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Abstract: In this paper, inspired by the concept of b-metric space, we introduce the concept of
extended b-metric space. We also establish some fixed point theorems for self-mappings defined on
such spaces. Our results extend/generalize many pre-existing results in literature.

Keywords: fixed point; b-metric

1. Introduction

The idea of b-metric was initiated from the works of Bourbaki [1] and Bakhtin [2]. Czerwik [3]
gave an axiom which was weaker than the triangular inequality and formally defined a b-metric
space with a view of generalizing the Banach contraction mapping theorem. Later on, Fagin et al. [4]
discussed some kind of relaxation in triangular inequality and called this new distance measure as
non-linear elastic mathing (NEM). Similar type of relaxed triangle inequality was also used for trade
measure [5] and to measure ice floes [6]. All these applications intrigued and pushed us to introduce
the concept of extended b-metric space. So that the results obtained for such rich spaces become more
viable in different directions of applications.

Definition 1. Let X be a non empty set and s > 1 be a given real number. A functiond : X x X — [0, 00) is
called b-metric (Bakhtin [2], Czrerwik [3]) if it satisfies the following properties for each x,y,z € X.

(b1): d(x,y) =0 x=1y;
(b2): d(x,y) = d(y, x);
(b3): d(x,z) <s[d(x,y)+d(y,z)].

The pair (X, d) is called a b-metric space.

Example 1. 1. Let X := [,(R) with 0 < p < 1 where [,(R) := {{xy} C R : I37; |xu|P < oo}.
Defined : X x X — R as:

(Z |ty — yn|p Yy

where x = {x,},y = {yn}. Then d is a b-metric space [7-9] with coefficient s = 21/P.
2. Let X := Ly[0,1] be the space of all real functions x(t), t € [0,1] such that fo |x(t)|P < cowith0 < p < 1.
Defined : X x X — R" as:
/p
/ |x(t) |”dt)
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Then d is b-metric space [7-9] with coefficient s = 21/P.

The above examples show that the class of b-metric spaces is larger than the class of metric spaces.
When s = 1, the concept of b-metric space coincides with the concept of metric space. For some details
on subject see [7-12].

Definition 2. Let (X, d) be a b-metric space. A sequence {x, } in X is said to be:

(I)  Cauchy [12] if and only if d(xp, Xp,) — 0as n,m — oo;

(I)  Convergent [12] if and only if there exist x € X such that d(x,,x) — 0as n — oo and we write
limy, oo Xy = Xx;

(I1I) The b-metric space (X, d) is complete [12] if every Cauchy sequence is convergent.

In the following we recollect the extension of Banach contraction principle in case of
b-metric spaces.

Theorem 1. Let (X, d) be a complete b-metric space with constant s > 1, such that b-metric is a continuous
functional. Let T : X — X be a contraction having contraction constant k € [0,1) such that ks < 1. Then T
has a unique fixed point [13].

2. Results

In this section, we introduce a new type of generalized metric space, which we call as an extended
b-metric space. We also establish some fixed point theorems arising from this metric space.

Definition 3. Let X be a non empty set and 6 : X x X — [1,00). A function dg : X x X — [0, c0) is called
an extended b-metric if for all x,y,z € X it satisfies:

(dol) dg(x,y) = 0iff x = y;
(de2) do(x,y) = dg(y, x);
(dg3) dg(x,2) < 0(x,2)[dg(x,y) +dg(y, 2)]-

The pair (X, dg) is called an extended b-metric space.
Remark 1. If6(x,y) = s for s > 1 then we obtain the definition of a b-metric space.
Example 2. Let X = {1,2,3}. Define 6 : X x X — RT and dg : X x X — R™ as:
O(x,y) =14+x+y

do(1,1) = dg(2,2) = dy(3,3) =0
do(1,2) = dg(2,1) = 80,dg(1,3) = dg(3,1) = 1000,dy(2,3) = dy(3,2) = 600

Proof. (dg1l) and (dy2) trivially hold. For (dy3) we have:
de(1,2) = 80, 6(1,2) [dg(1,3) + dg(3,2)] = 4(1000 + 600) = 6400

dp(1,3) = 1000, 6(1,3) [dy(1,2) + dg(2,3)] = 5(80 + 600) = 3400

Similar calculations hold for dg(2,3). Hence for all x,y,z € X

do(x,2) < 0(x,2)[dg(x,y) + do(y, 2)]

Hence (X, dg) is an extended b-metric space. O
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Example 3. Let X = C([a,b],R) be the space of all continuous real valued functions define on [a,b].
Note that X is complete extended b-metric space by considering dg(x,y) = SUP 4] lx(t) — y(t)|?
with 6(x,y) = |x(t)| + |y(t)| +2, where 6 : X x X — [1,00).

7

The concepts of convergence, Cauchy sequence and completeness can easily be extended to the
case of an extended b-metric space.

Definition 4. Let (X, dg) be an extended b-metric space.

(i) A sequence {xy} in X is said to converge to x € X, if for every € > 0 there exists N = N(e) € N
such that dg(x,,x) < €, for all n > N. In this case, we write lim, 0 X, = X.
(ii) A sequence {x,} in X is said to be Cauchy, if for every € > 0 there exists N = N(e) € N such that

do(xm,xn) <€, forallm,n > N.
Definition 5. An extended b-metric space (X, dg) is complete if every Cauchy sequence in X is convergent.
Note that, in general a b-metric is not a continuous functional and thus so is an extended b-metric.
Example 4. Let X = NJooand let d : X x X — R be defined by [14]:

0ifm=nmn

l—% if m, n are even or mn = oo

d(xy) =4 "
5 ifm, nare odd and m # n

2 otherwise
Then (X, d) is a b-metric with s = 3 but it is not continuous.

Lemma 1. Let (X, dy) be an extended b-metric space. If dg is continuous, then every convergent sequence has
a unique limit.

Our first theorem is an analogue of Banach contraction principle in the setting of extended b-metric
space. Throughout this section, for the mapping T : X — X and xg € X, O(xg) = {xo, T%xo, T3xg, - - - }
represents the orbit of xg.

Theorem 2. Let (X,dg) be a complete extended b-metric space such that dg is a continuous functional.
Let T : X — X satisfy:
do(Tx,Ty) < kdg(x,y) forallx,y € X (1)

where k € [0,1) be such that for each xo € X, imy jm—s00 0 (X0, Xm) < % here x, = T'xg, n = 1,2,---.
Then T has precisely one fixed point ¢. Moreover for eachy € X, T"y — ¢.

Proof. We choose any x € X be arbitrary, define the iterative sequence {x, } by:
xo, Txg=1x1, xp=Tx; =T(Txp) = T2(x0)...,xn =T"xg....
Then by successively applying inequality (1) we obtain:
do(xn,xn41) < K'dg(x0,x1) @

By triangular inequality and (2), for m > n we have:
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do(xn, xm) < 0(xy, xm)K dg(x0,x1) + G(xn,xm)G(an,xm)k”Hdg(xo, X))+ -+
0 (xn, Xm)0 (X1, Xm)0 (X2, X )0 (Xim—2, Xm )0 (X—1, X ) K™ 1 dg (%0, x1)

dg(x0, 1){ (21, %0 )0(x2, X)) -+ - O(Xy—1, X )0 (X, X ) K" +

IN

0(x1,2%m)0(x2, X1 ) - - -G(xn,xm)G(an,xm)k”+1 4+ 4
0(x1, 2%m )0(x2, X)) + - O (0, Xm)O (X101, Xm ) --0(Xp—2, xm)e(xm_l,xm)km_l}

Since, limy, i —s00 0(Xp41, Xm )k < 1 so that the series Y, ; kK" [T\ 0(x;, xi) converges by ratio test
for each m € N. Let:

[e] n n . ]
S=Y K'[[6(xi,xm), Su=Y_ K]]0(xixm)
n=1 i=1 j=1 =1
Thus for m > n above inequality implies:

do(xn, Xn) < do(x0,31) [Sn-1 = Su]
Letting n — oo we conclude that {x, } is a Cauchy sequence. Since X is complete let x, — ¢ € X:

do(T¢,8) < 6(T¢,¢)[de(TS, xu) + do(xn, C)]
< Q(TCI (:) [kd(?(g/ xn—l) + d@(xn/ 6)]
< 0 asn — o

do(T¢, )
do(T¢,¢)

0

Hence ¢ is a fixed point of T. Moreover uniqueness can easily be invoked by using inequality (1),
sincek <1. [

In the following we include another variant which is analogue to fixed point theorem by Hicks
and Rhoades [15]. We need the following definition.

Definition 6. Let T : X — X and for some xg € X, O(xg) = {xo, fxo, f>x0, - } be the orbit of xy.
A function G from X into the set of real numbers is said to be T-orbitally lower semi-continuous at t € X if
{xn} C O(x¢) and x, — t implies G(t) < limy_e0 inf G(x) .

Theorem 3. Let (X,dy) be a complete extended b-metric space such that dy is a continuous functional.
Let T : X — X and there exists xg € X such that:

do(Ty, T*y) < kdg(y, Ty) foreachy € O(xg) 3)
where k € [0,1) be such that for xog € X, imy m—e0 0(Xp, Xm) < %, here x, = T'xg, n = 1,2,---.
Then T"xg — ¢ € X (as n — oo). Furthermore ¢ is a fixed point of T if and only if G(x) = d(x, Tx) is
T-orbitally lower semi continuous at ¢.
Proof. For xg € X we define the iterative sequence {x, } by:
xo, Txg=12x1, Xp = Tx; = T(Txg) = T?(xg) ..., xn = T"xp....

Now for y = Txq by successively applying inequality (3) we obtain:

do(T"x0, T" xg) = dg(xn, Xpi1) < K'dg(x0,x1) 4
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Following the same procedure as in the proof of Theorem 2 we conclude that {x, } is a Cauchy
sequence. Since X is complete then x, = T"xgp — ¢ € X. Assume that G is orbitally lower semi
continuous at ¢ € X, then:

do(¢,TG) < liminfde(T"xo, T"x0) ®)

S n _
< hrrlr_1>1°r01fk dg(x0,%1) =0 (6)

Conversely, let ¢ = T¢ and x, € O(x) with x,, — ¢. Then:
G(g) = d(¢, T¢) = 0 < liminf G(x) = d(T"xo, T xg) @)
O

Remark 2. When 6(x,y) = 1 a constant function then Theorem 3 reduces to main result of Hicks and Rhoades
([15] (Theorem 1)). Hence Theorem 3 extends/generalizes ([15] (Theorem 1) ).

Example 5. Let X = [0,00). Define dg(x,y) : X x X = RT and 6 : X x X — [1,00) as:
do(x,y) = (x—y)%, O(x,y) =x+y+2

Then dg is a complete extended b-metric on X. Define T : X — X by Tx = 3. We have:

(v 2o
do(Tx, Ty) = (5 - 5) < 5(x =) = kdg(x,)

Note that for each x € X, T"x = 2% Thus we obtain:

lim O(T"x, T"x) = lim (oo +2-+2) <3

m,n—ro0 mun—oo \ 2M n

Therefore, all conditions of Theorem 3 are satisfied hence T has a unique fixed point.
Example 6. Let X = [0, 1]. Define dg(x,y) : X x X = Rt and 6 : X x X — [1,00) as:
do(x,y) = (x—y)%, 0(xy) =x+y+2

Then dg is a complete extended b-metric on X. Define T : X — X by Tx = x?. We have:
1
do(Tx, Ty) < ng(x,y)

Note that for each x € X, T"x = x*". Thus we obtain:

lim 6(T"x, T"x) < 4

m,n—00
Therefore, all conditions of Theorem 3 are satisfied hence T has a unique fixed point.

3. Application

In this section, we give existence theorem for Fredholm integral equation. Let X = C([a, b], R) be
the space of all continuous real valued functions define on [a, b]. Note that X is complete extended
b-metric space by considering do(x,y) = sup;c(, ) [x(f) — y(1)|?, with 8(x,y) = |[x(t)| + |y(t)]| + 2,
where 6 : X x X — [1,00). Consider the Fredholm integral equation as:
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x(t) = /ﬂb M(t,s,x(s))ds +g(t), t,s € [a,b] 8)

where ¢: [a,b] — R and M: [a,b] X [a,b] x R — R are continuous functions. Let T: X — X the
operator given by:

Tx(t) = /hM(t, s, x(s))ds + g(t) for £, € [a, b]

where, the function ¢: [a,b] — Rand M: [a,b] x [a,b] x R — R are continuous. Further, assume that
the following condition hold:

|M(t,s,x(s)) — M(t,s, Tx(s))| < %|x(s) — Tx(s)| for each t,s € [a,b] and x € X

Then the integral Equation (8) has a solution.
We have to show that the operator T satisfies all the conditions of Theorem 3. For any x € X
we have:

|Tx(t) — T(Tx(t))]*> < (/b |M(t, s, x(s)) — M(t,s, Tx(s))|ds>2
< idg(x,Tx)

All conditions of Theorem 3 follows by the hypothesis. Therefore, the operator T has a fixed point,
that is, the Fredholm integral Equation (8) has a solution.
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