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Abstract: This study aimed at investigating a local radial basis function collocation method (LRBFCM)
in the reproducing kernel Hilbert space. This method was, in fact, a meshless one which applied the
local sub-clusters of domain nodes for the approximation of the arbitrary field. For time-dependent
partial differential equations (PDEs), it would be changed to a system of ordinary differential
equations (ODEs). Here, we intended to decrease the error through utilizing variable shape parameter
(VSP) strategies. This method was an appropriate way to solve the two-dimensional nonlinear
coupled Burgers’ equations comprised of Dirichlet and mixed boundary conditions. Numerical
examples indicated that the variable shape parameter strategies were more efficient than constant
ones for various values of the Reynolds number.

Keywords: local meshless method; variable shape parameter (VSP); reproducing kernel space; 2D
nonlinear coupled Burgers’ equations

1. Introduction

Contrary to conventional numerical methods in solving the partial differential equations (PDEs),
meshless methods [1], it is not essential to utilize meshes. Collocation methods are, in fact, meshless
and easy to program. In addition, they allow some kinds of approaches to solve the PDEs. Considering
the translation of kernels as trial functions, meshless collocation in asymmetric and symmetric forms is
described in [2–4]. It is highly successful, since the arising linear systems are easy to produce, leading
to such good accuracy with the beneficial range of computational expenses. Furthermore, it has been
newly proven [5] that the symmetric collocation [2,3] utilizing kernel basis is optimal along all linear
PDE solvers using the same input data. By following this utilization of kernels, we can solve the PDEs.
An overview of kernel methods prior to the year 2006 is presented in [6], while their recent variations
are in [7–12] and the related references.

The selection of a shape parameter in a radial or kernel basis function has been a challengeable
topic for some decades (see [13] and references over there). There are many experimental observations
on the treatment of kernel-based methods under scaled (shape) parameter. In addition, there are
optimization methods attempting to provide harmony between bad conditions and small errors.

There are some strategies in the literature to select shape parameters. Variable shape
parameter (VSP) strategies can be compared with constant shape parameter (CSP) strategies. Many
mathematicians utilize the CSPs in the radial basis function (RBF) approximations [14,15] due to their
easy analysis in comparison with the VSPs; however, there are many findings from a broad applications
set [16–18], indicating the advantages of using the VSPs. A number of strategies to choose a VSP would
be investigated in this work.
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Meshless kernel-based approaches are on the basis of a fixed spatial interpolation for
time-dependent PDEs. By the means of method of lines, they can be converted to a system of the
ordinary differential equations (ODEs) in time [19,20].

In general, the global collocation methods consider the whole domain. Although this
method is simple to implement, the obtained collocation matrix is ill-conditioned, especially for
large-scale problems.

Therefore, various localized meshless methods have been recommended in the literature to solve
this problem (see [21,22] and the references therein). A main idea behind the local RBF collocation
method is the utilization of the local sub-clusters of domain nodes (see Figure 1), called local domains
of influence, with the local RBFs for the approximation of fields. In other words, for the approximation
of function in any nodes of domain, we consider the local sub-clusters of domain nodes containing that
node and specified number of nearest neighboring nodes of domain nodes. With the chosen influence
domain, an approximation function is considered as a sum of weighted local RBFs with VSP. After that,
the collocation approach is utilized to determine weights. In the following, all essential differential
operators can be made via any operator on the approximation function. The most important benefit
of utilizing the local method would be that the overlapping influence domain leads to many small
matrices for every center node, rather than a large collocation matrix. As a result, sparse global
derivative matrices would be achieved. Therefore, less computer storage and flops are required by
this method. In principle, it is probable to use both uniform and random nodal arrangements in the
method implementation owing to the approach meshless feature, but the accuracy wise efficiency of
the uniform nodal arrangement is better than random nodes. One of the advantages of using uniform
nodal arrangement is that small spatial derivatives and collocation matrices (of the size of sub-domain
that is 5× 5 in the current case) corresponding to every stencil require to be computed just once. This
stores a considerable amount of the CPU time and also memory.

Figure 1. The uniform node arrangement and the schematics of the local domains of influence in the
interior, near boundary and corner points using ns = 5, 1D (left), and 2D (right), where × denotes the
center node in 1D.

In this work, by considering the 2D nonlinear coupled Burgers’ equations, we try to show the
validation of the proposed method. Indeed, we consider the Dirichlet and mixed boundary conditions.
The accuracy, stability and efficiency are considered for the high Reynolds number, Re. We can
find the applications and some numerical methods for this equation in [23–29]. In addition, the
numerical investigation of the two-dimensional coupled Burgers’ equations can be found in [30]. The
2D nonlinear coupled Burgers’ equations are considered by a implicit finite-difference scheme in [31],
the element-free characteristic method in [32], the variational multiscale element-free Galerkin method
in [33], the Chebyshev pseudospectral method in [34], the global RBF method in [24], and the local
RBF collocation method in [35].
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The rest of the paper is organized as follows. In Section 2, a useful summary of the kernel-based
trial functions is provided. In Section 3, the recommended local reproducing kernel method is given.
In Section 4, the model is solved numerically and conclusions are provided in the last section.

2. Kernel-Based Trial Functions

Definition 1. Let Γ ⊂ Rd be an arbitrary nonempty set. A function K : Γ× Γ→ R is called (real) kernel on Γ.

Definition 2. Let H be a real Hilbert space of function f : Ω → R. A function K : Ω×Ω → R is called
reproducing kernel for H if [36] :

(1) K(x, ·) ∈ H for all x ∈ Ω,
(2) 〈 f , K(x, ·)〉H = f (x) for all x ∈ Ω, f ∈ H.

Definition 3. A kernel K is symmetric, if K(x, y) = K(y, x) holds for all x, y ∈ Γ.

Definition 4. A kernel K is called semi-positive definite, if:

n

∑
i,j=1

εiεjK(xi, xj) ≥ 0, (1)

for any finite set of points X = {x1, . . . , xn} ⊂ Rd and any real numbers ε1, . . . , εn. Furthermore, the function
K is called positive definite on Γ if the quadratic form (1) is zero only for X = 0.

We consider a smooth symmetric positive definite kernel K : Γ× Γ→ R on the spatial domain Γ.
With each kernel, there is a reproducing “native” Hilbert space:

NK = span{K(x, ·) |x ∈ Γ}

of functions defined on Γ in the sense:

〈 f , K(x, ·)〉NK = f (x) for all x ∈ Γ, f ∈ NK,

where the inner product is related to the property of the kernel by:

〈K(x, ·), K(y, ·)〉NK = K(x, y) for all x, y ∈ Γ.

For scattered nodes x1, . . . , xn ∈ Rd, the translates Kj(x) = K(xj, x) are the trial functions, and we
intend to begin our work with them. Owing to the smoothness and explicitness of the kernel K, take
derivatives with respect to both arguments. Therefore, we can achieve cheap derivatives of the Kj. If
the kernel is translation-invariant on Rd, we have:

K(x, y) = φ(x− y), ∀x, y ∈ Rd.

One of the most important kernels with significant properties is the radial kernel [37]. The radial
kernel can be defined as:

K(x, y) = φ(r), r = ‖x− y‖2, x, y ∈ Rd;

for a scalar function:
φ : [0, ∞)→ R,

the function φ is called a RBF.
The most important examples are the Whittle–Matern kernels rνKν(r), where ν = m − d/2,

r = ‖x − y‖2, x, y ∈ Rd, reproducing in the Sobolev space Wm
2 (Rd) for m > d/2, and Kν is the

modified Bessel function of the second kind [38].
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2.1. Constant Scaled Kernels

Kernels on Rd can be scaled by a positive factor c by examining the new kernel:

Kc(x, y) = K
( x

c
,

y
c

)
∀x, y ∈ Rd.

Moreover, the constant scaled translation-invariant and radial kernels on Rd can be defined as:

Kc(x, y) = φ

(
x− y

c

)
∀x, y ∈ Rd,

Kc(x, y) = φ
( r

c

)
, r = ‖x− y‖2, x, y ∈ Rd,

respectively. Large c increases the condition number of kernel matrices, and small c indicates sharp
peaks, leading to approximating functions imperfectly. The selection of shape parameter c is regarded
as a problem existing for over two decades (see [13,17,39] and the references therein), playing a crucial
role in finding the numerical solution of the PDEs (see [40]).

2.2. Variable Shape Parameter

In many cases, it has been mentioned that VSP strategies would generate more valid results in
comparison with CSP. A negative outcome of utilizing a variable shape is that the system matrix is not
symmetric anymore. Up to now, the choice of the optimal value of the shape parameter remains an
open question; no mathematical theory has been developed up to now to determine its optimal value.

If the kernel K is radial, i.e., K(x, y) = φ
(
r2) , then the variably scaled radial kernels on Rd can be

defined as:

Kc(x, xj) = φ((
rj

cj
)2), rj = ‖x− xj‖2, x, xj ∈ Rd,

where cj is the shape parameter corresponding to the jth center. For example, the Whittle–Matern
kernel with VSP is given by:

((
rj

cj
)2)νKν((

rj

cj
)2), rj = ‖x− xj‖2, x, xj ∈ Rd.

In this paper, we have proposed some strategies to choose the VSP:

strategy 1 : cj = (cmin + ( cmax−cmin
n−1 )(j− 1))1/2 for j = 1, 2, ..., n,

strategy 2 : cj = (cmin + ( cmax−cmin
n−1 )(j− 1))−1/4 for j = 1, 2, ..., n,

strategy 3 : cj = (c2
min(

c2
max

c2
min

)
(j−1)
(n−1) )1/2 for j = 1, 2, ..., n,

strategy 4 : cj = (cmin + (cmax − cmin) exp(−j))−1 for j = 1, 2, ..., n,

strategy 5 : cj = cmin + (cmax − cmin) sin(j) for j = 1, 2, ..., n.

Note that, cmin and cmax are positive parameters and denote the minimum and maximum
of cj, respectively.

In [41,42], the linear VSP is in the following form :

cj = cmin + (
cmax − cmin

n− 1
)j for j = 1, 2, ..., n.
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Here, we modified the linear shape parameter formula, and considered cj as a new VSP by
strategies 1 and 2. Strategies 3 and 5 are known as exponential and trigonometric VSPs, respectively [41,43].

In this work, new VSP cj is proposed in strategy 4.
The approximation function via radial kernel can be written as follows:

f (x) =
n

∑
j=1

λjKc(x, xj), (2)

for a set of distinct nodal points {x1, x2, . . . , xn} ⊆ Γ ⊂ Rd and f1, f2, . . . , fn such that fi ∈ R,
i = 1, 2, . . . , n. Then, the unknown parameter λj, which is independent of rj, can be found by
putting each node xi, i = 1, 2, . . . , n into Equation (2) and solving the following system of linear
algebraic equations:

AΛ = F,

where:

A =
(
Kc(xi, xj)

)
1≤i, j≤n , Λ = (λi, 1 ≤ i ≤ n)T , F = ( fi, 1 ≤ i ≤ n)T .

3. Numerical Method

In this section, the proposed local reproducing kernel method is introduced. Considering the
time-dependent PDE:

Lu(x, t) = f (x, t), x ∈ Γ, t ∈ (0, T], (3)

with the initial condition:

Iu(x, 0) = u0(x), x ∈ Γ, (4)

and Dirichlet or Neumann boundary conditions:

u(x, t) = gD(x, t), x ∈ D ⊂ ∂Γ, t ∈ [0, T], (5)

∂u
∂n

(x, t) = gN (x, t), x ∈ N ⊂ ∂Γ, t ∈ [0, T]. (6)

Suppose L is a differential operator, I is a linear operator, u ∈ H, f ∈ F, where H and F are
Hilbert spaces of functions on Γ and we assume that the problems (3)–(6) are well-posed. Let us
consider the discretization points xi, 1 ≤ i ≤ n, and a symmetric positive definite kernel K : Γ× Γ→
R. Let us reorder the points successively into points {XI ∪ XD ∪ XN }, where XI = {x1, . . . , xz1}
is the set of interior points, XD = {xz1+1, . . . xz1+z2} is the set of Dirichlet boundary points, and
XN = {xz1+z2+1, . . . , xn} is the set of Neumann boundary points, z1 and z2 are the number of interior

and Dirichlet boundary points. For each xi (i = 1, . . . , n), we consider a stencil Si = {x[i]k }
ns
k=1,

which contains the center xi and its ns − 1 nearest neighboring points and forms the radial basis
N[i]

1 , N[i]
2 , . . . , N[i]

ns corresponding to these points. To approximate the solution u(x, t) over Si, we use a
linear combination as follows:

u[i](x, t) =
ns

∑
j=1

α
[i]
j (t) N[i]

j (x), x ∈ Si. (7)

In matrix form, we have:

U[i] = N[i] ∗ α[i](t),
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which gives:

α[i](t) = N−1[i] ∗U[i], (8)

where:

U[i] =
(

u[i]
(

x[i]1 , t
)

, u[i]
(

x[i]2 , t
)

, . . . , u[i]
(

x[i]ns , t
))T

,

α[i] =
(

α
[i]
1 (t) , α

[i]
2 (t) , . . . , α

[i]
ns (t)

)T
,

N[i] =
(

N[i]
j

(
x[i]k

))
1≤k≤ns ,1≤j≤ns

.

The derivative of the approximate solution can also be approximated at the center locations by
applying a linear differential operator L to the local interpolation (7). Depending on the problem at
hand, L will be either a single derivative operator or a linear combination of derivative operators.
The equation:

L(u[i](x, t)) =
ns

∑
j=1

α
[i]
j (t) L(N[i]

j (x)), x ∈ Si,

gives:

L(u[i](x[i], t)) = L(N[i]) ∗ N−1[i] ∗U[i],

where:

L(N[i]) =
(

L(N[i]
j ( x[i]))

)
1≤j≤ns

.

Now, we write the PDE (3) at a point xi, i = 1, . . . , z1 as follows:

Lu(xi, t) = f (xi, t),

then:

Lu[i](xi, t) = f (xi, t).

Thus:

L(
ns

∑
j=1

α
[i]
j (t)N[i]

j (xi)) = f (xi, t), i = 1, . . . , z1. (9)

Now, let:

U = (UI , UD, UN )T ,

UI = (u(xi, t), 1 ≤ i ≤ z1),

UD = (u(xi, t), z1 + 1 ≤ i ≤ z1 + z2),

UN = (u(xi, t), z1 + z2 + 1 ≤ i ≤ n).

By the Dirichlet boundary (5), we have:

UD = (gD(xi, t), z1 + 1 ≤ i ≤ z1 + z2), (10)
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and by the Neumann boundary (6):

ns

∑
j=1

α
[i]
j (t)

∂N[i]
j

∂n
(xi) = gN (xi, t), z1 + z2 + 1 ≤ i ≤ n.

Hence:

N[i]
n ∗ N−1[i] ∗U[i] = gN (xi, t), z1 + z2 + 1 ≤ i ≤ n, (11)

in which:

N[i]
n = (

∂N[i]
j

∂n
(xi), j = 1, . . . , ns).

Now, let Ii be a vector that contains the indices of center xi and its ns − 1 nearest
neighboring points.

We consider the (n− z1 − z2)× n sparse matrix W as follows:

W(i− z1 − z2, Ii) = N[i]
n ∗ N−1[i], i = z1 + z2 + 1, . . . , n.

Therefore, Equation (11) leads to:

W ∗U = (gN (xi, t), z1 + z2 + 1 ≤ i ≤ n)T .

The unknown vector UN will be considered in terms of the unknown vector UI by solving the
following equations:

W(:, z1 + z2 + 1 : n) ∗UN
= (gN (xi, t), z1 + z2 + 1 ≤ i ≤ n)T −W(:, 1 : z1) ∗UI −W(:, z1 + 1 : z1 + z2) ∗UD. (12)

Furthermore, the initial condition (4) leads to:

ns

∑
j=1

α
[i]
j (0)I(N[i]

j (xi)) = u0(xi), i = 1, . . . , z1.

Let D be an z1 × n sparse matrix as follows:

D(i, Ii) = I(N[i]) ∗ N−1[i], i = 1, . . . , z1,

where:
I(N[i]) =

(
I(N[i]

j (xi))
)

1≤j≤ns
.

Then, we have:

D(:, 1 : z1) ∗UI(0)

= (u0(xi), 1 ≤ i ≤ z1)
T − D(:, z1 + 1 : z1 + z2) ∗UD(0)− D(:, z1 + z2 + 1 : n) ∗UN (0). (13)

By considering Equations (8), (10) and (12), Equation (9) leads to the following ODEs:

L̃(UI(t)) = F (UI(t)),

with the initial conditions (13), where L̃ is a linear differential operator and F is an operator, which
may have some global sparse matrices from local contribution.
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4. Validation of the Method

Let us consider the following system:
Ut(X, t) = −U(X, t)Ux(X, t)−V(X, t)Uy(X, t) + 1

Re ∆U(X, t),

Vt(X, t) = −V(X, t)Vy(X, t)−U(X, t)Vx(X, t) + 1
Re ∆V(X, t)

X ∈ Γ ⊂ R2, t ∈ (0, T], (14)


(U(X, t), V(X, t)) = ( f D(X, t), gD(X, t)) X ∈ D ⊆ ∂Γ, t ∈ [0, T],

( ∂U
∂n (X, t), ∂V

∂n (X, t)) = ( fN (X, t), gN (X, t)) X ∈ N ⊆ ∂Γ, t ∈ [0, T],
(15)


U(X, 0) = U0(X),

V(X, 0) = V0(X),
(16)

where X = (x, y) ∈ Γ, Re is the Reynolds number, V0, U0, f D, gD, fN , and gN are known functions,
Γ ⊂ R2 is the domain set, ∂Γ is the boundary of the domain set Γ, ∆ is the Laplace operator, U and V
are unknown functions. We consider the set of points {XI ∪ XD ∪ XN } for discretization equations,
where XI = {X1, . . . , Xz1} is the set of interior points, XD = {Xz1+1, . . . , Xz1+z2} is the set of Dirichlet
boundary points, and XN = {Xz1+z2+1, . . . , Xn} is the set of Neumann boundary points, z1 and z2

are the number of interior and Dirichlet boundary points. For each Xi (i = 1, . . . , n), we consider
a stencil Si = {X

[i]
k }

ns
k=1, which contains the center Xi and its ns − 1 nearest neighboring points and

form the radial basis N[i]
1 , N[i]

2 , . . . , N[i]
ns corresponding to these points. Let us consider the symmetric

positive definite kernel K : Γ × Γ → R, and try to find the functions U(·, t) | [0, T] → NK, and
V(·, t) | [0, T]→ NK, where:

U[i](X, t) =
ns

∑
j=1

α
[i]
j (t)N[i]

j (X), X ∈ Si,

V[i](X, t) =
ns

∑
j=1

β
[i]
j (t)N[i]

j (X), X ∈ Si.

Here, Nj(X) are the RBFs corresponding to the kernel K, which is reproducing in the native
Hilbert space NK. Thus, we have: {

α[i](t) = N−1[i] ∗U[i],

β[i](t) = N−1[i] ∗V[i],
(17)
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where:

α[i](t) = (α
[i]
j (t)), 1 ≤ j ≤ ns)

T ,

β[i](t) = (β
[i]
j (t)), 1 ≤ j ≤ ns)

T ,

N[i] =
(

N[i]
j (X[i]

k )
)

1≤k≤ns ,1≤j≤ns
,

U[i] = (U I , UD, UN )T ,

V[i] = (V I , V D, VN )T ,

U I = (U(Xj, t), 1 ≤ j ≤ z1),

UD = (U(Xj, t), z1 + 1 ≤ j ≤ z1 + z2),

UN = (U(Xj, t), z1 + z2 + 1 ≤ j ≤ n),

V I = (V(Xj, t), 1 ≤ j ≤ z1),

V D = (V(Xj, t), z1 + 1 ≤ j ≤ z1 + z2),

VN = (V(Xj, t), z1 + z2 + 1 ≤ j ≤ n).

We now write the PDE (14) at the interior points Xi (i = 1, . . . , ni) as follows:

U[i]
t (Xi, t) = −U[i](Xi, t)

 ns

∑
j=1

α
[i]
j (t)

∂N[i]
j

∂x
(Xi)

−V[i](Xi, t)

 ns

∑
j=1

α
[i]
j (t)

∂N[i]
j

∂y
(Xi)


+

1
Re

ns

∑
j=1

α
[i]
j (t)∆N[i]

j (Xi), (18)

V[i]
t (Xi, t) = −V[i](Xi, t)

 ns

∑
j=1

β
[i]
j (t)

∂N[i]
j

∂y
(Xi)

−U[i](Xi, t)

 ns

∑
j=1

β
[i]
j (t)

∂N[i]
j

∂x
(Xi)


+

1
Re

ns

∑
j=1

β
[i]
j (t)∆N[i]

j (Xi). (19)

With the aid of Label (17), we have:
U[i]

t = −U[i]. ∗
(

N[i]
x ∗N−1[i] ∗U[i]

)
−V[i]. ∗

(
N[i]

y ∗N−1[i] ∗U[i]
)
+ 1

Re

(
∆N [i] ∗N−1[i] ∗U[i]

)
,

V[i]
t = −V[i]. ∗

(
N[i]

y ∗N−1[i] ∗V[i]
)
−U[i]. ∗

(
N[i]

x ∗N−1[i] ∗V[i]
)
+ 1

Re

(
∆N [i] ∗N−1[i] ∗V[i]

)
,

(20)

where:

N[i]
x =

∂N[i]
j

∂x
(xi), j = 1, . . . , ns

 ,

N[i]
y =

∂N[i]
j

∂y
(xi), j = 1, . . . , ns

 .

Let Ii be a vector that contains the indices of center Xi and its ns − 1 nearest neighboring points.
We consider the z1 × n sparse matrices D1, D2 and D3 as follows:
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D1(i, Ii) = N[i]
x ∗ N−1[i],

D2(i, Ii) = N[i]
y ∗ N−1[i],

D3(i, Ii) = ∆N[i] ∗ N−1[i].

Then, Equation (14) leads to:
Ũt = −Ũ. ∗ (D1 ∗U)− Ṽ. ∗ (D2 ∗U) + 1

Re D3 ∗U,

Ṽt = −Ṽ. ∗ (D2 ∗V)− Ũ. ∗ (D1 ∗V) + 1
Re D3 ∗V,

(21)

where:

U = (U (X1, t) , . . . , U (Xn, t))T ,

Ũ = (U (X1, t) , . . . , U (Xz1 , t))T ,

V = (V (X1, t) , . . . , V (Xn, t))T ,

Ṽ = (V (X1, t) , . . . , V (Xz1 , t))T ,

and .∗ denotes the pointwise product between two matrices or vectors.
The Dirichlet boundary conditions imply that:{

UD = ( f D(Xj, t)), z1 + 1 ≤ j ≤ z1 + z2),
VD = (gD(Xj, t)), z1 + 1 ≤ j ≤ z1 + z2).

(22)

With the Neumann boundary conditions, we have:

ns

∑
j=1

αj(t)
∂Nj

∂n
(xi) = fN (xi, t), z1 + z2 + 1 ≤ i ≤ n,

ns

∑
j=1

β j(t)
∂Nj

∂n
(xi) = gN (xi, t), z1 + z2 + 1 ≤ i ≤ n,

where:

∂N
∂n
∗N−1 ∗U = ( fN (xi, t), z1 + z2 + 1 ≤ i ≤ n),

∂N
∂n
∗N−1 ∗V = (gN (xi, t), z1 + z2 + 1 ≤ i ≤ n),

and:

∂N
∂n

=

(
∂Nj

∂n
(Xi)

)
z1+z2+1≤i≤n,1≤j≤n

.

Suppose:

W =
∂N
∂n
∗N−1,
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hence the vector UN and VN are as:

W(: , z1 + z2 + 1 : n) ∗UN
= ( fN (Xi, t), z1 + z2 + 1 ≤ i ≤ n)T −W(: , 1 : z1) ∗UI −W(: , z1 + 1 : z1 + z2) ∗UD,

W(: , z1 + z2 + 1 : n) ∗VN
= (gN (Xi, t), z1 + z2 + 1 ≤ i ≤ n)T −W(: , 1 : z1) ∗VI −W(: , z1 + 1 : z1 + z2) ∗VD.

(23)

By substituting Labels (22) and (23) in (21), we obtain the system of the ODEs with the
initial conditions: 

Ũ I(0) = Ũ I0,

Ṽ I(0) = Ṽ I0,

where:

Ũ I0 = (U0(Xj), 1 ≤ j ≤ z1)
T ,

Ṽ I0 = (V0(Xj), 1 ≤ j ≤ z1)
T .

5. Numerical Results

The results of our scheme for the numerical solution of two problems with Dirichlet and mixed
boundary conditions have been presented. We take the Matern kernel due to strong convergence rate
with the RBF parameter ν = m− d/2 = 2, and RBF scale c, i.e., we work with the kernel:

K(x, y) =
(‖x− y‖2

c

)2

K2

(
‖x− y‖2

c

)
,

which is reproducing in the Hilbert space W3
2 (R2).

In addition, we consider cmin = 1 and cmax = 10 in variable shape strategies for all experiments
in examples.

In the implementation of this technique, we have also used Legendre points:

xi = −1 + (
2(i− 1)

n− 1
), i = 1, . . . , n,

belonging to the interval [−1, 1] that can be easily transferred to the interval [a, b] by the transformation
y = b−a

2 x + a+b
2 , and uniform points:

xi = a + (i− 1)h, h =
b− a
n− 1

, i = 1, . . . , n.

The ODE solver ode113 of MATLAB (R2014b, MathWorks, Natick, MA, USA) is used to solve the
final ODE system (21). The accuracy of the numerical results, is measured by the maximum absolute
error defined as :

L∞ = max
1≤j≤n

|uj − ũ|,

where u and ũ represent the exact and approximate solutions, respectively.
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Example 1. Take problems (14)–(16). The initial and Dirichlet boundary conditions can be chosen by considering
the following solutions, which are stated in [35]:

U(X, t) =
3
4
− 1

4
(

1 + exp((−4x + 4y− t)(Re
32 ))

) ,

V(X, t) =
3
4
+

1

4
(

1 + exp((−4x + 4y− t)(Re
32 ))

) .

Large values of Re lead to sharp gradients in the solutions as shown in Figure 2. The solutions of
singularly perturbed problems exhibit sharp boundary or/and interior layers, where the solutions have
a steep gradient. Analytical and numerical aspects of singularly perturbed problems are considered
by Das et al. [44]. Figures 3 and 4 show absolute error distributions at time T = 2 for Re = 10 with
strategy 3 for different number of points. These figures show, if we increase nodes, absolute error
decreases. The absolute error distributions at time T = 2 for Re=100 with CSP are shown in Figures
5–7 with a different number of points showing the absolute error distributions at time T = 2 for
Re=100. It can be seen that the error decreases with an increasing the number of points. Figures 8–12
present absolute error distributions at time T = 2 for Re=100 with different shape strategies. Figures
13 presents absolute error distributions at time T = 2 for Re=1000 by CSP. Figures 14–17 show absolute
error distributions at time T = 2 for Re=1000 with different shape strategies.

Figure 2. Numerical solution of U and V at time T = 2 with Re = 100, n = 1681, strategy 1 (Test
problem 1).

Figure 3. Absolute error graphs at time T = 2 with Re = 10, n = 441, strategy 3 (test problem 1).
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Figure 4. Absolute error graphs at time T = 2 with Re = 10, n = 1681, strategy 3 (test problem 1).

Figure 5. Absolute error graphs at time T = 2 with Re = 100, n = 1681, c = 10 (test problem 1).

Figure 6. Absolute error graphs at time T = 2 with Re = 100, n = 1681, strategy 1 (test problem 1).
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Figure 7. Absolute error graphs at time T = 2 with Re = 100, n = 3721, strategy 1 (test problem 1).

Figure 8. Absolute error graphs at time T = 2 with Re = 100, n = 1681, strategy 2 (test problem 1).

Figure 9. Absolute error graphs at time T = 2 with Re = 100, n = 1681, strategy 3 (test problem 1).
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Figure 10. Absolute error graphs at time T = 2 with Re = 100, n = 1681, strategy 4 (test problem 1).

Figure 11. Absolute error graphs at time T = 2 with Re = 100, n = 1681, strategy 4 (legender points)
(test problem 1).

Figure 12. Absolute error graphs at time T = 2 with Re = 100, n = 1681, strategy 5 (test problem 1).
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Figure 13. Absolute error graphs at time T = 2 with Re = 1000, n = 1681, c = 10 (test problem 1).

Figure 14. Absolute error graphs at time T = 2 with Re = 1000, n = 1681, strategy 2 (test problem 1).

Figure 15. Absolute error graphs at time T = 2 with Re = 1000, n = 1681, strategy 3 (test problem 1).
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Figure 16. Absolute error graphs at time T = 2 with Re = 1000, n = 1681, strategy 4 (test problem 1).

Figure 17. Absolute error graphs at time T = 2 with Re = 1000, n = 1681, strategy 5 (test problem 1).

In Tables 1 and 2, performance of the method is compared with the other methods [24,27,31,35]
at selected points. It can be noted that the numerical results obtained from the proposed method are
fairly accurate.

Table 1. Numerical results for U at time T = 2 with Re = 100, n = 441.

(x,y) (0.1,0.1) (0.3,0.3) (0.5,0.5) (0.3,0.7) (0.1,0.9) (0.5,0.9)

Exact 0.500482 0.500482 0.500482 0.555675 0.744256 0.555675
Strategy 4 0.500490 0.500514 0.500528 0.554754 0.744165 0.555365

[35] 0.500470 0.500441 0.500414 0.554805 0.744197 0.554489
[24] 0.50035 0.50042 0.50046 0.55609 0.74409 0.55604
[31] 0.49983 0.49977 0.49973 0.55429 0.74340 0.55413
[27] 0.50012 0.50042 0.50041 0.55413 0.74416 0.55637
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Table 2. Numerical results for V at time T = 2 with Re = 100, n = 441.

(x,y) (0.1,0.1) (0.3,0.3) (0.5,0.5) (0.3,0.7) (0.1,0.9) (0.5,0.9)

Exact 0.999518 0.999518 0.999518 0.944325 0.755744 0.944325
Strategy 4 0.999537 0.999582 0.999617 0.945206 0.755867 0.944679

[35] 0.999530 0.999559 0.999586 0.945195 0.755803 0.945511
[24] 0.99936 0.99951 0.99958 0.94387 0.75592 0.94392
[31] 0.99826 0.99861 0.99821 0.94409 0.75500 0.94441
[27] 0.99946 0.99938 0.99941 0.94387 0.75558 0.94345

Example 2. Consider problems (14)–(16) with the following initial and mixed boundary conditions given
by [32]: {

U(x, y, 0) = sin(πx) cos(πy),

V(x, y, 0) = cos(πx) sin(πy),

U(o, y, t) = U(1, y, t) = 0,

V(x, 0, t) = V(x, 1, t) = 0,
∂U
∂n (x, 0, t) = ∂U

∂n (x, 1, t) = 0,
∂V
∂n (0, y, t) = ∂V

∂n (1, y, t) = 0.

We will compare the obtained solution in our proposed method with the results described
in [11,35] because there is not the exact solution. Fake oscillations have been observed by using
finite element method (FEM), finite-difference method (FDM), element free Galerkin method [32] and
Galerkin-reproducing kernel method [11]. In [35], an adaptive upwind technique has been innovated
to avoid wiggles in the recommended local RBF collocation method. As mentioned in [11], even a very
fine grid cannot get rid of the oscillatory behavior caused by a sharp gradient. To omit the wiggles and
defeat instabilities for Re = 1000, we have used RBFs with CSP as shown in Figure 18.

The solution is smooth and near the front we do not have any instability for small Re and,
therefore, no VSP is required. In our case, for Re = 10, 000, Figure 19 shows the oscillatory behavior.
To avoid these wiggles, we have used VSP (strategy 2) in order to stabilize the solution near the
sharp front.

Figure 18. Numerical results at time T = 0.4, x = 0.5, with Re = 1000, c = 10, n = 441, on the left U
and on the right V. (test problem 2)
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Figure 19. Numerical results at time T = 0.4, x = 0.5, with Re = 10000, n = 441 Legendre points, on
the left U and on the right V. (test problem 2)

6. Conclusions

Six shape parameter strategies were compared in this study. One strategy used a constant
shape, while the other five used a different value of the shape parameter at each center. Results
show that VSPs can improve the condition number and the solution accuracy. The approach is
successfully applied to solve the 2D nonlinear coupled Burgers’ equations with Dirichlet boundary
conditions for high Re. Owing to Neumann boundary conditions, instabilities appear near the
sharp gradient without any special filtering technique for Re = 1000, 10,000 for mixed boundary
conditions. These fake oscillations were also observed using the FDM, FEM and element free
Galerkin methods. In [35], an adaptive upwind technique was devised to avoid these wiggles for
Re = 1000. To get rid of the oscillatory behavior, we proposed constant and VSP for Re =
1000, 10,000, respectively.
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