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Abstract:



In a certain class of graphs, a graph is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum. A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal to its number of vertices plus one. Let [image: there is no content] and [image: there is no content] be the classes of the connected graphs of order n whose complements are bicyclic with exactly two and three cycles, respectively. In this paper, we characterize the unique minimizing graph among all the graphs which belong to [image: there is no content], a class of the connected graphs of order n whose complements are bicyclic.
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1. Introduction


Let G be a finite, simple and undirected graph with the vertex-set V(G)={vi:1≤i≤n} and the edge-set [image: there is no content] such that [image: there is no content] and [image: there is no content] are order and size of the graph G, respectively. The adjacency matrix [image: there is no content] of the graph G is a matrix of order n, where [image: there is no content] if [image: there is no content] is adjacent to [image: there is no content] and [image: there is no content], otherwise. The zeros of [image: there is no content] are called the eigenvalues of [image: there is no content], where [image: there is no content] is an identity matrix of order n. Since [image: there is no content] is real and symmetric, all the eigenvalues say that [image: there is no content], [image: there is no content], ..., [image: there is no content] are real and called the eigenvalues of the graph G. If [image: there is no content] is the least, then one can arrange the eigenvalues as [image: there is no content], and the eigenvector corresponding to the least eigenvalue is called the first eigenvector. For further study, we refer [1,2].



In 1957, Collatz and Sinogowitz investigated the spectrum of an undirected graph with respect to the adjacency matrix [3]. The literature on spectra of graphs has grown enormously since that time. The investigation on the spectral radius (largest eigenvalue) of graphs is an important topic in the theory of graph spectra [1,2,4,5,6]. In literature, the least eigenvalue received less attention comparatively to the spectral radius.



In a certain class of graphs, a graph is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum. A graph G is called a nested split if its vertices can be ordered so that [image: there is no content] implies [image: there is no content], where [image: there is no content] and [image: there is no content]. Let [image: there is no content] denote the class of connected graphs of order n and size m, where [image: there is no content][image: there is no content]. Bell et al. [7] characterized the minimizing graphs in [image: there is no content] as follows.



Theorem 1.

Let G be a minimizing graph in [image: there is no content]. Then, G is either (i) a bipartite graph; or (ii) a joining of two nested split graphs (not both totally disconnected).





It is observed that the complements of the minimizing graphs in [image: there is no content] are either disconnected or contain a clique of order greater than or equal to the half of the order of the graphs. This motivated discussion of the least eigenvalue of the graphs whose complements are connected and contain cliques of small sizes. Fan et al. [8] characterized the unique minimizing graph in the class of graphs of order n whose complements are trees. Wang et al. [9] characterized the unique minimizing graph in the class of graphs whose complements are unicyclic. Recently, the minimizing graph of the graphs which belong to [image: there is no content] is studied in [10], where [image: there is no content] is a class of the connected graphs of order n whose complements are bicyclic with exactly two cycles. In this note, we continue this study and characterize the unique minimizing graph among all the graphs which belong to a class of the connected graphs of order n whose complements are bicyclic with two or three cycles. The main result of this paper is stated as follows.



Theorem 2.

Let [image: there is no content] and [image: there is no content] be the classes of the bicyclic graphs of order n in which each bicyclic graph has exactly two and three cycles, respectively. Let [image: there is no content] be a connected graph of order n such that its complement is a bicyclic graph i.e., [image: there is no content]. Then:


[image: there is no content]








where [image: there is no content] and equality holds if and only if [image: there is no content].





The results related to the bounds of the least eigenvalue can be found in [5,11]. For further study, we refer [12,13,14,15,16,17]. The rest of the paper is organized as follows: in Section 2, we present some basic definitions and terminologies that are frequently used in the main results and Section 3 includes the main results from the minimizing graph of the connected graphs whose complements are bicyclic.




2. Preliminaries


A star of size n is a tree that is obtained by joining one specific vertex to the remaining n vertices, where the fixed vertex is called center and all other vertices are called pendent vertices. It is denoted by [image: there is no content] and its vertex-set and edge-set are defined as V(K1,n)={vi:1≤i≤n+1} and E(K1,n)={v1vi:2≤i≤n+1}, respectively. Moreover, [image: there is no content] is a graph obtained by joining any one pair of pendent vertices of [image: there is no content]. If we choose a pair of pendent vertices of [image: there is no content] consisting of [image: there is no content] and [image: there is no content], then V(S1,n1)={vi:1≤i≤n+1} and E(S1,n1)={v1vi:2≤i≤n+1}∪{vnvn+1} are the vertex-set and the edge-set of the graph [image: there is no content], respectively. Similarly, [image: there is no content] is a graph obtained by joining any two distinct pairs of pendent vertices of [image: there is no content] such that [image: there is no content] and [image: there is no content], where [image: there is no content] is chosen as the second pair of pendent vertices different from [image: there is no content]. If two chosen pairs of vertices have one vertex that is the same, then, by joining these pairs of vertices, we obtain the graph [image: there is no content] with the same vertex-set and the edge-set E(S1,n∗,2)={v1vi:2≤i≤n+1}∪{vn−1vn,vnvn+1}.



Since bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one. We conclude that [image: there is no content] is a bicyclic graph with exactly two cycles and [image: there is no content] pendent vertices and [image: there is no content] is a bicyclic graph with exactly three cycles and [image: there is no content] pendent vertices. In particular, [image: there is no content] is a bicyclic graph of order 5 with exactly two cycles and [image: there is no content] is a bicyclic graph of order 4 with three cycles. In the following definitions, we define some more graphs that are bicyclic.



Definition 1.

Let [image: there is no content] be a star and [image: there is no content] be a bicyclic graph with three cycles and four vertices. The bicyclic graph denoted by [image: there is no content] is obtained by joining one pendent vertex of [image: there is no content] with a vertex of degree 3 of the graph [image: there is no content], where [image: there is no content]. The vertex-set and the edge-set of [image: there is no content] are defined as V(B(p))={v1i:1≤i≤p−1}∪{vi:2≤i≤5}∪{v6i:1≤i≤2} and E(B(p))={v1iv2:1≤i≤p−1}∪{v2v3,v3v4,v4v5}∪{v4v6i:1≤i≤2}∪{v5v6i:1≤i≤2}.





Definition 2.

Let [image: there is no content] be a star and [image: there is no content] be a bicyclic graph with three cycles and [image: there is no content] pendent vertices. The bicyclic graph denoted by [image: there is no content] is obtained by joining a pendent vertex of [image: there is no content] with a pendent vertex of the graph [image: there is no content], where [image: there is no content] and [image: there is no content]. The vertex-set and the edge-set of [image: there is no content] are defined as V(B(p,q))={v1i:1≤i≤p−1}∪{vi:2≤i≤6}∪{v7i:1≤i≤2}∪{v8i:1≤i≤q−4} and E(B(p,q))={v1iv2:1≤i≤p−1}∪{v2v3,v3v4,v4v5,v5v6}∪{v5v7i:1≤i≤2}∪{v5v8i:1≤i≤q−4}∪{v6v7i:1≤i≤2}.





Let [image: there is no content] and [image: there is no content] be the classes of bicyclic graphs of order n such that each bicyclic graph has exactly two and three cycles, respectively. In particular, Figure 1 shows [image: there is no content] and [image: there is no content] as the examples of the bicyclic graphs with exactly two cycles that belong to [image: there is no content], and [image: there is no content] as an example of the bicyclic graphs with exactly three cycles which belongs to [image: there is no content]. Let [image: there is no content] be a class of the connected graphs of order n whose complements are bicyclic with exactly two cycles i.e., G1,nc={Gc:Gcis connectedandG∈G1,n}. Let [image: there is no content] be a class of connected graphs of order n whose complements are bicyclic with exactly three cycles i.e., G2,nc={Gc:Gcis connectedandG∈G2,n}. Now, we define [image: there is no content] and note that [image: there is no content] and [image: there is no content] being disconnected do not belong to [image: there is no content], where [image: there is no content].


Figure 1. Bicyclic graphs.



[image: Mathematics 05 00018 g001]






By interlacing theorem, for a graph G containing at least one edge, we have [image: there is no content]. In particular, if G is a complete graph or disjoint union of complete graphs with at least one non-trivial copy, then [image: there is no content]. Moreover, if G contains [image: there is no content] as an induced subgraph, then G verifies that [image: there is no content]. Thus, for a graph G (tree), [image: there is no content] if and only if G is a star. Consequently, if G being a tree is not a star, then [image: there is no content] is connected and [image: there is no content]. For a unicyclic graph G, [image: there is no content], where equality holds if [image: there is no content] (as [image: there is no content] is [image: there is no content], where [image: there is no content] is a path of order 2). Similarly, for a bicyclic graph G with exactly three cycles, [image: there is no content], where equality holds if [image: there is no content] and for a bicyclic graph G with exactly two cycles, [image: there is no content], where equality holds if [image: there is no content] for [image: there is no content].



A vector [image: there is no content] is said to be defined on the graph G of order n, if there is a one to one map ϕ from [image: there is no content] to the entries of [image: there is no content] such that [image: there is no content] for each [image: there is no content]. If [image: there is no content] is an eigenvector of [image: there is no content], then it is naturally defined on [image: there is no content], i.e., [image: there is no content] is the entry of [image: there is no content] corresponding to the vertex u. Thus, it is easy to find that:


[image: there is no content]



(1)




and λ is an eigenvalue of G corresponding to the eigenvector [image: there is no content] if and only if [image: there is no content]. For each [image: there is no content], we obtain the following eigen-equation of the graph G:


[image: there is no content]



(2)




where [image: there is no content] is the set of neighbors of v in G. For an arbitrary unit vector [image: there is no content]:


[image: there is no content]



(3)




with equality if and only if [image: there is no content] is a first eigenvector of G.



Moreover, if [image: there is no content] is a complement of the graph G, then [image: there is no content], where [image: there is no content] and [image: there is no content] are the all-ones matrix and the identity matrix of same size as of the adjacency matrix [image: there is no content], respectively. Thus, for any vector [image: there is no content]


[image: there is no content]



(4)







Let [image: there is no content] be the first eigenvector of the graph [image: there is no content] with entries corresponding to the vertices as defined in Definition 1. By Eigen-Equation (2), the vertices [image: there is no content] for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content] have values in [image: there is no content], say [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Moreover, if [image: there is no content], then, we have:


[image: there is no content]



(5)







Take [image: there is no content]. Then, the matrix equation of the above system of equations is [image: there is no content], where [image: there is no content] is a matrix of order 6. Thus, [image: there is no content] is the least root of the polynomial:


[image: there is no content]



(6)







Let [image: there is no content] be the first eigenvector of the graph [image: there is no content] with entries corresponding to the vertices as defined in Definition 2. By Eigen-Equation (2), the vertices [image: there is no content] for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] have values in [image: there is no content], say [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Moreover, if [image: there is no content], then we have:


[image: there is no content]



(7)







Take [image: there is no content]. Then, the matrix equation of the above system of equations is [image: there is no content], where [image: there is no content] is a matrix of order 8. Thus, [image: there is no content] is the least root of the polynomial:


f2(λ,p,q)=det(A−λI)=(−5+p+q)+(22−10p−6q+2pq)λ+(−12+20p+6q−7pq)λ2+(−30+2p+10q+2pq)λ3+(−5−11p−3q+7pq)λ4+(22−11p−11q+2pq)λ5+(17−6p−6q)λ6+(6−p−q)λ7+λ8.



(8)




.



Now, we state some results that are used in the main theorem.



Lemma 1.

[8] Let [image: there is no content] be a tree with non-negative or non-positive real vectors [image: there is no content] defined on [image: there is no content]. The entries of [image: there is no content] are ordered as [image: there is no content], where [image: there is no content]. Then:


[image: there is no content]








where [image: there is no content] is defined on the star [image: there is no content] such that its central vertex of degree [image: there is no content] has value [image: there is no content], and equality holds if and only if [image: there is no content].





Lemma 2.

[9] Let [image: there is no content] be a unicyclic graph with non-negative or non-positive real vectors [image: there is no content] defined on [image: there is no content]. The entries of [image: there is no content] are ordered as [image: there is no content], where [image: there is no content]. Then:


[image: there is no content]








where [image: there is no content] is defined on the unicyclic graph [image: there is no content] such that the vertex of degree [image: there is no content] has value [image: there is no content] and two vertices of degree two have values [image: there is no content] and [image: there is no content]. The equality holds only if [image: there is no content].






3. Main Results


In this section, we present the main results related to the minimizing graph of the connected graphs whose complements are bicyclic.



Lemma 3.

If [image: there is no content], then [image: there is no content].





Proof. 

Consider [image: there is no content] and [image: there is no content] are the least roots of [image: there is no content] and [image: there is no content], respectively. Define


[image: there is no content]













Since [image: there is no content], [image: there is no content] is the least root of [image: there is no content]. By (6) [image: there is no content], [image: there is no content] for [image: there is no content]. Moreover, if [image: there is no content]. Then, [image: there is no content], which implies [image: there is no content]. Now, for [image: there is no content] and [image: there is no content],


[image: there is no content]











Consequently, [image: there is no content] for [image: there is no content] and [image: there is no content]. In particular, [image: there is no content], which implies [image: there is no content] for [image: there is no content].



Lemma 4.

Let p and q be positive integers such that [image: there is no content] and [image: there is no content]. Then,


[image: there is no content]








with equality if and only if [image: there is no content] and [image: there is no content], where, (a) [image: there is no content] if n≡0(mod 2); and (b) [image: there is no content] if n≡1(mod 2).





Proof. 

From Equation (8), we have:


[image: there is no content]



(9)









(a) If [image: there is no content], then [image: there is no content] and [image: there is no content]. Thus, (9) becomes [image: there is no content] (b) If [image: there is no content], then [image: there is no content] and [image: there is no content]. Thus, (9) becomes [image: there is no content]. From both cases (a) and (b), [image: there is no content] for [image: there is no content] and [image: there is no content], respectively. This shows that [image: there is no content], where [image: there is no content] is the least root of [image: there is no content]. Moreover:


f2(λ,p−1,q+1)=+(−5+p+q)+(24−8p−8q+2pq)λ+(−19+13p+13q−7pq)λ2+(−24+4p+8q+2pq)λ3+(−4−4p−10q+7pq)λ4+(20−9p−13q+2pq)λ5+(17−6p−6q)λ6+(6−p−q)λ7+λ8, and










f2(λ,p,q)−f2(λ,p−1,q+1)=−2(p−q−1)λ(λ−12)(λ+2)(λ+1+2)(λ+1−2).











We note that if [image: there is no content] and [image: there is no content], then [image: there is no content]. In addition, [image: there is no content]. Consequently:


[image: there is no content]











It follows that [image: there is no content], where equality holds if and only if [image: there is no content] and [image: there is no content].



Lemma 5.

Let [image: there is no content] be a bicyclic graph of order n and [image: there is no content] be a non-negative or non-positive real vector defined on [image: there is no content] such that the entries of [image: there is no content] are ordered as [image: there is no content]:

	(a)

	
If [image: there is no content], then [image: there is no content] where [image: there is no content] is defined on [image: there is no content] such that one vertex of degree [image: there is no content] has value [image: there is no content] and four vertices of degree 2 have values [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively. The remaining values [image: there is no content] for [image: there is no content] are assigned to the [image: there is no content] pendent vertices. The above equality holds only if [image: there is no content],




	(b)

	
[image: there is no content] where [image: there is no content] is defined on [image: there is no content] such that one vertex of degree [image: there is no content], one vertex of degree 3 and two vertices of degree 2 have values [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Furthermore, the remaining values are assigned to the [image: there is no content] pendent vertices,




	(c)

	
If [image: there is no content], then [image: there is no content], where equality holds only if [image: there is no content].











Proof. 

(a) Without loss of generality, assume that [image: there is no content] is non-negative. Otherwise, we consider [image: there is no content]. Let v be a vertex of the bicyclic graph [image: there is no content] with value [image: there is no content] assigned by the first eigenvector [image: there is no content]. Suppose that there exists a vertex u that is not adjacent with v. Since [image: there is no content] is a connected graph, there exists a neighbor of u, say w, which is on the path of [image: there is no content] containing v and u. If we delete [image: there is no content] and add a new edge [image: there is no content] in [image: there is no content], then we have a new bicyclic graph [image: there is no content] with exactly two cycles such that:


[image: there is no content]













Repeating this process on the bicyclic graph [image: there is no content] for the non-neighbor of v. Thus, we obtain a bicyclic graph which is infact a star [image: there is no content] with center v and two edges u′v′ and u″v″ that are non incident to the vertex v. Thus, we have:


∑uv∈E(B)XuXv≤∑uv∈E(B˜)XuXv≤∑i=2nX1Xi+Xu′Xv′+Xu″Xv″.











Since X2X3+X4X5≥Xu′Xv′+Xu″Xv″ and [image: there is no content], we obtain:


[image: there is no content]











The equality holds if v is adjacent to all other vertices and there are two non incident edges to the vertex v in [image: there is no content], which implies that [image: there is no content].



	(b)

	
Since [image: there is no content]:


∑uv∈E(S1,n−12)XuXv=∑i=2nX1Xi+X2X3+X4X5≤∑i=2nX1Xi+X2X3+X3X4=∑uv∈E(S1,n−1∗,2)XuXv.











Consequently, [image: there is no content]




	(c)

	
Proof is similar to (a).







Lemma 6.

Let [image: there is no content] be a connected graph order [image: there is no content] such that its complement is a bicyclic graph and [image: there is no content] be a first eigenvector of [image: there is no content]. Then, [image: there is no content] has at least two positive and two negative entries.





Proof. 

Suppose, on the contrary, that only one vertex v of [image: there is no content] has positive value assigned by [image: there is no content]. Since [image: there is no content] is connected, [image: there is no content] and [image: there is no content]. Thus, there exists a vertex u as a neighbor of the vertex v in [image: there is no content] such that [image: there is no content], where [image: there is no content] is set of neighbors of u in [image: there is no content]. By (2) the eigen-equation of the vertex u for [image: there is no content] is:


[image: there is no content]



(10)









This shows that [image: there is no content] and [image: there is no content] for each [image: there is no content], where [image: there is no content] is set of neighbors of u in [image: there is no content]. Thus, all of the vertices of [image: there is no content] have non zero entries assigned by [image: there is no content]. Now, we discuss the following three cases:

	(a)

	
When both of the vertices v and u are non-cycles. Then, we have three observations: (i) [image: there is no content]; otherwise, [image: there is no content] is not bicyclic; (ii) each pair of vertices of the set [image: there is no content] is non adjacent; otherwise, B is not bicyclic; and (iii) at most one neighbor of u may be on any cycle; otherwise, u will be also on a cycle. Define [image: there is no content] such that [image: there is no content] for each [image: there is no content]. Thus, the eigen-equation of the vertex v for the graph [image: there is no content], [image: there is no content] becomes [image: there is no content]. By adding [image: there is no content] to both sides, we have:


[image: there is no content]



(11)




Suppose that [image: there is no content] such that [image: there is no content] is non adjacent to s for each [image: there is no content], where [image: there is no content] as observed in (ii). Thus, the eigen-equation of the vertex [image: there is no content] for the graph [image: there is no content] is [image: there is no content], which implies:


[image: there is no content]



(12)




From (11) and (12), [image: there is no content]. Since [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Consequently, [image: there is no content] are two positive entries of [image: there is no content] which is a contradiction to our supposition.




	(b)

	
When both the vertices are on the cycle(s). Here, we have two possibilities: (i) the vertex u is a common vertex of the cycles with degree of at least 4. Then, by (10), [image: there is no content] which is a contradiction, as [image: there is no content] is neither [image: there is no content] nor [image: there is no content]; (ii) the vertex u is not a common vertex of the cycles with degree of at least 4. If u and v are on a cycle of length 3, then there is a neighbor of u that is also a neighbor of v in [image: there is no content], say z. If [image: there is no content], then by the eigen-equation of v for [image: there is no content], [image: there is no content], which is a contradiction. If [image: there is no content], then we follow (a) and have all the vertices of [image: there is no content] with the same value as v, which is again a contradiction. If u and v are on a cycle(s) of a length of at least 4, then [image: there is no content], and we have a contradiction using the procedure of (a).




	(c)

	
When one vertex is on a cycle(s) and the other is a non-cycle, then [image: there is no content]; otherwise, [image: there is no content] is not a bicycle. If v is on a cycle and u is non-cycle, then by repeating (a), we have a contradiction. If u is on a cycle and v is non-cycle, then we have two possibilities: (i) if u is a common vertex of the cycles with a degree of at least 4; then, by (b) (i), we have a contradiction; (ii) if u is not a common vertex of the cycles with degree at least 4. Suppose that u is on a cycle of length 3, then u has neighbors [image: there is no content] and [image: there is no content] such that [image: there is no content] is adjacent to [image: there is no content] and one is a common vertex of the cycles, say [image: there is no content]. By the eigen-equations for these two neighbors of u in [image: there is no content], we have [image: there is no content], which is contradiction. If u is on a cycle of a length of at least 4, then, by (a), we have a contradiction. If u is a common vertex of two cycles, then the vertex which is non adjacent to all other neighbors of u has equal value to the value of v by (a), which is again a contradiction.









Therefore, [image: there is no content] contains at least two positive entries. If we consider [image: there is no content], then we have at least two negative entries. Consequently, [image: there is no content] has at least two positive and two negative entries.



Theorem 3.

Let [image: there is no content] and [image: there is no content] be the classes of the bicyclic graphs of order n in which each bicyclic graph has exactly two and three cycles, respectively. Let [image: there is no content] be a connected graph of order n such that its complement is a bicyclic graph i.e [image: there is no content]. Then:


[image: there is no content]








where [image: there is no content], [image: there is no content] and equality holds if and only if [image: there is no content].





Proof. 

Define [image: there is no content] and [image: there is no content]. By Lemma 6, both contain at least two elements. Suppose that [image: there is no content] and [image: there is no content] are subgraphs of [image: there is no content] induced by [image: there is no content] and [image: there is no content], respectively. Moreover, assume that E′ is a set of edges between [image: there is no content] and [image: there is no content] in [image: there is no content]. As [image: there is no content] is connected, E′ is non empty. Thus, we have:


∑uv∈E(B)XuXv=∑uv∈B+XuXv+∑uv∈B−XuXv+∑uv∈E′XuXv



(13)









Now, for the edges of the cycles of [image: there is no content], we have two cases: (i) all the edges of the cycles of [image: there is no content] are only in [image: there is no content] or [image: there is no content]; and (ii) both the subgraphs [image: there is no content] and [image: there is no content] contain the edges of the cycles of [image: there is no content].



(i) Without loss of generality, we suppose that [image: there is no content] does not include any edge of the cycles of [image: there is no content]; otherwise, we take [image: there is no content] as a first eigenvector. Let [image: there is no content] be a graph obtained from [image: there is no content] such that the subgraph [image: there is no content] and [image: there is no content] of [image: there is no content] induced by [image: there is no content] and [image: there is no content] are tree and bicyclic, respectively (bicyclic with two cycles if [image: there is no content] or bicyclic with three cycles if [image: there is no content]). By the deletion and addition of some edges in the tree [image: there is no content], we have a star [image: there is no content] with center u′, where [image: there is no content] and u′ has a maximum modulus value among all the values of [image: there is no content] given by [image: there is no content]. Thus, by Lemma 1, we have:


[image: there is no content]











Similarly, by the deletion and addition of some edges in the bicyclic subgraph [image: there is no content], we have [image: there is no content] if [image: there is no content] (or [image: there is no content] if [image: there is no content]) with v′ adjacent to all other vertices in [image: there is no content] (or [image: there is no content]). Moreover, v′ has maximum modulus value among all the values of [image: there is no content] and [image: there is no content].



If [image: there is no content], then by Lemma 5((a) and (b)), we have:


[image: there is no content]











If [image: there is no content], then by Lemma 5(c), we have:


[image: there is no content]











In this case, we conclude that:


[image: there is no content]











(ii) Let [image: there is no content] be a graph obtained from [image: there is no content] such that both the subgraphs [image: there is no content] and [image: there is no content] induced by the subgraphs [image: there is no content] and [image: there is no content] of [image: there is no content] are unicyclic. By the deletion and addition of some edges in [image: there is no content], we have [image: there is no content] with u′ adjacent to all other vertices in [image: there is no content]. Moreover, u′ has a maximum modulus value among all the values of [image: there is no content] given by [image: there is no content] and [image: there is no content]. Thus, by Lemma 1, we have:


[image: there is no content]











Similarly, by the deletion and addition of some edges in [image: there is no content], we have [image: there is no content] with v′ adjacent to all other vertices in [image: there is no content]. Moreover, v′ has a maximum modulus value among all the values of [image: there is no content] given by [image: there is no content] and [image: there is no content]. Again, by Lemma 1, we have:


[image: there is no content]











From the above two inequalities, we have:


[image: there is no content]











Without loss of generality, assume that the modulus values of the vertices of [image: there is no content] are greater than the modulus values of the vertices of [image: there is no content] assigned by [image: there is no content]. Suppose that w and w′ are vertices in [image: there is no content] such that the edge ww′ is non incident with u′. Delete the edge ww′ and the edge the edge rr′, where r and r′ are vertices in [image: there is no content] such that the edge rr′ is non incident with v′, and use Lemma 5(b). Then:


∑uv∈S1,p1XuXv+∑uv∈S1,q1XuXv=∑uv∈K1,pXuXv+XwXw′+∑uv∈S1,q1XuXv≤∑uv∈K1,pXuXv+∑uv∈S1,q1XuXv+XrXr=∑uv∈K1,pXuXv+∑uv∈S1,q2XuXv≤∑uv∈K1,pXuXv+∑uv∈S1,q∗,2XuXv











Consequently, from both the cases:


[image: there is no content]



(14)







Let u″ and v″ be the vertices of [image: there is no content] and [image: there is no content] with minimum modulus among all the vertices of [image: there is no content] and [image: there is no content], respectively. Then:


∑uv∈E′XuXv≤Xu″Xv″



(15)







Using (14) and (15) in (13), we have:


∑uv∈BXuXv≤∑uv∈K1,pXuXv+∑uv∈S1,q∗,2XuXv+Xu″Xv″



(16)







Since [image: there is no content], the vertices u″ and v″ can be taken from the pendent vertices of [image: there is no content] and [image: there is no content] respectively. Thus, (16) becomes:


[image: there is no content]











Now, consider the following inequality:


[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]











Consequently:


[image: there is no content]








where [image: there is no content], [image: there is no content] and equality holds if and only if [image: there is no content].



Now to complete the proof, we prove that the set E′ consists of exactly one edge and the set [image: there is no content] does not contain any vertex with zero value given by [image: there is no content]. Before this, we prove that [image: there is no content] and [image: there is no content].



Suppose [image: there is no content] has labeled vertices as in Definition 2. Therefore, v2=u′, v5=v′, v3=u″ and v4=v″. The vertices [image: there is no content] and [image: there is no content] are unique in [image: there is no content] with maximum and minimum moduli, and [image: there is no content] and [image: there is no content] are unique in [image: there is no content] with maximum and minimum moduli, respectively. By Lemma 6, as [image: there is no content] is the first eigenvector of the minimizing graph [image: there is no content], [image: there is no content], [image: there is no content] are non negative and [image: there is no content] are negative values of [image: there is no content]. Now, by (7), [image: there is no content] and [image: there is no content], which implies [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content]. Similarly, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Thus, [image: there is no content].



By (13)–(16) and the above discussion, we have [image: there is no content] and [image: there is no content]. Consequently, E′ contains exactly one edge u″v″=v3v4. Now, if the value of [image: there is no content] is zero, i.e., [image: there is no content], then [image: there is no content] because [image: there is no content]. By (7) [image: there is no content], which is a contradiction. If value of [image: there is no content] is zero i.e., [image: there is no content], then [image: there is no content] as [image: there is no content]. Solving the first two equations of (7), [image: there is no content]. This shows [image: there is no content], which is again a contradiction. If the value of [image: there is no content] is zero, i.e., [image: there is no content], then delete the edges [image: there is no content] and [image: there is no content], and join [image: there is no content] with [image: there is no content] and one of the pendent vertexes of [image: there is no content]. Thus, we get a graph [image: there is no content] with the same [image: there is no content] such that [image: there is no content], which is a contradiction if [image: there is no content] by Lemma 4. Consequently, [image: there is no content] does not contain any vertex with zero value given by [image: there is no content], which completes the proof.



Now, we give the proof of the main theorem (Theorem 2) of this paper, which is stated in Section 1 (Introduction).



Proof of Theorem 2. 

This proof follows Lemma 4 and Theorem 3.






4. Conclusions


Petrovi[image: there is no content] et al. [13] proved: if [image: there is no content] is any bicyclic graph of order n, then [image: there is no content] and equality holds if and only if [image: there is no content], where [image: there is no content]. It shows that [image: there is no content] is a unique minimizing graph in [image: there is no content], where [image: there is no content] is a class of bicyclic graphs of order n. However, in this paper, we proved that [image: there is no content] is a unique minimizing graph in [image: there is no content], where [image: there is no content] is a class of the connected graphs of order n whose complements are bicyclic.
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