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Abstract: In the paper by Riečan and Markechová (Fuzzy Sets Syst. 96, 1998), some fuzzy
modifications of Shannon’s and Kolmogorov-Sinai’s entropy were studied and the general scheme
involving the presented models was introduced. Our aim in this contribution is to provide analogies
of these results for the case of the logical entropy. We define the logical entropy and logical mutual
information of finite partitions on the appropriate algebraic structure and prove basic properties of
these measures. It is shown that, as a special case, we obtain the logical entropy of fuzzy partitions
studied by Markechová and Riečan (Entropy 18, 2016). Finally, using the suggested concept of
entropy of partitions we define the logical entropy of a dynamical system and prove that it is the
same for two dynamical systems that are isomorphic.
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1. Introduction

The study of the concept of entropy is very important in contemporary sciences. Entropy has
been applied in information theory, physics, computer sciences, statistics, chemistry, biology, sociology,
general systems theory and many other fields. The classical approach in information theory is based
on Shannon’s entropy [1,2]. In connection with the issue of the isomorphism of dynamical systems,
using Shannon’s entropy, Kolmogorov and Sinai have defined the entropy of dynamical systems [3–5].
Thus, they developed a method for distinguishing non-isomorphic dynamical systems by means
of which they proved the existence of non-isomorphic Bernoulli shifts. Some fuzzy generalizations
of Shannon’s and Kolmogorov-Sinai’s entropy were introduced by Riečan [6–9] (see also [10]) and
Markechová [11–14]. It is known that there are many possibilities for defining operations with fuzzy
sets; an overview can be found in [15]. While the model of Markechová was based on the Zadeh
connectives, in the model studied by Riečan, the Lukasiewicz connectives were used to define the
fuzzy set operations. In [16] Riečan and Markechová introduced a general algebraic theory involving
both models as special cases.

In [17–19] the authors deal with studying the concept of logical entropy. If P = (p1, . . . , pn) ∈ <n is
a probability distribution, then the logical entropy of P is defined as the number h(P) = ∑n

i=1 pi(1− pi).
More details about the concept of logical entropy can be found, e.g., in [20], where the author deals,
inter alia, with historical aspects of the logical entropy formula h(P) and investigates the relationship
between the logical entropy and Shannon’s entropy. In the cited paper, the notions of logical conditional
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entropy, logical mutual information, logical cross entropy and logical divergence and their properties
were also studied. In [21] Ebrahimzadeh defined and studied the notions of logical entropy of partitions
and logical entropy of dynamical systems in quantum logics and in [22] the author introduced the
notion of conditional logical entropy of dynamical systems on quantum logics. In the recently published
paper [23], Markechová and Riečan deal with the study of logical entropy of fuzzy partitions and fuzzy
dynamical systems.

In this paper, we provide analogies of the results of Riečan and Markechová given in [16] for
the case of the logical entropy. We define the logical entropy and logical mutual information of
finite partitions on an appropriate algebraic structure and prove basic properties of these measures.
As a special case we obtain the logical entropy of fuzzy partitions introduced in [23]. It is noted that
some investigations concerning entropy of dynamical systems and related notions in the above setup
were conducted in [24–37].

The paper is organized as follows. In the next section, we give the basic definitions and some
already known results used in this paper. In Section 3, the logical entropy, conditional logical entropy
and logical mutual information of finite partitions on an appropriate algebraic structure are defined
and basic properties of these measures are proved. In Section 4, we define the logical entropy of
a dynamical system using the suggested concept of logical entropy of finite partitions. Finally, it is
shown that the logical entropy of dynamical systems is invariant under isomorphisms. Our results are
summarized in the final section.

2. Basic Definitions and Facts

As in [16] we shall consider the algebraic structure (F, ⊕, ⊗, 1F), where F is a non-empty partially
ordered set, ⊕ is a partial binary operation on F, ⊗ is a binary operation on F, 1F is a fixed element of
F, and two mappings m : F → [0, 1] and s : F → F, where the following conditions are satisfied:

(F1) ⊕, ⊗ are m− commutative, i.e., m( f ⊗ g) = m(g⊗ f ), for any f , g ∈ F, if f ⊕ g exists, then g⊕ f
exists, too, and m( f ⊕ g) = m(g⊕ f );

(F2) ⊕, ⊗ are m− associative, i.e., m( f ⊗ (g⊗ h)) = m(( f ⊗ g)⊗ h), for any f , g, h ∈ F, if ( f ⊕ g)⊕ h
exists, then f ⊕ (g⊕ h) exists, too, and m( f ⊕ (g⊕ h)) = m(( f ⊕ g)⊕ h);

(F3) ⊕, ⊗ fulfil the m− distributive law, i.e., for any f , g, h ∈ F, if ( f ⊗ h)⊕ (g⊗ h) exists, then f ⊕ g
exists and m(( f ⊕ g)⊗ h) = m(( f ⊗ h)⊕ (g⊗ h));

(F4) f ⊗ g ≤ f = 1F ⊗ f , for every f , g ∈ F;
(F5) if ⊕n

i=1 fi exists, then m
(
⊕n

i=1 fi
)
= ∑n

i=1 m( fi);
(F6) if f , g ∈ F, f ≤ g, then m( f ) ≤ m(g);
(F7) if f ∈ F such that m( f ) = m(1F), then m( f ⊗ g) = m(g), for every g ∈ F;
(F8) for any f , g ∈ F, if f ⊕ g exists, then s( f )⊕ s(g) exists, too, and m(s( f ⊕ g)) = m(s( f )⊕ s(g));
(F9) s : F → F is an m− preserving transformation, i.e., m(s( f )) = m( f ) for every f ∈ F.

By a dynamical system we will understand the above described triplet (F, m, s).
Some examples are presented in the following.

Example 1. Consider a triplet (Ω, F, m), where Ω is a non-empty set, F is a fuzzy σ- algebra of fuzzy
subsets of Ω, i.e., F ⊂ [0, 1]Ω such that (i) 1Ω ∈ F; (1/2)Ω /∈ F; (ii) if f ∈ F, then f⊥ = 1Ω − f ∈ F;
(iii) if fn ∈ F, n = 1, 2, . . . , then ∪∞

n=1 fn ∈ F, and the mapping m : F → [0, ∞) satisfies the following
conditions: (iv) m( f ∪ f⊥) = 1 for all f ∈ F; (v) if { fn}∞

n=1 ⊂ F such that fi ≤ f⊥j (point wisely) whenever
i 6= j, then m(∪∞

n=1 fn) = ∑∞
n=1 m( fn). The above described triplet (Ω, F, m) is called in the terminology of

Piasecki a fuzzy probability space [38]. The symbols ∪∞
n=1 fn = supn fn and ∩∞

n=1 fn = infn fn denote the fuzzy
union and the fuzzy intersection of a sequence { fn}∞

n=1 ⊂ F, respectively, in the sense of Zadeh [39]. The partial
ordering relation is defined in the following way: for every f , g ∈ F, f ≤ g if and only if f (ω) ≤ g(ω) for all
ω ∈ Ω. The presented σ- additive fuzzy P-measure m has all properties analogous to properties of a classical
probability measure, e.g., (i) m is a non-decreasing function, i.e., if f , g ∈ F such that f ≤ g, then m( f ) ≤ m(g);
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(ii) if f , g ∈ F are W-separated [40] (i.e., if f ≤ g⊥), then m( f ∩ g) = 0; (iii) m( f⊥) = 1−m( f ) for every
f ∈ F; (iv) m is a dditive, i.e., if { f1, . . . , fn} ⊂ F such that fi ≤ f j

⊥ for i 6= j, then m(∪n
i=1 fi) = ∑n

i=1 m( fi);
(v) if g ∈ F, then m( f ∩ g) = m( f ) for all f ∈ F if and only if m(g) = 1. The proofs can be found in [38].
The monotonicity of fuzzy P-measure m implies that this measure transforms F into the interval [0, 1].

In the set F we define the operations ⊕, ⊗ as follows: f ⊕ g is defined whenever f ≤ g⊥, and in this
case f ⊕ g = f ∪ g; f ⊗ g = f ∩ g, for every f , g ∈ F. The set F with the operations ⊕, ⊗ and the
mapping m satisfy all assumptions (F1)–(F7). Let us prove, e.g., (F5). Suppose that ⊕n

i=1 fi exists. Since

⊕n
i=1 fi =

(
⊕n−1

i=1 fi

)
⊕ fn, by the definition, it exists if fn + ∪n−1

i=1 fi ≤ 1Ω. Hence, ⊕n
i=1 fi is defined if

and only if fi ≤ 1Ω − f j (i 6= j), i.e., if { f1, . . . , fn} is a system of pairwise W-separated fuzzy subsets.
Since any fuzzy P-measure is additive, the equality m(⊕n

i=1 fi) = ∑n
i=1 m( fi) holds. Now, let τ : F → F is

an m− preserving σ- homomorphism, i.e., τ( f⊥) = (τ( f ))⊥, τ(∪∞
n=1 fn) = ∪∞

n=1τ( fn) and m(τ( f )) = m( f ),
for every f ∈ F and any sequence { fn}∞

n=1 ⊂ F. Evidently, the mapping τ : F → F fulfils the conditions (F8)
and (F9). Therefore the system (F, m, τ) is a dynamical system within the meaning of our definition.

Remark 1. In the paper by Markechová [11] the Shannon entropy of fuzzy partitions in a fuzzy probability space
has been defined. Recall that the notion of fuzzy partition in the given fuzzy probability space (Ω, F, m) has
been introduced by Piasecki in [41] as follows: any finite sequence { f1, . . . , fn} of pairwise W-separated fuzzy
subsets from F is called a fuzzy partition if m(∪n

i=1 fi) = 1. The concept of Shannon’s entropy of fuzzy partitions
was used to define the Kolmogorov-Sinai entropy of fuzzy dynamical systems [12]. By a fuzzy dynamical
system we mean a system (Ω, F, m, τ), where (Ω, F, m) is any fuzzy probability space and τ : F → F is
an m− preserving σ- homomorphism. Note that a classical dynamical system (Ω, S, P, T) can be considered
a fuzzy dynamical system (Ω, F, m, τ); it is sufficient to put F = {IA; A ∈ S}, where IA is the indicator of
a set A ∈ S, and define the mapping m : F → [0, 1] by m(IA) = P(A), and the mapping τ : F → F by
the formula:

τ(IA) = IA ◦ T = IT−1(A), IA ∈ F. (1)

The above triplet (Ω, F, m) is a fuzzy probability space and τ : F → F is an m− preserving σ- homomorphism.
The recently published paper [23] deals with studying logical entropy of fuzzy partitions in a fuzzy probability
space and logical entropy of fuzzy dynamical systems.

As mentioned above, operations with fuzzy sets can be introduced in various ways. While the
previous model is based on Zadeh’s connectives, in the following model the Lukasiewicz operations
are used. Recall that the union of fuzzy subsets f , g of Ω is defined by Lukasiewicz as min( f + g, 1).

Example 2. Let (Ω, S, P) be a classical probability space, F be the family of all S-measurable functions
f : Ω→ [0, 1], m( f ) =

∫
Ω f dP. Further, a mapping U : F → F is given satisfying the following

two conditions: (i) if f ∈ F, then U( f ) ∈ F and m( f ) = m(U( f )); (ii) if f , g ∈ F and f + g ≤ 1,
then U( f + g) = U( f ) + U(g). In the set F we define the operation ⊕ as follows: f ⊕ g is defined whenever
f + g ≤ 1, and in this case f ⊕ g = f + g. It is obvious that ⊕n

i=1 fi exists if and only if ∑n
i=1 fi ≤ 1.

The operation ⊗ is defined as the product of functions: f ⊗ g = f · g. It is not difficult to verify that the set F
with the operations ⊕, ⊗ and the mappings m : F → [0, 1] and U : F → F satisfy all assumptions (F1)–(F9).
Of course, here 1F = 1Ω. Let us prove, e.g., that the condition (F7) holds. If f ∈ F such that m( f ) = m(1F),
then we have m( f ) = m(1Ω) = 1. Since 1 = m(1Ω) = m( f + (1− f )) = m( f ) + m(1− f ), we get:

0 = m(1− f ) ≥ m((1− f )g) = m(g− f g) = m(g)−m( f g), for every g ∈ F,

and therefore m( f ⊗ g) = m( f g) ≥ m(g). The opposite inequality is obvious. It is easy to see that
a classical dynamical system (Ω, S, P, T) can be embedded to the presented fuzzy model; it is sufficient to
put F = {IA; A ∈ S}, and define the mapping U : F → F by the formula (1).
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Remark 2. Fuzzy analogies of Shannon’s entropy and the Kolmogorov-Sinai entropy with respect to this model
were introduced by Riečan in [7] (see also [10]), and independently by Dumitrescu [26–28]. Dumitrescu
considered a more general family F of fuzzy subsets of Ω and a mapping m : F → [0, 1] characterized
axiomatically. However, by the representation theorem of Butnariu and Klement [42] there exists a probability
measure P such that m( f ) =

∫
Ω f dP, hence, the Dumitrescu theory can be reduced to the case of Riečan.

3. Logical Entropy and Logical Mutual Information of Partitions in F

We shall now introduce a general algebraic theory for the case of logical entropy. We show that
the proposed general theory can be applied to the two models which were described above.

Definition 1 [16]. By a partition (in F) we mean a finite collection A = { f1, . . . , fn} ⊂ F such that ⊕n
i=1 fi

exists, and:
m(1F) = m(⊕n

i=1 fi) = ∑n
i=1 m( fi).

Definition 2 [16]. If A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

are two partitions in F, then we define:

A∨ B=
{

fi ⊗ gj; i = 1, . . . , n, j = 1, . . . , p
}

i f A 6= B, and A∨A = A.

We say that B is a refinement of A, and write A ≺ B, if there exists a partition I(1), I(2), . . . , I(n) of the
set {1, 2, . . . , p} such that m( fi) = ∑

j∈I(i)
m(gj), for every i = 1, 2, . . . , n.

Proposition 1. If A, B are two partitions in F, then A∨ B is a partition in F, too.

Proof. Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

. Since ⊕n
i=1 fi, ⊕

p
j=1gj exist, according to the assumption

(⊕n
i=1 fi) ⊗ (⊕p

j=1gj) also exists. Using the m− distributive law we obtain that ⊕n
i=1 ⊕

p
j=1 ( fi ⊗ gj)

exists, too, and m(⊕n
i=1 ⊕

p
j=1 ( fi ⊗ gj)) = m((⊕n

i=1 fi)⊗ (⊕p
j=1gj)). Following (F5) we have:

m(⊕n
i=1 ⊕

p
j=1 ( fi ⊗ gj)) =∑n

i=1 ∑p
j=1 m( fi ⊗ gj).

Moreover, by (F7)

m((⊕n
i=1 fi)⊗ (⊕p

j=1gj)) = m(⊕p
j=1gj) = m(1F). �

Proposition 2. A ≺ A∨ B, for every partitions A, B in F.

Proof. LetA = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

.A∨B is indexed by {(i, j); i = 1, . . . , n, j = 1, 2, . . . , p},

therefore we put I(i) = {(i, 1), . . . , (i, p)}, i = 1, 2, . . . , n. Since m(1F) = m(⊕p
j=1gj) =

p
∑

j=1
m(gj),

following (F7), (F3) and (F5), for i = 1, 2, . . . , n, we obtain:

m( fi) = m
((
⊕p

j=1gj

)
⊗ fi

)
= m

(
⊕p

j=1

(
gj ⊗ fi

))
=

p

∑
j=1

m
(

fi ⊗ gj
)
= ∑

(k,j)∈I(i)
m
(

fk ⊗ gj
)
.

However, this indicates that A ≺ A∨ B. �

Recall that in the classical case, where partitions A, B consist of indicators only, A ∨ B is
the least common refinement of A and B, i.e., every set of A or B is a union of some sets of
A ∨ B. In the Markechová model, fuzzy partitions are considered wherein the fuzzy partition
in the given fuzzy probability space (Ω, F, m) is defined as any finite sequence { f1, . . . , fn} of
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pairwise W-separated fuzzy subsets from F such that m(∪n
i=1 fi) = 1. Recall that in Example 1

⊕n
i=1 fi is defined if and only if { f1, . . . , fn} is a system of pairwise W-separated fuzzy subsets

and in this case ⊕n
i=1 fi = ∪n

i=1 fi. Therefore, the notion of a fuzzy partition in a fuzzy probability
space coincides with the general notion of a partition from Definition 1. If A = { f1, . . . , fn},
B =

{
g1, . . . , gp

}
are two fuzzy partitions in a fuzzy probability space, then A ∨ B is defined as

the system A∨ B =
{

fi ∩ gj; i = 1, . . . , n, j = 1, . . . , p
}

, which again coincides with the general notion
from Definition 2 as well as the notion of a refinement. A fuzzy partition B is a refinement of A if for
every fuzzy set g ∈ B there exists f ∈ A such that g ≤ f . Therefore, the general theory can be applied
to the Markechová model. On the other hand, Riečan has defined a fuzzy partition as a finite system
{ f1, . . . , fn} of fuzzy subsets of Ω such that ∑n

i=1 fi(ω) = 1, for everyω ∈ Ω, and A∨ B as the system
{ f · g; f ∈ A, g ∈ B}. The definition of relation ≺ in the Riečan model is the same as in Definition 2.
Since ⊕n

i=1 fi exists if and only if ∑n
i=1 fi ≤ 1, and 1 = m(1Ω) = m(∑n

i=1 fi) = ∑n
i=1 m( fi), the notion

of fuzzy partition in the Riečan model again coincides with the general notion from Definition 1.
Evidently, the general theory can be applied to the Riečan model as well.

Definition 3. Let A = { f1, . . . , fn} be a partition in F. The logical entropy of A is defined as the number:

hl(A) =
n

∑
i=1

m( fi)(1−m( fi)). (2)

Evidently, hl(A) ≥ 0, and from Equation (2) it immediately follows that:

hl(A)= m(1F)−
n

∑
i=1

(m( fi))
2. (3)

Definition 4. Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

be two partitions in F. The conditional logical entropy
of A given B is defined by:

hl(A/B) =
n

∑
i=1

p

∑
j=1

m( fi ⊗ gj)
(
m(gj)−m( fi ⊗ gj)

)
.

Remark 3. Since by (F4) and (F6) it holds m(gj) ≥ m( fi ⊗ gj), i = 1, . . . , n, j = 1, . . . , p, we see that
hl(A/B) ≥ 0.

In the following, some basic properties of the logical entropy are presented. At first, we will prove
the assertions of the following lemma which will be useful in further considerations.

Lemma 1. Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

and C = {h1, . . . , hr} be partitions in F. Then we have:

(i)
n
∑

i=1

p
∑

j=1

r
∑

k=1
m( fi ⊗ gj ⊗ hk)m(hk) =

n
∑

i=1

r
∑

k=1
m( fi ⊗ hk)m(hk);

(ii)
n
∑

i=1

p
∑

j=1
m
(

fi ⊗ gj
)

m
(

gj
)
=

p
∑

j=1

(
m(gj)

)2.

Proof.

(i) By Definition 1, we have:
m(⊕p

j=1gj) = ∑p
j=1 m(gj) = m(1F).
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Hence, by (F7), (F3) and (F5), for each i, k, we obtain:

m( fi ⊗ hk) = m
((
⊕p

j=1gj

)
⊗ ( fi ⊗ hk)

)
= m

(
⊕p

j=1

(
fi ⊗ gj ⊗ hk

))
= ∑p

j=1 m
(

fi ⊗ gj ⊗ hk
)
.

Therefore:

n

∑
i=1

p

∑
j=1

r

∑
k=1

m( fi ⊗ gj ⊗ hk)m(hk) =
n

∑
i=1

r

∑
k=1

p

∑
j=1

m( fi ⊗ gj ⊗ hk)m(hk) =
n

∑
i=1

r

∑
k=1

m( fi ⊗ hk)m(hk).

(ii) According to (F7), (F3) and (F5) we get, for each j = 1, 2, . . . , p,

m
(

gj
)
= m

(
(⊕n

i=1 fi)⊗ gj
)
=m

(
⊕n

i=1
(

fi ⊗ gj
))

= ∑n
i=1 m

(
fi ⊗ gj

)
.

Hence:
n

∑
i=1

p

∑
j=1

m
(

fi ⊗ gj
)
m
(

gj
)
=

p

∑
j=1

m
(

gj
) n

∑
i=1

m
(

fi ⊗ gj
)
=

p

∑
j=1

(
m
(

gj
))2. �

Theorem 1. Let A,B be two partitions in F. Then:

hl(A∨ B) = hl(B) + hl(A/B). (4)

Proof. Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

. According to the previous definitions and Lemma 1
we obtain:

hl(B) + hl(A/B) =
p
∑

j=1
m
(

gj
)
−

p
∑

j=1

(
m(gj)

)2
+

n
∑

i=1

p
∑

j=1
m( fi ⊗ gj)

(
m
(

gj
)
−m

(
fi ⊗ gj

))
=

p
∑

j=1
m
(

gj
)
−

p
∑

j=1

(
m(gj)

)2
+

n
∑

i=1

p
∑

j=1
m( fi ⊗ gj)m

(
gj
)
−

n
∑

i=1

p
∑

j=1

(
m( fi ⊗ gj)

)2

=
p
∑

j=1
m
(

gj
)
−

p
∑

j=1

(
m(gj)

)2
+

p
∑

j=1

(
m(gj)

)2−
n
∑

i=1

p
∑

j=1

(
m( fi ⊗ gj)

)2

= m(1F)−
n
∑

i=1

p
∑

j=1

(
m( fi ⊗ gj)

)2
= hl(A∨ B). �

Remark 4. According to Definition 2 as a simple consequence of Theorem 1 we obtain that hl(A/A) = 0.

Theorem 2. Let A, B be two partitions in F. Then:

(i) hl(A/B) ≤ hl(A);
(ii) hl(A∨ B) ≤ hl(A) + hl(B).

Proof.

(i) Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

. For each i = 1, 2, . . . , n, we have:

p
∑

j=1
m( fi ⊗ gj)(m(gj)−m( fi ⊗ gj)) ≤

p
∑

j=1
m( fi ⊗ gj)

(
p
∑

j=1
m(gj)−m( fi ⊗ gj)

)

= m( fi)

(
p
∑

j=1
m(gj)−m( fi ⊗ gj)

)
= m( fi)

(
m(1F)−

p
∑

j=1
m( fi ⊗ gj)

)
= m( fi)(m(1F)−m( fi)) ≤ m( fi)(1−m( fi)).



Mathematics 2017, 5, 4 7 of 17

Therefore:

hl(A/B) =
n

∑
i=1

p

∑
j=1

m( fi ⊗ gj)
(
m(gj)−m( fi ⊗ gj)

)
≤

n

∑
i=1

m( fi) (1−m( fi)) =hl(A).

(ii) By Theorem 1 and the part (i), we get:

hl(A∨ B) =hl(B) + hl(A/B) ≤hl(B) + hl(A). �

In the following two theorems, chain rules for logical entropy of partitions in F are presented.

Theorem 3. Let A, B and C be partitions in F. Then:

hl(A∨ B /C) = hl(A /C) + hl(B /C ∨ A).

Proof. Let A = { f1, . . . , fn},B =
{

g1, . . . , gp
}

and C = {h1, . . . , hr}. From Definition 4 and Lemma 1 it
follows that:

hl(A∨ B /C) =
n
∑

i=1

p
∑

j=1

r
∑

k=1
m( fi ⊗ gj ⊗ hk)

(
m(hk)−m( fi ⊗ gj ⊗ hk)

)
=

n
∑

i=1

p
∑

j=1

r
∑

k=1
m( fi ⊗ gj ⊗ hk)m(hk)−

n
∑

i=1

p
∑

j=1

r
∑

k=1
(m ( fi ⊗ gj ⊗ hk ))

2

=
n
∑

i=1

r
∑

k=1
m( fi ⊗ hk)m(hk) −

n
∑

i=1

r
∑

k=1
(m( fi ⊗ hk))

2 +
n
∑

i=1

r
∑

k=1
(m( fi ⊗ hk))

2−
n
∑

i=1

p
∑

j=1

r
∑

k=1
(m ( fi ⊗ gj ⊗ hk ))

2

= hl(A /C) +
n
∑

i=1

p
∑

j=1

r
∑

k=1
m( fi ⊗ gj ⊗ hk)m( fi ⊗ hk)−

n
∑

i=1

p
∑

j=1

r
∑

k=1
(m ( fi ⊗ gj ⊗ hk ))

2

= hl(A /C) + hl(B /C ∨A). �

Theorem 4. Let A1,A2, . . . ,An and C be partitions in F. Then, for n = 2, 3, . . . , the following equalities hold:

(i) hl(A1 ∨A2 ∨ . . . ∨An) = hl(A1)+∑n
i=2 hl(Ai/ ∨i−1

k=1 Ak);

(ii) hl(∨n
i=1Ai/C) = hl(A1/C) + ∑n

i=2 hl(Ai/(∨i−1
k=1Ak) ∨ C).

Proof.

(i) According to Theorem 1 we have:

hl(A1 ∨A2) =hl(A1) + hl(A2/A1).

Therefore, using Theorem 3 we get:

hl(A1 ∨A2 ∨A3) =hl(A1)+hl(A2 ∨A3/A1)

= hl(A1) + hl(A2/A1) + hl(A3/A2 ∨A1) = hl(A1)+∑3
i=2 hl(Ai/ ∨i−1

k=1 Ak).

Now let us suppose that the result is true for a given n ∈ N. Then:

hl(A1 ∨A2 ∨ . . . ∨An ∨An+1)

= hl(A1 ∨A2 ∨ . . . ∨An) +hl(An+1/A1 ∨A2 ∨ . . . ∨An)

= hl(A1)+∑n
i=2 hl(Ai/∨i−1

k=1Ak)+hl(An+1/A1 ∨A2 ∨ . . . ∨An)

= hl(A1)+∑n+1
i=2 hl(Ai/∨i−1

k=1Ak).
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(ii) For n = 2, using Theorem 3 we obtain:

hl(A1 ∨A2/C) =hl(A1/C) + hl(A2/A1 ∨ C).

Suppose that the result is true for a given n ∈ N. Then:

hl(A1 ∨A2 ∨ . . . ∨An ∨An+1/C)
= hl(∨n

i=1Ai/C)+ hl(An+1/A1 ∨ . . . ∨An ∨ C)
= hl(A1/C) +∑n

i=2 hl(Ai/(∨i−1
k=1Ak) ∨ C)+hl(An+1/(∨n

k=1Ak) ∨ C)
= hl(A1/C) +∑n+1

i=2 hl(Ai/(∨i−1
k=1Ak) ∨ C). �

Definition 5 [36]. Let A, B be two partitions in F. We write A ⊂◦ B if, for each fi ∈ A and for each gj ∈ B,
m( fi ⊗ gj) = m(gj) or m

(
fi ⊗ gj

)
= 0. We write A .

= B if and only if A ⊂◦ B and B ⊂◦ A.

Theorem 5. Let A, B be partitions in F. Then:

(i) A ≺ B implies hl(A) ≤ hl(B);
(ii) hl(A) ≤ hl(A∨ B);
(iii) hl(A∨ B) ≥ max(hl(A); hl(B));
(iv) A ⊂◦ B if and only if hl(A/B) = 0;
(v) A .

= B implies hl(A) = hl(B).

Proof. Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

.

(i) IfA ≺ B, then by the assumption there exists a partition I(1), I(2), . . . , I(n) of the set {1, 2, . . . , p}
such that m( fi) = ∑

j∈I(i)
m
(

gj
)
, i = 1, 2, . . . , n. Therefore, we have:

p

∑
j=1

(
m(gj)

)2 ≤
n

∑
i=1

(m( fi))
2.

Thus, by Equation (3) we get:

hl(A)= m(1F)−
n

∑
i=1

(m( fi))
2 ≤ m(1F)−

p

∑
j=1

(m(gj))
2 =hl(B).

(ii) Since A ≺ A∨ B (see Proposition 2), the property is a consequence of (i).
(iii) It immediately follows from the property (ii).
(iv) Suppose that A ⊂◦ B. Since, by definition, for i = 1, 2, . . . , n, j = 1, 2, . . . , p, m( fi ⊗ gj) = m(gj)

or m( fi ⊗ gj) = 0, we get:

hl(A/B) =
n

∑
i=1

p

∑
j=1

m( fi ⊗ gj)(m(gj)−m( fi ⊗ gj)) = 0.

Conversely, let hl(A/B) = 0, i.e., we assume that:

n

∑
i=1

p

∑
j=1

m( fi ⊗ gj)(m(gj)−m( fi ⊗ gj)) = 0.
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Since, m( fi ⊗ gj) ≥ 0, and by (F4) and (F6) m(gj) ≥ m( fi ⊗ gj), for i = 1, 2, . . . , n, j = 1, 2, . . . , p,
we have:

m( fi ⊗ gj) (m(gj)−m( fi ⊗ gj)) = 0, for i = 1, 2, . . . , n, j = 1, 2, . . . , p,

which implies

m( fi ⊗ gj) = m(gj) or m( fi ⊗ gj) = 0, for i = 1, 2, . . . , n, j = 1, 2, . . . , p.

This means that A ⊂◦ B.
(v) Since A ⊂◦ B, by the part (iii) hl(A/B) = 0. So (see Theorem 1), we have:

hl(A/B) = hl(A∨ B)− hl(B) = 0,

and therefore:
hl(A∨ B) = hl(B).

Similarly, B ⊂◦ A implies:

hl(B /A) = hl(B ∨A)− hl(A) = 0,

thus:
hl(B ∨A) = hl(A).

Since hl(A∨ B) = hl(B ∨A), the proof is completed. �

Definition 6. If A, B are two partitions in F, then the logical mutual information of A and B is defined by
the formula:

Il(A,B) =hl(A)−hl(A/B). (5)

Remark 5. As a simple consequence of Equation (4) we have:

Il(A,B) =hl(A) + hl(B)− hl(A∨ B). (6)

Subsequently we see that Il(A,B) = Il(B,A) and Il(A,A) = hl(A). From Equation (6), the property (ii) of
Theorem 2, and (ii) of Theorem 5 we get that 0 ≤ Il(A,B) ≤ min(hl(A), hl(B)).

Definition 7. Let A, B and C be partitions in F. Then the logical conditional mutual information of A and B
given C is defined by the formula:

Il(A,B / C) =hl(A / C)− hl(A /B ∨ C). (7)

Theorem 6 (Chain rules for logical mutual information). Let A1,A2, . . . ,An and C be partitions in F.
Then, for n = 2, 3, . . . , it holds:

Il(∨n
i=1Ai, C) = Il(A1, C)+∑n

i=2 Il(Ai, C/∨i−1
k=1Ak).
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Proof. By Equation (5), Theorem 4, and Equation (7), we obtain:

Il(∨n
i=1Ai, C) = hl(∨n

i=1Ai)− hl(∨n
i=1Ai/C)

= hl(A1)+∑n
i=2 hl(Ai/ ∨i−1

k=1 Ak)−hl(A1/C)−∑n
i=2 hl(Ai/(∨i−1

k=1Ak) ∨ C)
= Il(A1, C)+∑n

i=2 (hl(Ai/∨i−1
k=1Ak)−hl(Ai/(∨i−1

k=1Ak) ∨ C))
= Il(A1, C)+∑n

i=2 Il(Ai, C /∨i−1
k=1Ak). �

Theorem 7. If partitions A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

in F are independent, i.e., m( fi ⊗ gj) =

m( fi) ·m(gj), for i = 1, 2, . . . , n, j = 1, 2, . . . , p, then:

Il(A,B) =hl(A) · hl(B).

Proof. Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

be independent partitions in F. By simple calculation
we obtain:

Il(A,B) =hl(A) + hl(B)− hl(A∨ B)

= 1−∑n
i=1 (m( fi))

2+ 1−∑
p
j=1 (m(gj))

2− 1 +
n
∑

i=1

p
∑

j=1

(
m( fi ⊗ gj)

)2

= 1−∑n
i=1(m( fi))

2−∑
p
j=1

(
m(gj)

)2
+

n
∑

i=1
(m( fi))

2
p
∑

j=1

(
m(gj)

)2

=
(

1−∑n
i=1(m( fi))

2
)
·
(

1−∑
p
j=1

(
m(gj)

)2
)
= hl(A) · hl(B). �

Corollary 1. If partitions A, B in F are independent, then:

1− hl(A∨ B) = (1− hl(A)) · (1− hl(B)).

Proof. By simple calculation we get:

(1− hl(A)) · (1− hl(B)) = 1− hl(A)− hl(B) + hl(A) · hl(B)
= 1− hl(A)− hl(B) + Il(A,B)
= 1− hl(A)− hl(B)+hl(A) + hl(B)− hl(A∨ B)
= 1− hl(A∨ B). �

4. Logical Entropy of Dynamical Systems

Let any dynamical system (F, m, s) be given. If A = { f1, . . . , fn} is a partition in F, then it is easy
to verify that the system sA = {s ( f1), . . . , s ( fn)} is a partition in F, too. Namely, ⊕n

i=1s ( fi) exists,
since ⊕n

i=1 fi exists, and by (F8) and (F9) we have:

m(⊕n
i=1s ( fi)) = m(s(⊕n

i=1 fi)) = m(⊕n
i=1 fi) = m(1F)

= m(⊕n
i=1 fi) = ∑n

i=1 m( fi) = ∑n
i=1 m(s ( fi)).

Define s2 = s ◦ s and put sk = s ◦ sk−1, k = 1, 2, . . . , where s0 is an identical mapping on F.

Theorem 8. Let (F, m, s) be a dynamical system, A, B be partitions in F. Then the following properties
are satisfied:

(i) A ≺ B implies sA ≺ sB;
(ii) hl(skA) = hl(A), k = 0, 1, 2, . . . .;
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(iii) if s is invertible, then hl(s−k(A)) = hl(A), k = 0, 1, 2, . . . .;
(iv) hl(skA/skB) = hl(A/B), k = 0, 1, 2, . . . .;

(v) hl(∨n−1
i=0 siA) = hl(A) +∑n−1

j=1 hl(A/∨j
i=1siA).

Proof. Let A = { f1, . . . , fn}, B =
{

g1, . . . , gp
}

.

(i) Suppose A ≺ B, i.e., there exists a partition I(1), I(2), . . . , I(n) of the set {1, 2, . . . , p} such
that m( fi) = ∑

j∈I(i)
m(gj), i = 1, 2, . . . , n. By (F9) we have:

m(s( fi)) = ∑
j∈I(i)

m
(
s
(

gj
))

,i = 1, 2, . . . , n.

However, this indicates that sA ≺ sB.
(ii) Since m(s( f )) = m( f ) for every f ∈ F, we have m

(
sk( fi)

)
= m( fi), i = 1, 2, . . . , n,

k = 0, 1, 2, . . . . Hence:

hl(skA)= m(1F)−
n
∑

i=1
(m(sk( fi)))

2

= m(1F)−
n
∑

i=1
(m( fi))

2 =hl(A), k = 0, 1, 2, . . . .

(iii), (iv) The proof is analogous to the proof of (ii).
(v) We shall prove the assertion by mathematical induction. The assertion is valid for n = 2

according to Theorem 1 and the previous part of this theorem. Assume that the assertion
holds for a given n ∈ N. Since by the part (ii) we have:

hl(∨n
i=1siA) = hl(s(∨n−1

i=0 siA)) = hl(∨n−1
i=0 siA),

by Theorem 1 and the induction assumption we get:

hl
(
∨n

i=0siA
)
=hl((∨n

i=1siA∨A = hl(∨n
i=1siA)+ hl(A/∨n

i=1siA)
= hl(∨n−1

i=0 siA) +hl(A/∨n
i=1siA)

= hl(A)+∑n−1
j=1 hl(A/∨j

i=1siA)+ hl(A/∨n
i=1siA)

= hl(A)+∑n
j=1 hl(A/∨j

i=1siA).

The proof is completed. �

The aim of this section is to provide the definition of entropy of dynamical system (F, m, s). The
possibility of this definition is based on Proposition 3; in order to prove it we will need the assertion of
Lemma 2.

Lemma 2. Let {an}∞
n=1 be a sequence of nonnegative real numbers such that an+m ≤ an + am for every

n, m ∈ N. Then lim
n→∞

1
n an exists.

Proof. The proof can be found in [43].

Proposition 3. Let (F, m, s) be a dynamical system. Then, for every partition A in F,
lim

n→∞
1
n hl(∨n−1

i=0 siA) exists.
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Proof. Denote an = hl(∨n−1
i=0 siA). According to subadditivity of logical entropy (Theorem 2, (ii)) and

the part (ii) of Theorem 8, we get:

an+m =hl(∨n+m−1
i=0 siA) ≤hl(∨n−1

i=0 siA)+hl(∨n+m−1
i=n siA

)
= an + hl(∨m−1

i=0 sn+iA
)

= an + hl(sn(∨m−1
i=0 siA

)
)

= an+ hl(∨m−1
i=0 siA

)
= an+ am.

By the previous lemma lim
n→∞

1
n hl(∨n−1

i=0 siA) exists. �

Definition 8. Let (F, m, s) be a dynamical system, A be a partition in F. The logical entropy of s with respect
to A is defined by:

hl(s,A) = lim
n→∞

1
n

hl(∨n−1
i=0 siA).

The logical entropy of a dynamical system (F, m, s) is defined by the formula:

hl(s) =sup{hl(s,A);A is a partition in F}.

Theorem 9. Let (F, m, s) be a dynamical system, A, B be partitions in F. Then the following properties
are satisfied:

(i) hl(s,A) ≥ 0;
(ii) A ≺ B implies hl(s,A) ≤ hl(s, B);
(iii) hl(s,A) = hl(s, ∨r

i=0siA), r = 1, 2, . . . .

Proof.

(i) This property is obvious.
(ii) The assumption A ≺ B implies the relation ∨n−1

i=0 siA ≺ ∨n−1
i=0 siB, n = 1, 2, . . . . Thus, according

to the part (i) of Theorem 5, we have the inequality hl(∨n−1
i=0 siA) ≤ hl(∨n−1

i=0 siB), n = 1, 2, . . . .
Therefore, hl(s,A) ≤ hl(s, B).

(iii) By simple calculations we obtain:

hl(s, ∨r
i=0siA) = lim

n→∞
1
n hl(∨n−1

j=0 sj(∨r
i=0siA))

= lim
n→∞

r+n
n ·

1
r+n hl(∨r+n−1

i=0 siA)
= lim

n→∞
1

r+n hl(∨r+n−1
i=0 siA) = hl(s, A). �

Definition 9. We say that two dynamical systems (F1, m1, s1), (F2, m2, s2) are isomorphic if there exists
a bijective mapping ψ : F1 → F2 satisfying the following conditions:

(i) the diagram:

F1
s1→ F1

ψ ↓ ↓ ψ

F2 →
s2

F2

is commutative, i.e., ψ(s1( f )) = s2(ψ( f )), for every f ∈ F1;
(ii) ψ( f ⊗ g) = ψ( f )⊗ψ(g), for every f , g ∈ F1;
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(iii) for any f , g ∈ F1, f ⊕ g exists if and only if ψ( f ) ⊕ ψ(g) exists, and in this case ψ( f ⊕ g) =

ψ( f )⊕ψ(g);
(iv) m1(1F1) = m2(1F2);
(v) m1( f ) = m2(ψ( f )), for every f ∈ F1.

In the following theorem we show that the logical entropy of dynamical systems is invariant
under any isomorphism. In order to prove it the following assertion is needed.

Lemma 3. Let (F1, m1, s1), (F2, m2, s2) be isomorphic dynamical systems wherein a mapping ψ : F1 → F2

represents their isomorphism. Then, for the inverse ψ−1 : F2 → F1, the following properties are satisfied:

(i) ψ−1( f ⊗ g) = ψ−1( f )⊗ψ−1(g), for every f , g ∈ F2;
(ii) for any f , g ∈ F2, if f ⊕ g exists, then ψ−1( f ) ⊕ ψ−1(g) exists, too, and ψ−1( f ⊕ g) =

ψ−1( f )⊕ψ−1(g);
(iii) m1(ψ

−1( f )) = m2( f ), for every f ∈ F2;
(iv) m1((ψ

−1 ◦ s2)( f )) = m1((s1 ◦ψ−1)( f )), for every f ∈ F2.

Proof. Since ψ : F1 → F2 is bijective, for every f , g ∈ F2, there exist f ′, g′ ∈ F1 such that ψ−1( f ) = f ′,
ψ−1(g) = g′.

(i) We get:

ψ−1( f ⊗ g) =ψ−1(ψ( f ′)⊗ψ(g′)) =ψ−1(ψ( f ′ ⊗ g′)) = f ′ ⊗ g′ =ψ−1( f )⊗ψ−1(g).

(ii) Let f , g ∈ F2 such that f ⊕ g exists. Then ψ−1( f ⊕ g) exists because ψ is surjective. Calculate:

ψ−1( f ⊕ g) =ψ−1(ψ( f ′)⊕ψ(g′)) =ψ−1(ψ( f ′ ⊕ g′)) = f ′ ⊕ g′ =ψ−1( f )⊕ψ−1(g).

(iii) Let f ∈ F2. Then:
m2( f ) = m2(ψ( f ′)) = m1( f ′) = m1(ψ

−1( f )).

(iv) Let f ∈ F2. Then we have:

m1

(
(ψ−1 ◦ s2)( f )

)
= m1

(
ψ−1(s2( f ))

)
= m2(s2( f )) = m2( f ),

and:
m1

(
(s1 ◦ψ−1)( f )

)
= m1

(
s1(ψ

−1( f ))
)
= m1

(
ψ−1( f )

)
= m2( f ).

Hence, the equality m1

(
(ψ−1 ◦ s2)( f )

)
= m1((s1 ◦ψ−1)( f )) holds. �

Theorem 10. If dynamical systems (F1, m1, s1), (F2, m2, s2) are isomorphic, then:

hl(s1) = hl(s2).

Proof. Let a mapping ψ : F1 → F2 represents an isomorphism of dynamical systems (F1, m1, s1),
(F2, m2, s2). If A = { f1, . . . , fn} is a partition in F1, then ψ(A) = {ψ( f1), . . . ,ψ( fn)} is a partition in
F2. Indeed, ⊕n

i=1ψ( fi) exists, since ⊕n
i=1 fi exists and by Definition 9 we have:

m2(⊕n
i=1ψ ( fi)) = m2(ψ(⊕n

i=1 fi)) = m1(⊕n
i=1 fi) =m1(1F1) = m2(1F2).
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On the other hand, we have:

m2(⊕n
i=1ψ ( fi)) =m1(⊕n

i=1 fi) = ∑n
i=1 m1( fi) = ∑n

i=1 m2(ψ ( fi)).

Calculate:

hl(ψ(A)) =
n

∑
i=1

m2(ψ( fi)) (1−m2(ψ( fi))) =
n

∑
i=1

m1( fi)(1−m1( fi)) =hl(A).

Hence, using the conditions (i), (ii) from Definition 9 we get:

hl(s2,ψ(A)) = lim
n→∞

1
n hl(∨n−1

i=0 si
2ψ(A)) = lim

n→∞
1
n hl(∨n−1

i=0 ψ(s
i
1A))

= lim
n→∞

1
n hl(ψ(∨n−1

i=0 si
1A)) = lim

n→∞
1
n hl(∨n−1

i=0 si
1A) =hl(s1,A).

Therefore:

{hl(s1,A);A is a partition in F1} ⊂ {hl(s2,B);B is a partition in F2},

and consequently:

hl(s1) = sup{hl(s1,A);A is a partition in F1} ≤ sup{hl(s2,B);B is a partition in F2} = hl(s2).

The opposite inequality is obtained in a similar way. If B = {g1, . . . , gn} is a partition in F2, then
it is easy to verify that ψ−1(B) =

{
ψ−1(g1), . . . ,ψ−1(gn)

}
is a partition in F1. Indeed, since ⊕n

i=1gi

exists according to the property (ii) from Lemma 3 ⊕n
i=1ψ

−1(gi) exists, too. Moreover, we have:

m1(⊕n
i=1ψ

−1 (gi)) = m1(ψ
−1(⊕n

i=1gi)) = m2(⊕n
i=1gi) =m2(1F2) = m1(1F1),

and:
m1(⊕n

i=1ψ
−1 (gi)) = m2(⊕n

i=1gi) = ∑n
i=1 m2(gi) = ∑n

i=1 m1(ψ
−1 (gi)).

By means of (iii) from the previous lemma we get:

hl

(
ψ−1(B)

)
=

n

∑
i=1

m1

(
ψ−1(gi)

)(
1−m1

(
ψ−1(gi)

))
=

n

∑
i=1

m2(gi)(1−m2(gi)) =hl(B).

Thus, according to the previous lemma:

hl(s1,ψ−1(B)) = lim
n→∞

1
n hl(∨n−1

i=0 si
1ψ
−1(B)) = lim

n→∞
1
n hl(∨n−1

i=0 ψ
−1(si

2B))
= lim

n→∞
1
n hl(ψ

−1(∨n−1
i=0 si

2B)) = lim
n→∞

1
n hl(∨n−1

i=0 si
2B) =hl(s2,B).

Therefore:

{hl(s2,B);B is a partition in F2} ⊂ {hl(s1,A);A is a partition in F1}.

This result implies the inequality:

sup{hl(s2,B);B is a partition in F2} ≤ sup {hl(s1,A);A is a partition in F1},

i.e., it holds hl(s2) ≤ hl(s1). The proof is completed. �
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5. Discussion

In the year 2013, classical logical entropy was discussed by Ellerman [20] as an alternative measure
of information. In the paper by Markechová and Riečan [23], the notions of logical entropy and logical
mutual information of fuzzy partitions in the given fuzzy probability space were introduced and
studied. By means of the suggested concept of entropy of fuzzy partitions the authors have defined
the logical entropy of fuzzy dynamical systems. Thereby they obtained a new tool for distinction
of non-isomorphic fuzzy dynamical systems, since, as it is proved in Theorem 12 of the cited paper,
the logical entropy of fuzzy dynamical systems coincides on isomorphic fuzzy dynamical systems.
It is noted that the definition of fuzzy dynamical systems (Ω, F, m, τ) considered in [23] is based on
Zadeh’s connectives.

In this paper, we generalize the results of Markechová and Riečan concerning the logical entropy.
We have introduced the general model for the logical entropy which includes—besides other cases—the
mentioned case of the logical entropy of fuzzy dynamical systems (Ω, F, m, τ). We have defined the
notions of logical entropy and logical mutual information of finite partitions on an appropriate
algebraic structure and proved basic properties of these measures. Using the suggested concept of
logical entropy of partitions, we have defined the logical entropy of dynamical systems and proved
that the logical entropy of dynamical systems is invariant under any isomorphism (Theorem 10).
From Example 1 it follows that the presented results are generalizations of the results of [23]; inter
alia, Theorem 12 of [23] stating that the logical entropy of fuzzy dynamical systems is invariant under
any isomorphism is a special case of Theorem 10. It is shown that the suggested general theory can
be applied to the Riečan model of fuzzy dynamical systems (Ω, F, m, U) described in Example 2,
and to the classical case as well. Note that in the Riečan approach the Lukasiewicz connectives were
used to define the fuzzy set operations. Accordingly, all obtained results are valid also for the case of
fuzzy dynamical systems (Ω, F, m, U) defined by Riečan. In particular, from the presented algebraic
theory it follows that the logical entropy of fuzzy dynamical systems (Ω, F, m, U) is invariant under
any isomorphism.

Probably one of the most important results of the theory of invariant measures for practical
purposes is the Kolmogorov-Sinai Theorem on generators [43]. A fuzzy analogy of the
Kolmogorov-Sinai Theorem on generators for fuzzy dynamical systems (Ω, F, m, τ) was proved
in [12], and an analogy of this theorem for fuzzy dynamical systems (Ω, F, m, U) is provided in [9]
(see also [10]). The aim of our further research is to provide an analogy of this theorem for the case of
logical entropy.
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