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Abstract: The asset flow differential equation (AFDE) is the mathematical model that plays
an essential role for planning to predict the financial behavior in the market. In this paper,
we introduce the fractional asset flow differential equations (FAFDEs) based on the Liouville-Caputo
derivative. We prove the existence and uniqueness of a solution for the FAFDEs. Furthermore, the
stability analysis of the model is investigated and the numerical simulation is accordingly performed
to support the proposed model.
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1. Introduction

In recent years, the important thing for financial behavior has been understanding and classifying
the dynamics of the financial system such as price crashes, bubbles, momentum and liquidity.
Over the last three decades, the mathematical model has played an essential role in preparing planning to
predict the financial behavior in the market in the future. Thus, a number of mathematical models have
been used to predict financial behavior [1–12]. Moreover, in order to obtain better simulation of future
phenomena, nonlinear continuous models have also developed. Researchers proposed several nonlinear
continuous models for describing the complicated dynamics of the financial system. For example,
in 2008, Fanti et al. [10] proposed the behavior of capital stock by using a dynamic Investment
Saving-Liquidity Preference Money Supply (IS-LM) model with delay, and Chatterjee et al. [11] proposed
a dynamic Hecker-Ohlin model and considered the equilibrium of the model. Moreover, Yang et al. [12]
proposed a herd mechanism of an open financial market for considering volatility and parameters of
bubbles and collapses in the market. In this paper, we study the analysis of a nonlinear system that is the
asset flow differential equations (AFDEs). AFDEs were proposed and developed by Gaginalp et al. [13].
They investigated the solution of autonomous equations with dimension n ≥ 3. This model may
describe many behaviors in real financial markets [13–16]. The model variables are explained by the
demand, the supply, the market price, the transition rate, the trend-based and value-based of the
investor preferences at sudden times [13,17,18].

Fractional calculus was introduced for over three centuries. At the beginning, fractional calculus
was only in a theoretical sense. The traditional system of integer-order of differential equations may
fail to explain complicated incidents in real phenomena. However, nowadays, fractional order of
differential equations has been applied to model the complicated real situations involving many
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areas—for example, physics, engineering, epidemic, finance and sciences [19–24]. The concept of
a fractional model helps with expressing the data structure for real life situations more than the integer
model. The main dominant point of fractional order equations compared to integer order equations
is its memory, which is the history of the system [25–27].

Since variables in the financial system have long memories, the fractional order system is suitable
for studying the behavior in financial systems. There are many papers proposing fractional-order
differential equations for the financial system [25–28] consisting of the parts of products, money, bond
and labor force. Here, we propose a system of time-fractional differential equations modified from the
Gaginalp’s model [13] to describe the behavior of asset flow in the financial market.

A number of researchers studied about the existence and uniqueness for the solution of fractional
differential equations [29–34]. However, there has been a lack of research focusing on the global
existence and uniqueness for the solution of the fractional asset flow differential equations (FAFDEs).
In this paper, we propose an alternative way to prove the local existence solution of the system of
fractional-order differential equations by the Banach fixed point theorem, which helps to explain the
solution of the fractional model. Moreover, the global existence for the solution of the fractional model
can be express by continuation theorem.

The remainder of this work is organized as follows. In Section 2, the definitions and lemma
involving the fractional-order differential equations are presented. In addition, we present the fractional-
order model in this section. In Section 3, the local existence and uniqueness theorem of the model’s
solution is presented. In Section 4, we propose the continuation theorems for the model to extend
the local solution into the global solution. The stability analysis of the fractional model is presented
and is followed by the numerical simulation in Section 6. Finally, section 7 concludes and discusses
this work.

2. Model Formulation

2.1. Fractional Calculus

Definitions of fractional integral and derivatives [19,35] are as follows :

Definition 1. The Riemann–Liouville integral of order 0 < α < 1 for a function f is defined as:

RL Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, (1)

where Γ is the gamma function.

Definition 2. The Riemann–Liouville derivative of order 0 < α < 1 for a function f : (0, ∞) → R is
defined as:

RLDα
t f (t) =

1
Γ(1− α)

d
dt

∫ t

0

f (s)
(t− s)α

ds. (2)

The regularization definition of the Riemann–Liouville derivative was introduced by
Liouville–Caputo in 1967 [36].

Definition 3. The Liouville–Caputo–type fractional derivative of order 0 < α < 1 for a function
f : (0, ∞)→ R is defined by:

Dα
t f (t) =

1
Γ(1− α)

∫ t

0

f ′(s)
(t− s)α

ds. (3)

The most regular definition is the Liouville–Caputo-type definition because the initial condition
for fractional order differential equations with Liouville–Caputo-type derivatives is similar in form to
the integer-order differential equation [19–22].



Mathematics 2017, 5, 33 3 of 17

Lemma 1. (Banach fixed point theorem) Let A be a closed convex bounded subset of a Banach space X and V
be a contraction mapping from A into A. Then, there exists a unique z ∈ A such that V(z) = z.

2.2. Fractional Model

The behavior of price dynamic in the market based on:

x1(t) the market price of an asset at time t,
x2(t) the fraction of total asset invested in the stock at time t,
x3(t) the trend-based component of the investor preference at time t,
x4(t) the value-based component of the investor preference at time t,

Pa the fundamental value,
D the demand,
S the supply.

Gaginalp et al. [13] proposed the dynamical system of AFDEs to describe those four state variables
in the market price :

dx1

dt
= x1(t) · F

(
D
S

)
,

dx2

dt
= k(t)(1− x2(t))− (1− k(t))x2(t) + x2(t)(1− x2(t))F

(
D
S

)
,

dx3

dt
= a1

(
a2F

(
D
S

)
− x3(t)

)
,

dx4

dt
= a3

(
a4

Pa − x1(t)
Pa

− x4(t)
)

,

(4)

where x1(0) = x1,0, x2(0) = x2,0, x3(0) = x3,0, x4(0) = x4,0 and xi,0 are positive constants for
i = 1, 2, 3, 4.

The value of the market price of an asset at time t can be only a positive number and cannot
be approached to infinity, the value of the fraction of total assets is defined between 0 and 1.
The demand (D) and the supply (S) can be determined as D = k(t)(1− x2(t)) and S = (1− k(t))x2(t),
respectively. k(t) is the transition rate that is dependent on x3(t) and x4(t) defined by k(t) =

0.5 + 0.5 tanh(x3(t) + x4(t)), F(t) is an increasing continuous function with F(1) = 0, and Pa, a1, a2, a3

and a4 are positive constants.
In this article, the FAFDEs based on the Liouville–Caputo fractional derivative are introduced

as follows:

Dα
t x1 = x1(t)F (G(t, x1(t), x2(t), x3(t), x4(t))) ,

Dα
t x2 = K(t, x1(t), x2(t), x3(t), x4(t))− x2(t) + x2(t)(1− x2(t))F (G(t, x1(t), x2(t), x3(t), x4(t))) ,

Dα
t x3 = b1F(G(t, x1(t), x2(t), x3(t), x4(t)))− b2x3(t),

Dα
t x4 = b3 − b4x1(t)− b5x4(t),

(5)

where Dα
t is the Liouville–Caputo fractional derivative of order 0 < α < 1, bj are positive constants for

j = 1, 2, 3, 4, 5 and xi(0) = xi,0 are positive constants for i = 1, 2, 3, 4.
We need the following assumptions; let X be a Banach space with its norm || · ||X.

(A1) F : [0, ∞)→ R is increasing and continuously differentiable where F(1) = 0, and satisfies that
for any p, q ∈ [0, ∞),

|F(p)− F(q)| ≤ L1|p− q|

for some positive constant L1.
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(A2) G : (0, ∞) × X4 → [0, ∞) is continuous and satisfies there being two constants L2 and L3

such that:

|G(t, x1, x2, x3, x4)− G(t, y1, y2, y3, y4)| ≤ L2

4

∑
i=1
|xi(t)− yi(t)|

and supt∈(0,∞) |G(t, 0, 0, 0, 0)| ≤ L3 for any t > 0.

(A3) K : (0, ∞)× X4 → (0, ∞) is continuously differentiable and has the following : there exists two
positive constants L4 and L5 such that:

|K(t, x1, x2, x3, x4)− K(t, y1, y2, y3, y4)| ≤ L4

4

∑
i=1
|xi(t)− yi(t)|

and supt∈(0,∞) |K(t, 0, 0, 0, 0)| ≤ L5 for any t > 0.

3. Local Existence and Uniqueness of a Solution

In this section, we show that system (5) has a unique continuous solution by the Banach fixed
point theorem. To do so, we introduce a Banach space:

C[0, T] = {u : [0, T]→ R such that u is continuous}

and its norm is defined by:
||u||C[0,T] = sup

t∈[0,T]
|u(t)|,

with T being a positive constant.

Theorem 1. There exists a finite time h such that system (5) has a unique continuous solution on [0, h].

Proof. Let M be a constant with M ≥ 4 max{|xi,0|, i = 1, 2, 3, 4}+ 1.
Choose a positive constant h where:

h < min

{(
Γ(α + 1)

4M(|F(L3)|+ ML1L2)

) 1
α

,
(

Γ(α + 1)
4(L5 + (1 + L4)M + M(1 + M)[|F(L3)|+ ML1L2])

) 1
α

,

(
Γ(α + 1)

4(b1[|F(L3)|+ ML1L2] + b2M)

) 1
α

,
(

Γ(α + 1)
b3 + (b4 + b5)M

) 1
α

,(
Γ(α + 1)

1 + b2 + b4 + b5 + L4 + (2 + 2M)|F(L3)|+ (3M2 + 4M + b1)L1L2

) 1
α

}
.

(6)

Let X4 = {x = (x1, x2, x3, x4)| xi ∈ X for i = 1, 2, 3, 4} with X = C[0, h]. Then, X4 is a Banach
space equipped with the norm ||x||X4 = ||x1||X + ||x2||X + ||x3||X + ||x4||X for any x = (x1, x2, x3, x4).

We construct the set U = {x ∈ X4 : ||x||X4 ≤ M}. Clearly, U ⊂ X4 is closed, bounded
and convex.
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We also define the operator B : U → X4 by Bx = (B1x, B2x, B3x, B4x) where Bi : U → X with
i = 1, 2, 3, 4 and Bi are given by:

B1x = x1,0 +
1

Γ(α)

∫ t

0
(t− s)α−1 [x1(s)F(G(s, x1(s), x2(s), x3(s), x4(s)))] ds,

B2x = x2,0 +
1

Γ(α)

∫ t

0
(t− s)α−1[K(s, x1(s), x2(s), x3(s), x4(s))− x2(s)

+ x2(s)(1− x2(s))F(G(s, x1(s), x2(s), x3(s), x4(s)))]ds,

B3x = x3,0 +
1

Γ(α)

∫ t

0
(t− s)α−1 [b1F(G(s, x1(s), x2(s), x3(s), x4(s)))− b2x3(s)] ds,

B4x = x4,0 +
1

Γ(α)

∫ t

0
(t− s)α−1 [b3 − b4x1(s)− b5x4(s)] ds.

Let x, y ∈ U. We want to show that B : U → U.
Consider

|B1x(t)| ≤ |x1,0|+
1

Γ(α)

∫ t

0
(t− s)α−1|x1(s)||F(G(s, x1(s), x2(s), x3(s), x4(s)))|ds

≤ |x1,0|+
M

Γ(α)

∫ t

0
(t− s)α−1

[
|F(G(s, 0, 0, 0, 0))|+ L1L2

4

∑
i=0
|xi(s)|

]
ds

≤ |x1,0|+
M

Γ(α)

∫ t

0
(t− s)α−1 [|F(L3)|+ L1L2M] ds

≤ |x1,0|+
M

Γ(α)
[|F(L3)|+ L1L2M]

hα

α
.

It follows from the definition of h (6) that:

||B1x||X ≤ |x1,0|+ 1/4. (7)

Consider

|B2x(t)| ≤|x2,0|+
1

Γ(α)

∫ t

0
(t− s)α−1[L5 + L4 M + M + M(1 + M)|F(G(s, x1(s), x2(s), x3(s), x4(s))|]ds

≤|x2,0|+
1

Γ(α)
[L5 + L4 M + M + M(1 + M) [|F(L3)|+ L1L2 M]]

hα

α
.

By the inequality (6),
||B2x||X ≤ |x2,0|+ 1/4. (8)

Consider

|B3x(t)| ≤ |x3,0|+
1

Γ(α)

∫ t

0
(t− s)α−1[b1 [|F(L3)|+ L1L2M] + b2M]ds

≤ |x3,0|+
1

Γ(α)
[b1 [|F(L3)|+ L1L2M] + b2M]

hα

α
.

Then,
||B3x||X ≤ |x3,0|+ 1/4. (9)
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Consider

|B4x(t)| ≤ |x4,0|+
1

Γ(α)

∫ t

0
(t− s)α−1[b3 + b4M + b5M]ds

≤ |x4,0|+
1

Γ(α)
[b3 + (b4 + b5)M]

hα

α
.

Then,
||B4x||X ≤ |x4,0|+ 1/4. (10)

Therefore, from the inequalities (7)–(10) and the definition of h as in the inequality (6):

||Bx||X4 = ||B1x||X + ||B2x||X + ||B3x||X + ||B4x||X
≤ 4max{|xi,0|, i = 1, 2, 3, 4}+ 1

≤ M.

Then, this means that B maps U into itself.
Next, we want to show that B is a contraction mapping.
Consider

|B1x(t)− B1y(t)| ≤ 1
Γ(α)

∫ t

0
(t− s)α−1|x1(s)F(G(s, x1(s), x2(s), x3(s), x4(s)))

− y1(s)F(G(s, y1(s), y2(s), y3(s), y4(s)))|ds

≤ 1
Γ(α)

∫ t

0
(t− s)α−1[|x1(s)||F(G(s, x1(s), x2(s), x3(s), x4(s)))

− F(G(s, y1(s), y2(s), y3(s), y4(s)))|
+ |x1(s)− y1(s)||F(G(s, y1(s), y2(s), y3(s), y4(s)))|]ds

≤ 1
Γ(α)

∫ t

0
(t− s)α−1[ML1L2||x− y||X4 + ||x− y||X4 [|F(L3)|+ L1L2M]]ds

≤ 1
Γ(α)

[2ML1L2 + |F(L3)|]
hα

α
||x− y||X4

= L6||x− y||X4 ,

where L6 =
2ML1L2 + |F(L3)|

Γ(α + 1)
hα.

Thus,
|B1x(t)− B1y(t)| ≤ L6||x− y||X4 . (11)
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Consider

|B2x(t)− B2y(t)|

≤ 1
Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣K(s, x1(s), x2(s), x3(s), x4(s))− K(s, y1(s), y2(s), y3(s), y4(s))

+ (y2(s)− x2(s)) + x2(s)F(G(s, x1(s), x2(s), x3(s), x4(s))− x2
2(s)F(G(s, x1(s), x2(s), x3(s), x4(s)))

− y2(s)F(G(s, y1(s), y2(s), y3(s), y4(s))) + y2
2(s)F(G(s, y1(s), y2(s), y3(s), y4(s)))

∣∣∣∣ds

≤ 1
Γ(α)

∫ t

0
(t− s)α−1

[
|K(s, x1(s), x2(s), x3(s), x4(s))− K(s, y1(s), y2(s), y3(s), y4(s))|

|(y2(s)− x2(s))|+ |(x2(s)− y2(s))||F(G(s, x1(s), x2(s), x3(s), x4(s)))|

+ |x2(s)||F(G(s, x1(s), x2(s), x3(s), x4(s)))− F(G(s, y1(s), y2(s), y3(s), y4(s)))|

+ |x2
2(s)||F(G(s, x1(s), x2(s), x3(s), x4(s)))− F(G(s, y1(s), y2(s), y3(s), y4(s)))|

+ |x2
2(s)− y2

2(s)||F(G(s, y1(s), y2(s), y3(s), y4(s)))|
]

ds

≤ 1
Γ(α)

∫ t

0
(t− s)α−1

[
L4||x− y||X4 |+ (y2(s)− x2(s))|

+ |(x2(s)− y2(s))| [|F(L3)|+ L1L2 M] + |x2(s)|(L1L2||x− y||X4 )

+ |x2
2(s)| [L1L2||x− y||X4 ] + |x2(s) + y2(s)||x2(s)− y2(s)| [|F(L3)|+ L1L2 M]

]
ds

≤ 1
Γ(α)

∫ t

0
(t− s)α−1

[
L4||x− y||X4 + ||x− y||X4 + ||x− y||X4 [|F(L3)|+ L1L2 M]

+ ML1L2||x− y||X4 + M2L1L2||x− y||X4 + 2M||x− y||X4 [|F(L3)|+ L1L2 M]

]
ds

≤ 1
Γ(α)

∫ t

0
(t− s)α−1||x− y||X4

[
L4 + 1 + 2ML1L2 + 3M2L1L2 + (1 + 2M)|F(L3)|

]
ds

≤ 1
Γ(α)

[
L4 + 1 + 2ML1L2 + 3M2L1L2 + (1 + 2M)|F(L3)|

]
hα

α
||x− y||X4

= L7||x− y||X4 ,

where L7 =
1 + L4 + 2ML1L2 + 3M2L1L2 + (1 + 2M)|F(L3)|

Γ(α + 1)
hα.

Thus,
|B2x(t)− B2y(t)| ≤ L7||x− y||X4 . (12)

Consider

|B3x(t)− B3y(t)| ≤ 1
Γ(α)

∫ t

0
(t− s)α−1

[
b1|F(G(s, x1(s), x2(s), x3(s), x4(s)))

− F(G(s, y1(s), y2(s), y3(s), y4(s)))|+ b2|x3(s)− y3(s)|
]

ds

≤ 1
Γ(α)

∫ t

0
(t− s)α−1

[
b1L1L2||x− y||X4 + b2||x− y||X4

]
ds

≤ b1L1L2 + b2

Γ(α)
hα

α
||x− y||X4

= L8||x− y||X4 ,

where L8 =
b1L1L2 + b2

Γ(α + 1)
hα.
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Thus,
|B3x(t)− B3y(t)| ≤ L8||x− y||X4 . (13)

Consider

|B4x(t)− B4y(t)| ≤ 1
Γ(α)

∫ t

0
(t− s)α−1

(
b4|x1(s)− y1(s)|+ b5|x4(s)− y4(s)|

)
ds

≤ (b4 + b5)

Γ(α)
hα

α
||x− y||X4

= L9||x− y||X4 ,

where L9 =
(b4 + b5)hα

Γ(α + 1)
.

Thus,
|B4x(t)− B4y(t)| ≤ L9||x− y||X4 . (14)

We have that from the inequalities (11)–(14) and the definition of h as in the inequality (6):

||Bx− By||X4 ≤ (L6 + L7 + L8 + L9)||x− y||X4 , (15)

with 0 < L6 + L7 + L8 + L9 < 1. This shows that B is a contraction mapping.
Therefore, by Banach fixed point theorem, system (5) has a unique continuous solution

on [0, h].

4. Continuation Theorems

In this section, we extend the continuation theorem for the system of FAFDEs. Firstly, we give
the following lemma.

Lemma 2. (Gronwall-Bellman inequality [37]) Suppose γ > 0, a(t) is a nonnegative function that is locally
integrable on 0 ≤ t < T ≤ ∞, and g(t) is a nonnegative, nondecreasing continuous bounded function defined
on 0 ≤ t < T. If u(t) is nonnegative and locally integrable on 0 ≤ t < T with:

u(t) ≤ a(t) + g(t)
∫ t

0
(t− s)γ−1u(s)ds

on this interval, then:

u(t) ≤ a(t) + g(t)
∫ t

0

[
∞

∑
n=1

(g(t)Γ(γ))n

Γ(nγ)
(t− s)(nγ−1)a(s)

]
ds.

Furthermore, if a(t) is nondecreasing on 0 ≤ t < T, then:

u(t) ≤ a(t)Eγ(g(t)Γ(γ)tγ),

where Eγ(z) is the Mittag–Leffler function defined by:

Eγ(z) =
∞

∑
k=0

zk

Γ(kγ + 1)
for z > 0.

Theorem 2. If x1 and x2 are bounded on [0, ∞), then system (5) has a solution x(t) for t ∈ [0, ∞).

Proof. Suppose that solution x(t) of system (5) has the maximal existence interval defined by [0, β)

with β < ∞. Let us consider: for t ∈ [0, β),
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|x4(t)| ≤ |x4,0|+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣b3 − b4x1(s)− b5x4(s)
∣∣∣∣ds

≤ |x4,0|+
1

Γ(α)

∫ t

0
(t− s)α−1

[
b3 + b4|x1(s)|+ b5|x4(s)|

]
ds.

By the assumption of theorem, x1(t) is bounded on [0, ∞), we have that |x1(t)| ≤ C1 for t ∈ [0, β)

and then for t ∈ [0, β),

|x4(t)| ≤ |x4,0|+
1

Γ(α)

∫ t

0
(t− s)α−1

[
b3 + b4C1 + b5|x4(s)|

]
ds

≤ |x4,0|+
b3 + b4C1

Γ(α + 1)
βα +

b5

Γ(α)

∫ t

0
(t− s)α−1|x4(s)|ds.

It follows from the Lemma 2 that, for t ∈ [0, ∞),

|x4(t)| ≤
[
|x4,0|+

b3 + b4C1

Γ(α + 1)
βα

]
Eα

(
b5

Γ(α)
Γ(α)tα

)
.

It is well-known that the Eα is an analytic function [38] and then we can conclude the x4 is
bounded on [0, β).

Next, we consider x3 on [0, β). Then, for t ∈ [0, β),

|x3(t)| ≤ |x3,0|+
1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣b1F(G(s, x1(s), x2(s), x3(s), x4(s)))− b2x3(s)
∣∣∣∣ds

≤ |x3,0|+
1

Γ(α)

∫ t

0
(t− s)α−1

[
b1

(
|F(L3)|+ L1L2

4

∑
i=0
|xi(s)|

)
+ b2|x3(s)|

]
ds

≤ |x3,0|+
1

Γ(α)

∫ t

0
(t− s)α−1

[
b1 (|F(L3)|+ L1L2[|x1(s)|+ |x2(s)|+ |x4(s)|])

+ b1(|F(L3)|+ L1L2|x3(s)|) + b2|x3(s)|
]

ds.

Since x1, x2 and x4 are bounded on [0, β), ∃C3 > 0 such that supt∈[0,β)(|x1(t)| + |x2(t)| +
|x3(t)|) ≤ C3. Then;

|x3(t)| ≤ |x3,0|+
1

Γ(α)

∫ t

0
(t− s)α−1

[
b1 (2|F(L3)|+ L1L2C3) + (b1L1L2 + b2)|x3(s)|)

]
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1(b1L1L2 + b2)|x3(s)|)ds

≤ |x3,0|+
b1 (2|F(L3)|+ L1L2C3)

Γ(α + 1)
βα +

1
Γ(α)

∫ t

0
(t− s)α−1(b1L1L2 + b2)|x3(s)|)ds.

By Lemma 2, we obtain:

|x3(t)| ≤
[
|x3,0|+

b1 (2|F(L3)|+ L1L2C3)

Γ(α + 1)
βα

]
Eα

(
b1L1L2 + b2

Γ(α)
Γ(α)tα

)
.

Thus, x3 is bounded on [0, β). Hence, x(t) is bounded on [0, β). Since x are continuous and
bounded on [0, β),limt→β− x(t) is finite.

Let limt→β− x(t) = x(β) with x(β) = (x1(β), x2(β), x3(β), x4(β)). Then, x(t) ∈ C4[0, β].
Consider t ∈ [β, β + 1]. Let M̃ > 4max{xi(β), i = 1, 2, 3, 4}+ 1.
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Similar to Theorem 1, we can construct the positive constant h̃ depending on M̃ and h̃ < 1 such
that our problem has a solution on [β, β + h̃]. This part is shown in the below.

Let X̃ = C[β, β + h̃] be a Banach space with the norm ||y||X̃ = supt∈[β,β+h̃] |y(t)| and

X̃4 = {y = (y1, y2, y3, y4)| yi ∈ X̃ for i = 1, 2, 3, 4}. Then, X̃4 is a Banach space equipped with
the norm ||y||X̃4 = ||y1||X̃ + ||y2||X̃ + ||y3||X̃ + ||y4||X̃ for any y = (y1, y2, y3, y4).

We construct the set Ũ =
{

y ∈ X̃4 : ||y||X̃4 ≤ M̃
}

.

We define the operator B̃ : Ũ → X̃4 by B̃y = (B̃1y, B̃2y, B̃3y, B̃4y) for y ∈ Ũ and for any y ∈ Ũ,
B̃i is constructed by:

B̃1y = x1(β) +
1

Γ(α)

∫ t

β
(t− s)α−1y1(s)F(G(s, y1(s), y2(s), y3(s), y4(s)))ds,

where x1(β) = x1,0 +
1

Γ(α)

∫ β

0
(β− s)α−1y1(s)F(G(s, y1(s), y2(s), y3(s), y4(s)))ds,

B̃2y = x2(β) +
1

Γ(α)

∫ t

β
(t− s)α−1[K(y1(s), y2(s), y3(s), y4(s))− y2(s)

+ y2(s)(1− y2(s))F(G(s, y1(s), y2(s), y3(s), y4(s)))]ds,

and x2(β) = x2,0 +
1

Γ(α)

∫ β

0
(β− s)α−1[K(y1(s), y2(s), y3(s), y4(s))− y2(s)

+y2(s)(1− y2(s))F(G(s, y1(s), y2(s), y3(s), y4(s)))]ds,

B̃3y = x3(β) +
1

Γ(α)

∫ t

β
(t− s)α−1[b1F(G(s, y1(s), y2(s), y3(s), y4(s)))− b2y3(s)]ds,

and x3(β) = x3,0 +
1

Γ(α)

∫ β

0
(β− s)α−1[b1F(G(s, y1(s), y2(s), y3(s), y4(s)))− b2y3(s)]ds,

B̃4y = x4(β) +
1

Γ(α)

∫ t

β
(t− s)α−1[b3 − b4y1(s)− b5y4(s)]ds,

and x4(β) = x4,0 +
1

Γ(α)

∫ β

0
(β− s)α−1[b3 − b4y1(s)− b5y4(s)]ds.

To make it clear about the construction of h̃, without loss of generality, we only show that B̃1 maps
Ũ into Ũ. Let us consider that for y ∈ Ũ:

|B̃1y| ≤ |x1(β)|+ 1
Γ(α)

∫ t

β
(t− s)α−1|y1(s)||F(G(s, y1(s), y2(s), y3(s), y4(s)))|ds

≤ |x1(β)|+ 1
Γ(α)

M̃
∫ t

β
(t− s)α−1[|F(G(s, 0, 0, 0, 0))|+ LM̃]ds

≤ |x1(β)|+ M̃
Γ(α)

[|F(L3)|+ LM̃]

[
(β + h̃)α

α
− βα

α

]
.

In this case, the constant h̃ is determined by:

h̃ <

[
αΓ(α)

4M̃[|F(L3)|+ LM̃]
+ βα

] 1
α

− β.

We can construct h̃ in this way and follow method as in Theorem 1.
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By considering as the Theorem 1, B̃ has a fixed point x̃, that is x̃(t) = B̃x̃(t) for t ∈ [β, β + h̃].
We next define the function x∗ on [0, β + h̃] by:

x∗(t) =

{
x(t), t ∈ [0, β],
x̃(t), t ∈ [β, β + h̃].

(16)

We can see that x∗ is a continuous solution of our problem on [0, β + h̃] with β + h̃ > β.
We thus get a contradiction. Therefore, system (5) has a solution on [0, ∞).

Remark 1. Because x1 and x2 are the market price and the fraction of total asset invested, respectively.
By assumptions of the model [13], it is possible to assume that x1 and x2 are bounded.

5. Stability Analysis

In order to determine the stability of system (5), we firstly consider the equilibrium point. To find
the equilibrium point C∗ = (x∗1 , x∗2 , x∗3 , x∗4), we set all equations of system (5) to zero :

Dα
t x1 = 0, Dα

t x2 = 0, Dα
t x3 = 0, Dα

t x4 = 0. (17)

Then:
C∗1 =

(
x∗1,1, x∗1,2, x∗1,3, x∗1,4

)
,

where:

x∗1,2 = K
(

x∗1 , x∗2 , 0,
b3 − b4x∗1

b5

)
,

x∗1,3 = 0,

x∗1,4 =
b3 − b4x∗1

b5
.

C∗2 =
(

x∗2,1, x∗2,2, x∗2,3, x∗2,4
)

,

where:

x∗2,1 = 0,

x∗2,2 =
(1− F∗) +

√
4F∗K

(
0, x∗2 , b1

b2
F∗, b3

b5

)
+ (1− F∗)2

2F∗
,

x∗2,3 =
b1

b2
F∗,

x∗2,4 =
b3

b5
.

C∗3 =
(

x∗3,1, x∗3,2, x∗3,3, x∗3,4
)

,
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where:

x∗3,1 = 0,

x∗3,2 =
(1− F∗)−

√
4F∗K

(
0, x∗2 , b1

b2
F∗, b3

b5

)
+ (1− F∗)2

2F∗
,

x∗3,3 =
b1

b2
F∗,

x∗3,4 =
b3

b5
,

with 4F∗K
(

0, x∗2 , b1
b2

F∗, b3
b5

)
+ (1− F∗)2 ≥ 0 and F∗ = F(G(t, x∗j,1, x∗j,2, x∗j,3, x∗j,4)) for j = 1, 2, 3.

It is easy to see that the Jacobian matrix of system (5) is:

J(C∗j ) =


F∗ x∗j,1Fx2 x∗j,1Fx3 x∗j,1Fx4

Kx1 − (x∗j,2)
2Fx1 µj Kx3 − (x∗j,2)

2Fx3 Kx4 − (x∗j,2)
2Fx4

b1Fx1 b1Fx2 b1Fx3 − b2 b1Fx4

−b4 0 0 −b5

 , (18)

where:

µj = Kx2 − 1 + x∗j,2Fx2 + F∗ − (x∗j,2)
2Fx2 − 2x∗j,2F∗,

Fxi =
∂

∂xi(t)
[
F(G(t, x1, x2, x3, x4))

]∣∣∣∣
Cj

,

Kxi =
∂

∂xi(t)
[
K(t, x1, x2, x3, x4)

]∣∣∣∣
Cj

,

for i = 1, 2, 3, 4 and j = 1, 2, 3.
The characteristic equation of J(C∗j ) for j = 1, 2, 3 is:

λ4 + ρ1λ3 + ρ2λ2 + ρ3λ + ρ4 = 0, (19)

where:

ρ1 = (x∗j,2)
2Fx2 + 2(x∗j,2 − 1)F∗ − x∗j,2Fx2 − b1Fx3 − Kx2 + b2 + b5 + 1,

ρ2 = (x∗j,2)
2Fx2

(
x1Fx1 − F∗ + b2 + b5

)
+ x∗j,2

(
b1Fx2 Fx3 − 2b1Fx3 F∗ − 2[F∗]2 + Fx2 F∗

+ 2b2F∗ + b5F∗ − (b2 + b5)Fx2

)
+ x∗j,1

(
b4Fx4 − Fx2 Kx1 − b1Fx1 Fx3

)
+

(
Kx2 − 2(b2 + b5 − b1Fx3) + F∗ − 1

)
F∗ + b1Fx3 Kx2 − b1b5Fx3 − b1Fx2 Kx3 − b1Fx3

− b2Kx2 − b5Kx2 + b2b5 + b2 + b5,
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ρ3 = (x∗j,2)
2
(
(b2 + b5)x∗j,1Fx1 Fx2 − (b2 + b5)Fx2 F∗ + b2b5Fx2

)
+ x∗j,1x∗j,2

(
2b4Fx4 [2F∗ − Fx2 ]

+ b1Fx1 Fx3 [Fx2 − 2F∗]
)
+ x∗j,1

(
b1Fx1 Fx3 F∗ + b1Fx1 Fx3 [Kx2 − b5]− b4Fx4 F∗

− b1Fx1 Fx2 Kx3 − (b2 + b5)Fx2 Kx1 − b1Fx1 Fx3 + b4Fx2 Kx4 + b4Fx4 [b2 − Kx2 + 1]
)

+ x∗j,2

(
[2F∗ − Fx2 ]b1Fx3 F∗ − b1b5Fx32F∗ + b1b5Fx3 Fx2 − 2(b2 + b5)(F∗)2 + (b2 + b5)Fx2 F∗

+ 2b2b5[F∗ − Fx2 ]

)
+ b1b5[Fx3 Kx2 − Fx2 Kx3 ]− b1b5Fx3 + b2b5[1 + Kx2 ]

+ b1[Fx2 Kx3 + (b5 − Kx2)Fx3 − Fx3 F∗]F∗ + (b2 + b5)[F∗]2 + [b1Fx3 + (b2 + b5)Kx2

− 2b2b5 − b2 − b5]F∗,

ρ4 = x∗j,1x∗j,2

(
2[b2b4Fx4 − b1b5Fx1 Fx3 ]F

∗ + b5Fx1 Fx2 [b1Fx3 + b2x∗j,2]− b2b4Fx2 Fx4

)
+ x∗j,1

(
b1b5[Fx1 Fx3(Kx2 + F∗)− Fx1(Fx2 Kx3 − Fx3)] + b2b4[Fx2 Kx4 − Fx4 Kx2

− Fx4 F∗] + b2[b4Fx4 − b5Fx2 Kx1 ]

)
+ x∗j,2

(
b5Fx1 Fx2 [b2 − b2x2 − b1Fx3 ]

+ 2b5[b1Fx3 − b2](F∗)2
)
+ b1b5[Fx2 Kx3 + Fx3(1− Kx2) + Fx3 F∗]F∗ + b2b5[Kx2 − 1 + F∗]F∗.

In order to obtain main results, we need the following proposition, referred to in [39,40].

Proposition 1. The equilibrium points are locally asymptotically stable if all the eigenvalues λ of the Jacobian
matrix evaluated at the equilibrium points satisfy:

| arg(λ)| > απ

2
. (20)

Theorem 3. If ρ4 > 0, ρ1 > 0, ρ1ρ2 > ρ3 and ρ1ρ2ρ3 = ρ2
1ρ4 + ρ2

3, then the equilibrium point is locally
asymptotically stable.

Proof. From the equations (18) and (19), we can find eigenvalues of the Jacobian matrix corresponding
to the equilibrium points from the fourth-order characteristic equation. Under assumptions of this
theorem, Ahmed et al. [41] show that | arg(λ)| > απ/2 for all eigenvalues λ. From Proposition 1,
we can conclude that the equilibrium points of system (5) is locally asymptotically stable.

6. Numerical Simulation

The exact solution of some fractional order differential equations can not be found. Thus,
the numerical solutions for fractional order differential equation model (5) can be approached by
using an algorithm based on an Adams–Bashforth type predictor-corrector method [42,43].

The numerical solutions of system (5) are carried out by setting functions F(t) = γ log t and
K(t, x1(t), x2(t), x3(t), x4(t)) = 0.5 + 0.5 tanh

(
x3(t) + x4(t)

)
. The model parameters are chosen to be

γ = 1.100, b1 = 0.870, b2 = 0.010, b3 = 0.027, b4 = 0.004 and b5 = 0.045, with the initial conditions
x1(0) = 6.50, x2(0) = 0.50, x3(0) = 0 and x4(0) = 0.0015.

The approximate solutions of market price (x1), fraction of total asset (x2), trend-based
component (x3) and value-based component (x4) of the FAFDEs with the different values of order,
α = 1, 0.9 and 0.8 are shown in Figures 1–4, respectively.
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Figure 1. Market price x1(t) for order α = 1.0, 0.9 and 0.8.
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Figure 2. Fraction of total asset x2(t) for order α = 1.0, 0.9 and 0.8.
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Figure 3. Trend-based component x3(t) for order α = 1.0, 0.9 and 0.8.
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Figure 4. Value-based component x4(t) for order α = 1.0, 0.9 and 0.8.

The results in Figures 1–3 indicate that the behavior for the market price of an asset, the fraction
of total asset invested in the stock, and the trend-based component of the investor preference have
the same pattern at each time for an integer–order system with α = 1.0 and a fractional–order system
with α = 0.9 and α = 0.8. To investigate the effect of fractional derivative order on market behavior,
the numerical results demonstrate that a decrease in the derivative order is associated with a decrease
in the maximum value of x1, x2 and x3. Figure 4 shows that decreasing of derivative order leads to
a decrease in the value-based component at each time. In addition, the market price as shown in
Figure 1 represents the pattern of head and shoulders or rounding top, in which a major high appears
by a local maximum. In order to execute planning in the future, investors can buy or sell when the
pattern completes. By Theorem 3, the equilibrium point C∗ = (x∗1 , x∗2 , x∗3 , x∗4) is locally stable, where
x∗1 = 6.6141, x∗2 = 0.5060, x∗3 = 0 and x∗4 = 0.0121. In other words, the values of x1, x2, x3 and x4

converge to equilibrium point C∗ at some long-term behaviors.

7. Discussion and Conclusions

In this paper, we have proposed a fractional order asset flow differential equations model, which
is a generalization of an integer order model proposed by Gaginalp [13]. Then, we propose and prove
the local existence and uniqueness theorems for the solution of the model by applying the Banach
fixed point theorem. After that, we extend the local solution, t ∈ (0, h], to a global solution, t ∈ (0, ∞),
by proposing the continuation theorem for the model. The stability of the model is also investigated
and we obtain the sufficient condition of the parameters. The numerical solutions of the model are
illustrated by using an Adams–Bashforth type predictor-corrector method.
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