following immediately from Corollary 2, Section 6.

Corollary 3. Let E be a real nuclear space and ( , ), ( , )1 two inner products in E such that the corresponding
topologies are weaker than the nuclear topology. Assume that the ( , )-topology is weaker than the ( , )1-topology.
Let

(
E, ( , )1

)
be the completion of E with respect to ( , )1 and H a Hilbert-Schmidt operator on

(
E, ( , )1

)
such that:

(ξ, η) = (Hξ, Hη)1, ∀ξ, η ∈
(
E, ( , )1

)
. (87)

Then the Gaussian measure of covariance ( , ) is supported on the subspace of E′ of the functionals which are
continuous with respect to ( , )1.

Another version of this result, closer to the quantum field theory literature [23,27], is the following.

Corollary 4. Let E be a real nuclear space, ( , ) a continuous inner product in E andH the completion of E with
respect to ( , ). Let be H be an injective Hilbert-Schmidt operator onH such that E ⊂ HH and H−1 : E→ H
is continuous. Denote by ( , )1 the inner product in E defined by ( f , g)1 = (H−1 f , H−1g). Then the Gaussian
measure of covariance ( , ) is supported on the subspace of E′ of the functionals which are continuous with respect
to ( , )1.

These two versions are related as follows. Let H be a Hilbert-Schmidt operator on H, on the
conditions of Corollary 4. The image HH, equipped with the inner product ( , )1, coincides with the
( , )1-completion of E. Since H : H → HH is unitary and H : HH → HH is well defined, it follows
that H is Hilbert-Schmidt on HH. On the other hand we have that:

( f , g) = (H f , Hg)1, (88)

which shows that the ( , )-topology is weaker than the ( , )1-topology. Finally, since ( , ) is continuous,
the continuity of H−1 : E → H implies that ( , )1 is also continuous, and therefore both topologies
defined by ( , ) and ( , )1 are weaker than the nuclear topology. All conditions of Corollary 3 are
thus satisfied.

8. Quasi-invariance and Ergodicity

We present in this section some concepts relevant to the study of transformation properties of
measures. The notions of quasi-invariance and ergodicity are presented, together with two important
results concerning Gaussian measures. We start by reviewing general notions [13], illustrated with
straightforward examples.

Definition 26. Let µ1 and µ2 be two measures on the same measurable space
(

M,B
)
. The measure µ1 is said

to be absolutely continuous with respect to µ2, and we write µ1 < µ2, if µ2(B) = 0⇒ µ1(B) = 0.

As an example, consider the measures µ0 and ν0 on R, where µ0 is the Lebesgue measure and ν0 is
the measure supported on the interval I = [0, 1] defined by ν0(B) = µ0(B ∩ I), for any Borel set B ⊂ R.
It is clear that ν0 < µ0, whereas it is not true that µ0 < ν0. On the other hand we have for instance the
measure µCantor defined by the Cantor function, which is supported on the Cantor set (see, e.g., [13]).
The Cantor set has Lebesgue measure zero, and therefore the measures µ0 and µCantor are supported
on disjoint sets.

Definition 27. Two measures µ1 and µ2 on the same measurable space (M,B) are said to be mutually singular,
and we write µ1⊥ µ2, if there exists a measurable set B ∈ B such that µ1(B) = 0 and µ2(Bc) = 0, where Bc is
the complement of B.
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Theorem 12 (Radon-Nikodym). Let
(

M,B
)

be a measurable space and µ1 and µ2 two σ-finite measures.
The measure µ1 is absolutely continuous with respect to µ2 if and only if there is a real non-negative measurable
function f =: dµ1/dµ2 on M such that dµ1 = f dµ2, i.e., µ1(B) =

∫
B f dµ2, ∀B ∈ B.

The function dµ1/dµ2 in the previous theorem is said to be the Radon-Nikodym derivative.

Definition 28. Two measures µ1 and µ2 on the same measurable space are said to be mutually absolutely
continuous, or equivalent, and we write µ1 ∼ µ2, if µ1 < µ2 and µ2 < µ1, i.e., if µ2(B) = 0 if and only if
µ1(B) = 0.

The measures µ0 and ν0 above are not equivalent. The Gaussian measure e−x2/2 dx√
2π

, for instance,
is equivalent to the Lebesgue measure.

The next result establishes sufficient and necessary conditions for the equivalence of two Gaussian
measures (centered at the null element) [1,3].

Theorem 13. Let E be a real infinite dimensional linear space, ( , ) and ( , )1 two inner products and µ, µ1

the corresponding Gaussian measures. The measures are equivalent if and only if the inner product ( , )1 can
be written in the form ( f , g)1 = ( f , Ag), where A is a linear operator defined on the ( , )-completion of E
such that:

(1) A is bounded, positive and with bounded inverse;
(2) A− 1 is Hilbert-Schimdt.

Definition 29. Let (M,B, µ) be a measure space, ϕ : M → M a measurable transformation and µϕ the
push-forward of µ. The measure µ is said to be invariant under the action of ϕ, or ϕ-invariant, if µϕ = µ. If G
is a group of measurable transformations such that µ is invariant for each and every element of G, we say that µ

is G-invariant.

As an example, consider the action of R on itself, by translations:

x 7→ x + y, ∀x ∈ R, (89)

where y ∈ R. Modulo a multiplicative constant, the Lebesgue measure is the only (σ-finite) measure on
R which is invariant under the action of translations (89). This is a particular case of the well-known
Haar theorem, which establishes the existence and uniqueness (modulo multiplicative constants) of
(regular Borel) invariant measures on locally compact groups.

The situation is radically different in the case of infinite dimensional linear spaces. The following
argument [28] shows for instance that there are no (non-trivial) translation invariant σ-finite Borel
measures in infinite dimensional separable Banach spaces. Let us suppose then that such an invariant
measure exists, and it does not assign an infinite measure to all open balls. It follows that there is
an open ball of radius R with finite measure. Since the space is infinite dimensional, one can find
an infinite sequence of disjoint open balls, of radius r < R, all contained in the first ball. Since by
hypothesis the measure is invariant under all translations, all balls of radius r have the same measure.
It follows that this measure is necessarily zero, since all the balls are contained in the same set, which
has finite measure. Finally, since the space is separable, it can be covered by a countable set of open
balls of radius r, all of them with zero measure. It is therefore proved that the whole space has zero
measure, in contradiction with the hypothesis. There are, of course, non σ-finite invariant measures,
e.g., the counting measure which assigns measure 1 to each and every point of the space. There
are also σ-finite measures on infinite dimensional spaces which are invariant under a restricted set
of translations.
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Given a group of measurable transformations G on a space M, every G-invariant measure µ

defines a unitary representation U of G in L2(M, µ), by:(
U(ϕ)ψ

)
(x) = ψ(ϕ−1x), ψ ∈ L2(M, µ), ϕ ∈ G. (90)

One can still construct unitary representations of G using measures that are not strictly invariant,
but instead satisfy a weaker condition known as quasi-invariance.

Definition 30. Let (M,B, µ) be a measure space, ϕ : M → M a measurable transformation, and let µϕ

denote the push-forward of µ by ϕ. The measure µ is said to be quasi-invariant under the action of ϕ, or
ϕ-quasi-invariant, if µϕ ∼ µ. If G is a group of transformations such that µ is quasi-invariant for all elements
of G we say that µ is G-quasi-invariant.

Regarding the group of translations in R (or Rn), one can show that any two quasi-invariant
measures are equivalent, and therefore equivalent to the Lebesgue measure. More generally, when
considering continuous transitive actions of a locally compact group G on a space M, there is a unique
equivalence class of quasi-invariant measures [29].

Proposition 4. Let G be a group of measurable transformations on (M,B ) and µ a G-quasi-invariant measure.
The following expression defines a unitary representation U of G in L2(M, µ):

(
U(ϕ)ψ

)
(x) =

(
dµϕ

dµ
(x)
)1/2

ψ(ϕ−1x), (91)

where µϕ denotes push-forward of µ by ϕ ∈ G.

Going back to the examples above, one can see that the measure e−x2/2 dx√
2π

is quasi-invariant
under the action (89), and thus defines a unitary representation of translations:(

U(y)ψ
)
(x) = e−y2/2+yxψ(x− y). (92)

On the contrary, the measure ν0, supported on the interval [0, 1], is not quasi-invariant and cannot
possibly provide a unitary representation.

Concerning the existence of translation quasi-invariant measures on infinite dimensional spaces,
those are not available either, in most cases of interest. In particular, one can show the following.
In infinite dimensional locally convex topological linear spaces there are no (non-trivial) translation
quasi-invariant (i.e., quasi-invariant under all translations) σ-finite Borel measures (see [1,28,30] and
references therein). Typically, one finds situations of quasi-invariance under a subgroup of the group
of all translations (like in Theorem 17 below).

We review next some concepts and results from ergodic theory, following [1,31,32]. Only finite
measures are considered.

Definition 31 (Ergodicity). Let (M,B, µ) be a probability space, where the measure µ is G-quasi-invariant
with respect to a group G of measurable transformations. The measure is said to be G-ergodic if, for B ∈ B,
the condition:

µ(B4 ϕB) = 0, ∀ϕ ∈ G,

implies µ(B) = 0 or µ(B) = 1.

In favorable cases of continuous actions in certain topological spaces, G-ergodic measures are
supported in a single orbit of G (see [29]). In general we have the following [1].
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Theorem 14. Let µ be a G-quasi-invariant probability measure in a measurable space (M,B). The measure is
G-ergodic if and only if for every B ∈ B with µ(B) > 0, there exists a countable set {ϕk}k∈N of elements of G

such that µ
(⋃∞

k=1 ϕkB
)
= 1.

Theorem 15. Let µ1 and µ2 be two G-ergodic measures on the same measurable space. Then µ1 ∼ µ2 or
µ1⊥ µ2. If in particular µ1 and µ2 are G-invariant (and normalized) then µ1 = µ2 or µ1⊥ µ2.

The following result establishes also necessary and sufficient conditions for ergodicity.

Theorem 16. Let µ be a G-quasi-invariant probability measure. The measure is G-ergodic if and only if the
only G-invariant measurable (real) functions are constant, i.e., if and only if the condition:

f (x) = f (ϕx) (almost everywhere) ∀ϕ ∈ G

implies:
f (x) = constant (almost everywhere).

This last result can be proven with the following arguments [1,13,32]. Suppose that µ is G-ergodic.
Given any invariant real function, the inverse image of any Borel set satisfies (93), and it is therefore
proven that ergodicity implies that invariant functions are constant almost everywhere. Conversely,
if a set B satisfies (93), then its characteristic function χB (equal to 1 for x ∈ B and 0 for x 6∈ B) is
invariant, and the second condition on the theorem implies µ(B) = 0 or µ(B) = 1.

For Gaussian measures the following important theorem holds [1]. (Essentially, point 1 of
Theorem 17 is what is usually known as the Cameron-Martin theorem. The discussion following
Theorem 17, as well as the content of Lemma 2 below, provide in fact illustrations of that theorem.)

Theorem 17. Let ( , ) be an inner product in a real linear space E and µ the corresponding Gaussian measure
on Ea. Let E∗ be the subspace of Ea of those functionals that are continuous with respect to the topology defined
by ( , ), and X a subspace of Ea, considered as a subgroup of the group of translations in Ea. Then:

(1) the measure µ is X-quasi-invariant if and only if X ⊂ E∗,
(2) the measure µ is X-ergodic if and only if X is dense in E∗.

The following simplified arguments illustrate point 1 of the theorem. Consider the Gaussian
measure on Rn:

dµ(x) =
n

∏
j=1

e−x2
j /2 dxj√

2π
(93)

and its translation with respect to y ∈ Rn. The Radon-Nikodym derivative is:

dµ(x− y)
dµ(x)

= exp
( n

∑
j=1

xjyj

)
exp

(
−1

2

n

∑
j=1

y2
j

)
. (94)

When considering the limit n→ ∞, which corresponds to a measure on RN, one can see that the
derivative vanishes unless y = (yj)j∈N is an element of `2. Note that the condition y ∈ `2 is actually

sufficient for equivalence of the measures, since in that case exp
(

∑n
j=1 xjyj

)
defines an integrable

function on the limit n→ ∞, with respect to the measure (93). When, on the other hand, one considers
translations by more general elements of RN, one obtains two (quasi-invariant with respect to `2)
mutually singular measures.
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9. Gaussian Measures on S ′(Rd)

To conclude, we consider the particular, but important case of measures on the space of
distributions S ′(Rd) (equipped with the Borel σ-algebra associated with the strong topology–see
Lemma 1, Section 6).

Given g ∈ S(Rd) one can naturally define an element of S ′(Rd), by:

h 7→
∫

gh ddx, ∀h ∈ S(Rd). (95)

We will continue to denote that element by g, even if considered as an element of S ′(Rd). The
inclusion of S(Rd) in S ′(Rd) defined by (95) induces an action of S(Rd) in S ′(Rd), as a subgroup of
the group of translations. Explicitly, given g ∈ S(Rd) we get a measurable transformation in S ′(Rd):

φ 7→ φ + g, ∀φ ∈ S ′(Rd). (96)

Let us say in advance that there are quasi-invariant normalized Borel measures, with respect to
the action of S(Rd) (96). These measures will simply be called S-quasi-invariant measures.

Let then µ be a S-quasi-invariant measure. From Proposition 4, we then have a unitary
representation of (the commutative group) S(Rd) in L2(S ′(Rd), µ):

(
V(g)ψ

)
(φ) =

(dµg

dµ
(φ)
)1/2

ψ(φ− g) , g ∈ S(Rd), (97)

where µg denotes the push-forward of µ with respect to the map (96).
On the other hand, as is typically the case in infinite dimensions, there are no Borel measures on

S ′(Rd) which remain quasi-invariant under the transitive action of all translations, i.e., with respect to
the natural action of S ′(Rd) (seen as a group) on itself [1,2]. [Just like in the discussion at the end of the
previous section, this immediately leads to the existence of non-equivalent S-quasi-invariant measures.
In fact, given a S-quasi-invariant measure µ, it is obvious that the push-forward µφ0(φ) = µ(φ− φ0)

defined by any φ0 ∈ S ′(Rd) is also a S-quasi-invariant measure, and there is φ0
(
6∈ S(Rd)

)
such that

the two measures are not equivalent.]
The simplest examples of S-quasi-invariant measures are Gaussian measures, which we now

consider. In order to simplify the discussion, we impose very strong conditions on the measures’
covariance. Let then C be a linear continuous bijective operator on S(Rd), with continuous inverse.
We say that C is a covariance operator C if it is bounded, self-adjoint and strictly positive in L2(Rd) and
if C−1, considered as a densely defined operator on L2(Rd), is (essentially) self-adjoint and positive.
It is then obvious that the bilinear form:

〈 f , g〉C :=
∫

f Cg ddx, f , g ∈ S(Rd), (98)

in S(Rd)× S(Rd) is symmetric, positive and non-degenerate, thus defining an inner product 〈 , 〉C in
the real linear space S(Rd). A covariance operator C therefore defines a Gaussian measure, which is
supported in S ′(Rd), since the L2(Rd)-continuity of C ensures that the topology defined by the inner
product 〈 , 〉C is weaker than the nuclear topology. We will say also that C is the measure’s covariance,
with the understanding that we are referring to an inner product of the type (98).

Using Theorem 17, one can easily check that these measures are S-quasi-invariant and S-ergodic.
In fact, from the required properties of the operator C one can write:∫

gh ddx =
∫
(C−1g)(Ch) ddx = 〈C−1g, h〉C, ∀g, h ∈ S(Rd), (99)
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from what follows that the functionals on S(Rd) defined by (95) are continuous with respect to
the 〈 , 〉C-topology. Also, the inclusion of S(Rd) in the dual S ′(Rd) is dense with respect to the
〈 , 〉C-topology, since C−1(S(Rd)

)
= S(Rd). The conditions of Theorem 17 are therefore satisfied.

In the case of Gaussian measures, the Radon-Nikodym derivative appearing in (97) is easily
determined, generalizing the correspondent result in finite dimension:

Lemma 2. Let C be a covariance operator on S(Rd) and µ the corresponding measure on S ′(Rd). Then:

dµ(φ− g)
dµ(φ)

= e−
1
2
∫

g C−1g ddx eφ(C−1g), ∀g ∈ S(Rd). (100)

We present next a result [26] applicable to the important situation of measures that remain
invariant under Rd-translations. This result characterizes the support of the measure in terms of the
local behavior of typical distributions. To formulate it we need to consider the kernel C of a covariance
C, defined by: ∫

f Cg ddx =:
∫

ddx ddx′ f (x)C(x, x′)g(x′), ∀ f , g ∈ S(Rd). (101)

In general, the kernel of the covariance is a distribution on Rd ×Rd. The corresponding measure
is invariant under Rd-translations if and only if C(x, x′) = C(x− x′). Let us further recall that a signed
measure on a measurable space M is a function on the σ-algebra of M of the form:

B 7→
∫

B
Fdν, (102)

where ν is a measure on M and F is an integrable function. In particular, an (Lebesgue) integrable
function on an open set U ⊂ Rd defines a signed measure on U. We will also say that a distribution
φ ∈ S ′(Rd) is a signed measure in U ⊂ Rd if there exists a measure ν on U and an integrable function
F such that φ( f ) =

∫
U f Fdν, for any function f ∈ S(Rd) supported in U. Then [26]:

Proposition 5. Let µ be a Gaussian measure on S′(Rd), invariant with respect to Rd-translations and such that
the kernel C of the covariance is not a continuous function. Then the support of µ is such that for µ-almost every
distribution φ ∈ S ′(Rd) there is no (non-empty) open set U ⊂ Rd on which φ can be seen as a signed measure.

Example 1: Let us consider the so-called white noise measures, defined by a covariance proportional
to the identity operator , C = σ1, where σ ∈ R+. Since the covariance is a scalar, these measures
are invariant under Rd-translations, with covariance kernel C(x) = σδ(x), where δ is the evaluation
distribution at x = 0, i.e. δ( f ) = f (0), ∀ f ∈ S(Rd). It follows from the previous proposition that
distributions that can be seen as signed measures on some open set do not contribute to the measure.
One concludes also immediately, from Theorem 13, that white noise measures are not equivalent to
each other, for σ 6= σ′. Furthermore, from Theorem 17 it follows that the measures are S-ergodic for
any σ, and one concludes from Theorem 15 that the measures are in fact mutually singular, for σ 6= σ′.

Example 2: Let us consider again the measures of Example 2, Section 7, defined by the
covariance operators:

Cm := (m2 − ∆)−1, (103)

where m ∈ R+ and ∆ is the Laplacian operator. The kernel of Cm is easily found to be:

Cm(x) =
1

(2π)d

∫
dd p

eipx

m2 + p2 . (104)

The case d = 1 (m 6= 0) corresponds to the path integral for the quantum harmonic oscillator.
(The particular case d = 1, m = 1 corresponds to the Ornstein-Uhlenbeck measure.) For d > 1 we find
measures associated with the path integral formulation of quantum field theory. For m = 0 we get
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the well-known Wiener measure. (The case m = 0, d < 3, requires special care, since the integral (104)
diverges in the region p ≈ 0. An appropriate modification leads to the so-called conditional Wiener
measure.) It is well known that these measures are supported on continuous functions for d = 1 and
on distributions for d ≥ 2 (see, e.g., [22,23]). In d = 1 this result comes from the fact that (m2 + p2)−1 is
integrable, with Fourier transform (104) proportional to 1

m e−m|x|. In this situation the test functions in
S(R) can be replaced by “delta functions”, and it makes sense to talk about the two point correlation
function Cm(x, x′), which is proportional to 1

m e−m|x−x′ |.

Example 3: In the canonical approach to the quantization of real scalar field theories in d+ 1 dimensions
one looks for representations of the Weyl relations:

V(g)U ( f ) = ei
∫

f g ddx U ( f )V(g), (105)

where f and g belong to S(Rd). What is actually meant by this is a pair (U ,V) of (strongly continuous)
unitary representations of the group S(Rd), satisfying (105). Any S-quasi-invariant measure µ

on S ′(Rd) produces such a representation. In fact, one just needs to consider the Hilbert space
L2(S ′(Rd), µ), a unitary representation V like in (97) and a second unitary representation U simply
defined by: (

U ( f )ψ
)
(φ) = e−iφ( f )ψ(φ). (106)

Note that whereas the unitary representation U is obviously well defined for any measure, the
construction of V depends critically on the S-quasi-invariance of the measure. It is moreover required
that the combined action of U and V be irreducible, which can in turn be seen to be equivalent to
S-ergodicity of the measure. Any Gaussian measure therefore satisfies all these criteria. However,
contrary to the situation in finite dimensions, to produce a physically meaningful quantization of a
given field theory, the measure must satisfy additional conditions, typically in order to achieve a proper
quantum treatment of the dynamics, and/or symmetries. For instance, the canonical formulation
of the free quantum scalar field of mass m (see, e.g., [33] for details) is uniquely associated with the
Gaussian measure of covariance:

Cm :=
1
2
(m2 − ∆)−1/2. (107)
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