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1. Introduction

The domain of mathematics concerning topology and geometry of topological vector spaces is
one of the important branches of functional analysis (see, for example, [1–4]). Particularly, a great part of
it consists in investigations of bases in Banach spaces (see, for example, [1,5–11] and references therein).
Many open problems remain for concrete classes of Banach spaces.

Among them Müntz spaces MΛ,C play very important role and there also remain unsolved
problems (see [12–16] and references therein). They are provided as completions of the linear span
over the real field R or the complex field C of monomials tλ with λ ∈ Λ on the unit segment [0, 1]
by the absolute maximum norm, where Λ ⊂ [0, ∞), t ∈ [0, 1]. It was K. Weierstrass [17,18] who in 1885
had proven his theorem about polynomial approximations of continuous functions on the segment.
But the space of continuous functions also possesses the algebraic structure. Later on in 1914 C.
Müntz [19] considered generalizations to spaces which did not have such algebraic structure anymore.

There was a problem about an existence in them bases [8,20]. Further a result was for lacunary
Müntz spaces which satisfy the restriction limn→∞λn+1/λn > 1 with the countable set Λ, but in
general this problem remained unsolved [15,16]. For Müntz spaces of Lp functions with 1 < p < ∞
this problem was investigated in [21]. It is worth to mention that the monomials tλ with λ ∈ Λ
generally do not form a Schauder basis of the Müntz space MΛ,C.

In this article results of investigations of the author on this problem are presented.
In Section 2 a Fourier analysis in Müntz spaces MΛ,C of continuous functions on the unit segment

supplied with the absolute maximum norm is studied. For this purpose auxiliary Lemma 2 and
Theorem 3 are proved. They are utilized for reducing consideration to a subclass of Müntz spaces
MΛ,C up to isomorphisms of Banach spaces such that a domain Λ is contained in the set of positive
integers N. It is proved that for Müntz spaces subjected to the Müntz and gap conditions their functions
belong to Weil-Nagy’s class (about this class of functions see, for example, [22]). Then the theorem
about existence of Schauder bases in Müntz spaces MΛ,C under the Müntz condition and the gap
condition is proven.

All main results of this paper are obtained for the first time.
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2. Müntz Spaces MΛ,C

Henceforth the notations and definitions from [15,21] are used.

Definition 1. Let Λ be an increasing sequence in the set (0, ∞).

The completion of the linear space containing all monomials atλ with a ∈ F and λ ∈ Λ and
t ∈ [α, β] relative to the absolute maximum norm:

‖ f (t)‖C[α,β] := sup
t∈[α,β]

| f (t)|

is denoted by MΛ,C[α, β], where 0 ≤ α < β < ∞, where the symbol F stands for R or C. Particularly,
for [α, β] = [0, 1] it is also shortly written MΛ,C. We consider also its subspace:

M0
Λ,C[0, 1] := { f : f ∈ MΛ,C[0, 1]; f (0) = f (1)}

of 1-periodic functions.
Henceforth it is supposed that the set Λ satisfies the gap condition:

inf
k
{λk+1 − λk} =: α0 > 0 (1)

and the Müntz condition:
∞

∑
k=1

1
λk

=: α1 < ∞. (2)

Lemma 1 and Theorem 1, which are proved below, deal with isomorphisms of Müntz spaces
MΛ,C. Utilizing these results reduces our consideration to a subclass of Müntz spaces MΛ,C where
a set Λ is contained in the set of natural numbers N.

Lemma 1. The Müntz spaces MΛ,C and MΞ∪(αΛ+β),C are isomorphic for every β ≥ 0 and α > 0 and a finite
subset Ξ in (0, ∞).

Proof. The set Λ is infinite with limn λn = ∞. By virtue of Theorem 9.1.6 [15] Müntz space MΛ,C
contains a complemented isomorphic copy of c0(F). Therefore, MΛ,C and MΞ∪Λ,C are isomorphic.

The isomorphism of MαΛ,C with MΛ,C follows from the equality:

sup
t∈[0,1]

| f (t)| = sup
t∈[0,1]

| f (tα)|

for each continuous function f : [0, 1] → F, since the mapping t 7→ tα is a diffeomorphism of the
segment [0, 1] onto itself. Taking Λ1 = Λ ∪ { β

α } and then αΛ1 we infer that MΛ,C and MαΛ+β,C are
isomorphic.

Theorem 1. Suppose that increasing sequences Λ = (λn : n ∈ N) and Υ = (υn : n ∈ N) of
positive numbers satisfy the Müntz and gap conditions and λn ≤ υn for each n. If supn(υn − λn) = δ,
where δ < (8 ∑∞

n=1 λ−1
n )−1, then MΛ,C and MΥ,C are isomorphic as Banach spaces.

Proof. There are isometric linear embeddings of MΛ,C and MΥ,C into MΛ∪Υ,C. Consider a sequence
of sets Υk = (υk,n : n ∈ N) ⊂ Λ ∪ Υ. Properties of the sequences (Υk : k = 0, 1, 2, 3, ...) include:
υk,n ∈ {λn, υn} for each k = 0, 1, 2, ... and n = 1, 2, ..., where Υ0 = Λ; υk,n ≤ υk+1,n for each k = 0, 1, 2, ...
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and n = 1, 2, ...; ∆k+1,n is an enumeration of the non-zero numbers of the form δk+1,j := υk+1,j − υk,j by
elimination of zero terms, also (m(k + 1) : k) is a monotone increasing sequence with:

m(k + 1) := min{n : υn − υk+1,n 6= 0; & ∀l < n υl = υk+1,l}.

For more details see (1–4) in the proof of Theorem 1 in [21].
For each f ∈ MΥk ,C we consider the power series f1(t) = ∑∞

n=1 antυk+1,n , where the power series
expansion f (t) = ∑∞

n=1 antυk,n converges for each 0 ≤ t < 1, since f is analytic on [0, 1) (see [14,15]).
Then we infer that:

f (t2)− f1(t2) =
∞

∑
n=1

antυk,n un(t) with un(t) := tυk,n − tυk,n+2∆k+1,n

so that un(t) is a monotone decreasing sequence in n and hence:

| f (t2)− f1(t2)| ≤ 2|um(k+1)(t)|| f (t)|

according to Dirichlet’s criterium for each 0 ≤ t < 1. Therefore, the function f1(t) has a continuous
extension onto [0, 1] and:

‖ f − f1‖C([0,1],F) ≤ 4‖ f ‖C([0,1],F)∆k+1,m(k+1)/λm(k+1),

since the mapping t 7→ t2 is an order preserving diffeomorphism of [0, 1] onto itself. Thus the series
∑∞

l=1 antυk+1,n converges on [0, 1). Analogously to each g1 ∈ MΥk+1,C there corresponds g ∈ MΥk+1,C
which is continuous on [0, 1].

This implies that there exists a linear isomorphism Tk of MΥk ,C with MΥk+1,C so that ‖Tk − I‖ ≤
4∆k+1,m(k+1)/λm(k+1), Tk : MΥk ,C → MΥk+1,C. Take the sequence of operators Sn := TnTn−1...T0 :
MΛ,C → MΥn+1,C ⊂ MΛ∪Υ,C. The space MΛ∪Υ,C is complete and the sequence {Sn : n} operator norm
converges to an operator S : MΛ,C → MΛ∪Υ,C so that ‖S− I‖ < 1, since δ satisfies the conditions of
this theorem and:

∞

∑
k=0

∆k+1,m(k+1)/λm(k+1) ≤ δ
∞

∑
n=1

λ−1
n < 1/8,

where I denotes the identity operator. Therefore, the operator S is invertible. From the conditions on
Υk it follows that S(MΛ,C) = MΥ,C.

Remark 1. Next we recall necessary definitions and notations of the Fourier approximation. Then the auxiliary
Proposition 1 about the weak L1-space L1,w[0, 1] is given. This proposition is used to prove Theorem 2 about the
property that functions in a Müntz space satisfying the Müntz and gap conditions belong to Weil-Nagy’s class.
For this purpose in the space of continuous functions is considered its subspace:

C0([α, α + 1], F) := { f : f ∈ C([α, α + 1], F), f (α) = f (α + 1)}

of 1-periodic functions.

Let Q = (qn,k) be a lower triangular infinite matrix with matrix elements qn,k having values in
the field F = R or F = C so that qn,k = 0 for each k > n, where k, n are nonnegative integers. To each
1-periodic function f : R→ F in the space L1([a, a + 1], F) is counterposed a trigonometric polynomial:

(1) Un( f , x, Q) :=
a0

2
qn,0 +

n

∑
k=1

qn,k(ak cos(2πkx) + bk sin(2πkx)),

where ak = ak( f ) and b = bk( f ) are the Fourier coefficients of a function f (x), whilst on R the Lebesgue
measure is considered.
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For measurable 1-periodic functions h and g their convolution is defined whenever it exists:

(2) (h ∗ g)(x) := 2
∫ a+1

a
h(x− t)g(t)dt.

The approximation methods by trigonometric polynomials use integral operators provided with
the help of the convolution. We recall it briefly (for more details see [22–25]). We consider summation
methods in the space of continuous periodic functions. Putting the kernel of the operator Un to be:

(3) Un(x, Q) :=
qn,0

2
+

n

∑
k=1

qn,k cos(2πkx)

one gets:
(4) Un( f , x, Q) = ( f ∗Un(·, Q))(x) = (Un(·, Q) ∗ f )(x).

The norms of these operators are well-known:

(5) Ln(Q) := sup
‖ f ‖C=1

‖Un( f , x, Q)‖C = 2‖Un(x, Q)‖L1 = 2
∫ a+1

a
|Un(t, Q)|dt,

where ‖ ∗ ‖C and ‖ ∗ ‖L1 denote norms on Banach spaces C([a, a+ 1], F) and L1([a, a+ 1], F) respectively,
while a ∈ R is a marked real number. These numbers Ln(Q) are called Lebesgue constants of
a summation method (see also [22,23]).

Henceforth, we consider spaces of real-valued functions if something other will not be specified,
since an existence of a Schauder basis in the Müntz space over the real field R implies its existence in
the corresponding Müntz space over the complex field C.

Definition 2. For a function f ∈ L1(α, α + 1) by S[ f ] or S( f , x) is denoted its Fourier series with coefficients
ak = ak( f ) and bk = bk( f ):

ρn( f , x) := f (x)− Sn−1( f , x)

is the approximation precision of f by the Fourier series S( f , x), where:

Sn( f , x) :=
a0

2
+

n

∑
k=1

(ak cos(2πkx) + bk sin(2πkx))

is the partial Fourier sum approximating a Lebesgue integrable 1-periodic function f on (0, 1).

If the following function:

Dψ
β f := f ψ

β :=
∞

∑
k=1

[ak( f ) cos(2πkx + βπ/2) + bk( f ) sin(2πkx + βπ/2)]/ψ(k)

belongs to the space L(α, α+ 1) of all Lebesgue integrable (summable) functions on (α, α+ 1), then f ψ
β is

called the Weil (ψ, β) derivative of f , where (ψ(k) : k) is a sequence of non-zero numbers in F and β is
a real parameter.

Let for a Banach space N of some functions on [a, a + 1]:

Cψ
βN [a, a + 1] := { f ∈ N : ∃ f ψ

β ∈ C0[a, a + 1]}

(see in more details Notation 2 and Definition 2 in [21]).



Mathematics 2017, 5, 35 5 of 10

In particular, let Cψ
β M[a, a + 1] (or Cψ

β [a, a + 1] for short) be the space of all continuous 1-periodic

functions f having a continuous Weil derivative f ψ
β , f ψ

β ∈ C0[0, 1] and considered relative to the
absolute maximum norm and such that:

(1) ‖ f ψ
β ‖C[0,1] := max{| f ψ

β (t)| : t ∈ [0, 1]} < ∞.

Particularly, for ψ(k) = k−r there is the Weil-Nagy class:

Wr
β,C = Wr

βC[a, a + 1] := { f : f ∈ C0[a, a + 1], ∃ f ψ
β ∈ C0[a, a + 1]}.

Then let:
En(X) := sup{‖ρn( f ; x)‖C[a,a+1] : f ∈ X},

where ρn( f , x) is described at the beginning of these Definitions 2:

En( f ) := inf{‖ f − Tn−1‖C[a,a+1] : Tn−1 ∈ T2n−1},

En(X) := sup{En( f ) : f ∈ X},

where En( f ) is given just above, while Tn−1 and T2n−1 are described just below, where a set X is
contained in C0[a, a + 1]:

T2n−1 := {Tn−1(x) =
c0

2
+

n−1

∑
k=1

(ck cos(2πkx) + dk sin(2πkx)); ck, dk ∈ R}

denotes the family of all trigonometric polynomials Tn−1 of degree not greater than n− 1 (see the
definitions in more details in [22]).

The family of all Lebesgue measurable functions f : (a, b)→ R satisfying the condition:

‖ f ‖Ls,w(a,b) := sup
y>0

(ysµ{t : t ∈ (a, b), | f (t)| ≥ y})1/s < ∞

is called the weak Ls space and denoted by Ls,w(a, b), where µ notates the Lebesgue measure on the
real field R, 0 < s < ∞, (a, b) ⊂ R (see, for example, §9.5 in [26], §IX.4 in [27]).

By F is denoted the set of all pairs (ψ, β), for which:

Dψ,β(x) :=
∞

∑
k=1

ψ(k) cos(2πkx + βπ/2)

is the Fourier series of some function belonging to L1[0, 1]. Then F1 denotes the family of all positive
sequences (ψ(k) : k ∈ N) tending to zero with ∆2ψ(k) := ψ(k− 1)− 2ψ(k) + ψ(k + 1) ≥ 0 for each k
so that the series:

∞

∑
k=1

ψ(k)
k

< ∞

converges.

Proposition 1. Suppose that an increasing sequence Λ = {λn : n} of natural numbers satisfies the Müntz
condition. If f ∈ MΛ,C[0, 1], then d f (x)/dx ∈ L1,w(0, 1).
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Proof. The proof is similar to that of Proposition 1 in [21] with the following modifications. Consider
any f ∈ MΛ,C[0, 1]. From [14] (or see Theorem 6.2.3 and Corollary 6.2.4 in [15]) it follows that f is
analytic on the unit open disk Ḃ1(0) in C with center at zero and the series:

f (z) =
∞

∑
n=1

anzλn

converges on Ḃ1(0), where an ∈ F is an expansion coefficient for each n ∈ N.
Using the Riemann integral we have that:

(1) f (x)− f (0) =
∫ x

0
f ′(t)dt for each 0 ≤ x < 1 and

(2) lim
x↑1

∫ x

0
f ′(t)dt = f (1)− f (0)

due to Newton-Leibnitz’ formula (see, for example, §II.2.6 in [28]), since f (x) is continuous on [0, 1].
By virtue of the uniqueness theorem for holomorphic functions (see, for example, II.2.22

in [29]), applied to the considered case, if a nonconstant holomorphic function g on Ḃ1(0) has
a set E(g) = {x : g(x) = 0, 0 ≤ x < 1} of zeros in [0, 1), then either E(g) is finite or infinite with
the unique limit point 1. Then we take a linear function s(x) = α + βx with real coefficients α and β,
put u(x) = f (x) + s(x) and choose α and β so that u(0) = u(1) = 0.

On the other hand, min Λ = λ1 > 0 and hence f is nonconstant. The case du(x)/dx = const is
trivial. So there remains the variant when du(x)/dx is nonconstant. Denote by xn zeros in [0, 1) of
du(t)/dt of odd order so that xn+1 > xn for each n ∈ N. Therefore:

(3)
∫ xn+1

xn
u′(t)dt

∫ xn+2

xn+1

u′(τ)dτ < 0

for each n ∈ N according to Theorem II.2.6.10 in [28]. If {xn : n} is a finite set, then from Formulas (1)
and (2) it follows that u′ ∈ L1[0, 1] and hence u′ ∈ L1,w[0, 1].

Consider now the case when the set {xn : n} is infinite. We take a convex connected domain
V such that V is canonically closed, V = cl(Int(V)), [0, 1] ⊂ V, |z − 0.5| ≤ 1/2 for each z ∈ V,
x + η ∈ V for each 3/4 < x < 1 and |η| ≤ 1− x, η ∈ C, where cl(A) and Int(A) denote the closure
and the interior of a set A in the complex field C. According to Cauchy’s formula 21(5) in [29]:

f ′(z) =
1

2πi

∫
ω

f (ξ)
(ξ − z)2 dξ

for each z ∈ Int(V), where ω is a rectifiable path encompassing once a point z in the positive
direction so that ω ⊂ V, for example, a circle with center at z. A set V can be taken as the disc
{u ∈ C : |u− 1/2| ≤ 1/2}. For each 3/4 < x < 1 a circle can be chosen with center at x and of radius
0 < r < 1− x with r ↑ (1− x) while x ↑ 1. Using the homotopy theorem and the continuity of f
on the compact disc V one can take simply the circle ω = ∂V = {u ∈ C : |u− 1/2| = 1/2}. Since
maxz∈V | f (z)| =: G < ∞ due to the Weierstrass theorem (see Vol. 1, Part III, Ch. 1, §12 in [28]), then
from the estimate of the Cauchy integral (see Ch. II, §7, subsection 24 in [29]) it follows that:

(4) | f ′(x)| ≤ G/(2π(1− x))

for each 3/4 < x < 1, hence f ′(x) ∈ L1,w(3/4, 1) and consequently u′(t) ∈ L1,w(3/4, 1). Therefore,
from (4) we infer that:

sup
y>0

yµ{t : t ∈ [0, 1), | f ′(t)| ≥ y} ≤
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sup
y>0

yµ{t : t ∈ [0, 3/4), | f ′(t)| ≥ y}+ sup
y>0

yµ{t : t ∈ [3/4, 1), | f ′(t)| ≥ y} < ∞,

where µ denotes the Lebesgue measure on [0, 1]. The latter means that d f (x)/dx ∈ L1,w(0, 1).

Theorem 2. Let an increasing sequence Λ = {λn : n} ⊂ N of natural numbers satisfy the Müntz condition
and let f ∈ MΛ,C[0, 1]. Then for each 0 < γ < 1 there exists β = β(γ) ∈ R so that v f ∈ Wγ

β,C[0, 1], where
v f (t) = f (t) + ( f (0)− f (1))t for each t ∈ [0, 1) and v f is 1-periodic on R.

Proof. We have that f (0) = 0, since λn ≥ 1 for each n. Therefore, we consider v(t) = v f (t) =

f (t)− f (1)t on [0, 1) := {t : 0 ≤ t < 1} and take its 1-periodic extension v on R.
According to Proposition 1.7.2 [22] (or see [23]) a function h belongs to Wγ

β L∞(l, l + 1) if and only
if there exists a function φ = φh,γ,β which is 1-periodic on R and Lebesgue integrable on [0, 1] such
that:

(1) h(x) =
a0(h)

2
+ (φ ∗ Dψ,β)(x),

where a0(h) = 2
∫ 1

0 h(t)dt.
We take a sequence Un(t, Q) given by (3) in Remark 1 or see Formula (6) in [21] so that:

lim
m

qm,k = 1 for each k and sup
m

Lm(Q) < ∞ and sup
m,k
|qm,k| < ∞

and write for short Un(t) instead of Un(t, Q). Under these conditions the limit exists:

(2) limn(v ∗Un)(x) = v(x)

in L∞(0, 1) norm for each v ∈ L∞((0, 1), F) according to Chapters 2 and 3 in [22] (see also [23,30]).
Put θ(k) = kγ−1 for all k ∈ N. Then for β = β(γ) = 1− γ we get thatDθ,−β(x) ∈ L∞(0, 1) (see the

proof of Theorem 2 in [21]).
With the help of Proposition 1 and Formula (2) we define the function s(x) such that:

(3) s(x) = lim
η↓0

lim
n

η−1
∫ η

0
((Dθ,−β ∗Un) ∗ v′)(x− t)dt.

By virtue of the weak Young inequality (see Theorem 9.5.1 in [26], §IX.4 in [27]) and Proposition 1 this
function s is in L∞(0, 1).

In view of Formula I(10.1) in [22] if (ψ1, β̄1) ≤ (ψ2, β̄2), then S[(yψ1
β̄1
)

ψ2/ψ1
β̄2−β̄1

] = S[yψ2
β̄2
], where

y ∈ Lψ2
β̄2

. Therefore φv,γ,β = s and Dψ
β v = s according to Formula (1), where ψ(k) = k−γ for each

k = 1, 2, 3, .... Thus v ∈ Wγ
β L∞(0, 1). For δ such that 0 < γ < δ < 1 similarly v ∈ Wδ

β(δ),C[0, 1].
On the other hand, v is analytic on (0, 1), 1-periodic and continuous on [0, 1), consequently, s is
analytic on (0, 1) and 1-periodic. Therefore, from the latter and Formulas (1)–(3) it follows that
‖s‖L∞(0,1) = ‖s‖C[0,1] and hence v ∈Wγ

β,C[0, 1].

Lemma 2. Let Λ be an increasing sequence of natural numbers satisfying the Müntz condition. Define the
subset Y of the unit ball of C([0, 1]):

Y = {v : v is 1− periodic and ∃ f ∈ MΛ,C such that:
∀t ∈ [0, 1) v(t) = f (t) + ( f (0)− f (1))t and ‖v‖C([0,1]) ≤ 1}.
Then for each 0 < γ < 1 a positive constant ω = ω(γ) exists so that:

(1) En(Y) ≤ En(Y) ≤ ωn−γ ln n

for each natural number n ∈ N
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Proof. Let f ∈ MΛ,C and put v(t) = f (t) + ( f (0)− f (1))t for all t ∈ [0, 1). Suppose that the 1-periodic
extension v of v(t) belongs to Y and let 0 < γ < 1. By Theorem 2 it follows that v ∈Wγ

β,C[0, 1].
Then estimate (1) follows from Theorems 3.12.3 and 3.12.3’ in [22].

Lemma 3. If ψ ∈ F1 and (ψ, β) ∈ F (see at the end of Definitions 2), then Cψ,0
β [0, 1] := { f ∈ Cψ

β [0, 1] :∫ 1
0 f (t)dt = 0} is the Banach space relative to the norm given by the formula:

(1) ‖ f ‖Cψ
β [0,1]

:= ‖ f ψ
β ‖C[0,1].

Proof. Using the notation of Definitions 2 (see the notation 2 in [21]) we have that Cψ
β [0, 1] is the

F-linear space and hence Cψ,0
β [0, 1] is such also as the kernel of the linear functional φ( f ) :=

∫ 1
0 f (t)dt,

since each f ∈ Cψ
β [0, 1] is integrable. Therefore, the assertion of this lemma follows from Propositions

I.8.1 and I.8.3 [22], since each f ∈ Cψ
β [0, 1] has the convolution representation:

(2) f (x) =
a0( f )

2
+ 2

∫ 1

0
f ψ
β (x− t)Dψ,β(t)dt

for each x ∈ [0, 1], but a0( f ) = 0 for each f ∈ Cψ,0
β [0, 1], while the convolution h ∗ u is continuous for

each h ∈ C[0, 1] and u ∈ L1[0, 1] so that

‖h ∗ u‖C[0,1] ≤ 2‖h‖C[0,1]‖u‖L1[0,1],

where Dψ,β is given in Definition 2.

Theorem 3. If an increasing sequence Λ of positive numbers satisfies the Müntz condition and the gap condition,
then the Müntz space MΛ,C[0, 1] has a Schauder basis.

Proof. By virtue of Lemma 1 and Theorem 1 it is sufficient to prove an existence of a Schauder basis in
the Müntz space MΛ,C for Λ ⊂ N. According to Definition 1 and the proof of Lemma 1 the Banach
spaces M0

Λ,C and MΛ,C are isomorphic.
The functional:

(1) φ(h) :=
∫ 1

0
h(τ)dτ

is continuous on Cψ
β [0, 1], where ψ and β satisfy conditions of Lemma 3. Then coker(φ) = F. Therefore,

Cψ
β [0, 1] = F⊕ Cψ,0

β [0, 1].
In view of Theorem 6.2.3 and Corollary 6.2.4 [15] each function g ∈ MΛ,C[0, 1] has an analytic

extension on Ḃ1(0) and hence:

(2) g(z) =
∞

∑
n=1

cnzλn =
∞

∑
k=1

pkuk(z)

are the convergent series on the unit open disk Ḃ1(0) in C with center at zero, where Λ ⊂ N and
cn = cn(g) ∈ N, pn = pn(g) = c1 + ... + cn, u1(z) := zλ1 , un+1(z) := zλn+1 − zλn for each n = 1, 2, ....

Take the finite dimensional subspace Xn := spanR(u1, ..., un) in X := M0
Λ,C, where n ∈ N. Due to

Lemma 1 the Banach space X	 Xn exists and is isomorphic with MΛ,C.
Consider the trigonometric polynomials Um( f , x, Q) for f ∈ X, where m = 1, 2, ... (see Formula (6)

in [21] and Remark 1 above). Put YK,n to be the completion in C[0, 1] of the linear span
spanR(Um( f , x, Q) : (m, f ) ∈ K), where K ⊂ N× (X	 Xn), m ∈ N, f ∈ (X	 Xn).

There exists a countable subset { fn : n ∈ N} in X such that fn = Dψ,β ∗ gn with gn ∈ L(0, 1)
for each n ∈ N and so that spanR{ fn : n ∈ N} is dense in X, since X is separable. From Formulas
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(1) and (2) and Theorem 2 and Lemmas 2 and 3 we infer that a countable set K and a sufficiently
large natural number n0 exist so that the Banach space YK,n0 is isomorphic with (X 	 Xn0) and
YK,n0 |(0,1) ⊂ Wγ

β,C(0, 1), where 0 < γ < 1 and β = 1− γ. Thus the Banach space YK,n0 is the C[0, 1]
completion of the real linear span of a countable family (sl : l ∈ N) of trigonometric polynomials sl .

Without loss of generality this family can be refined by induction such that sl is linearly
independent of s1, ..., sl−1 over F for each l ∈ N. With the help of transpositions in the sequence
{sl : l ∈ N}, the normalization and the Gaussian exclusion algorithm we construct a sequence
{rl : l ∈ N} of trigonometric polynomials which are finite real linear combinations of the initial
trigonometric polynomials {sl : l ∈ N} and which satisfy the conditions:

(3) ‖rl‖C[0,1] = 1 for each l;
(4) the infinite matrix having l-th row of the form ..., al,k, bl,k, al,k+1, bl,k+1, ... for each l ∈ N is

upper trapezoidal (step), where:

rl(x) =
al,0

2
+

n(l)

∑
k=m(l)

[al,k cos(2πkx) + bl,k sin(2πkx)]

with a2
l,m(l) + b2

l,m(l) > 0 and a2
l,n(l) + b2

l,n(l) > 0, where 1 ≤ m(l) ≤ n(l), deg(rl) = n(l), or r1(x) = a1,0
2

when deg(r1) = 0; al,k, bl,k ∈ R for each l ∈ N and 0 ≤ k ∈ Z.
Then as X and Y in Proposition 2 of [21] we take X = C[0, 1] and Y = YK,n0 . In view of

the aforementioned proposition and Lemma 1 a Schauder basis exists in YK,n0 and hence also in
MΛ,C[0, 1].

3. Conclusions

The results as described above are utilizable for further studies of mapping approximations,
Banach space geometry within mathematical analysis and functional analysis and certainly in their
diverse applications. Among them it are worth mentioning measure theory and stochastic processes
in Banach spaces, approaches scrutinizing periodic or almost periodic function perturbations [31],
of distortions in high-frequency pulse acoustic signals [32].
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