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1. Introduction

An immense branch of functional analysis is devoted to the topological and geometric properties
of topological vector spaces (see, for example, [1–4]). Studies of bases in Banach spaces compose a large
part of it (see, for example, [1,5–12] and the references therein). It is not surprising that for concrete
classes of Banach spaces, many open problems remain, particularly for the Müntz spaces MΛ,p, where
1 < p < ∞ (see [13–22] and the references therein). These spaces are defined as completions of the
linear span over R or C of monomials tλ with λ ∈ Λ on the segment [0, 1] relative to the Lp norm,
where Λ ⊂ [0, ∞), t ∈ [0, 1]. In his classical work, K.Weierstrass had proven in 1885 the theorem about
polynomial approximations of continuous functions on the segment. However, the space of continuous
functions also forms an algebra. Generalizations of such spaces were considered by C. Müntz in
1914, such that his spaces did not have the algebra structure. C. Müntz considered conditions on
the exponents λi for which the monomials tλi span a dense subspace of C[0, 1]. Naturally, a problem
arose whether they have bases [23,24]. Then, the progress was for lacunary Müntz spaces satisfying
the condition limn→∞λn+1/λn > 1 with a countable set Λ, but in its generality, this problem was not
solved [20]. It is worth mentioning that the system {tλ : λ ∈ Λ} itself does not contain a Schauder
basis for a non-lacunary set Λ satisfying the Müntz and gap conditions.

In Section 2, relations between Müntz spaces satisfying the Müntz and gap conditions are
considered. A Fourier approximation of functions in the Müntz spaces MΛ,p of Lp functions is
studied in Section 3, where 1 < p < ∞. Necessary definitions are recalled. It is proven that up to
an isomorphism and a change of variables, these spaces are contained in Weil–Nagy’s class. For this
purpose, in Lemmas 1 and 2, Theorem 1 and Corollary 1, some isomorphisms of Müntz spaces are
given. Then, in Theorem 2, a relation between Müntz spaces and Weil–Nagy’s classes is established.
Moreover, in Section 4, the existence of Schauder bases in the Müntz spaces MΛ,p is investigated
(see Theorem 3) with the help of Fourier series approximation (see Lemma 5). It is proven that, under
the Müntz condition and the gap condition, Schauder bases exist in the Müntz spaces MΛ,p, where
1 < p < ∞.
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All main results of this paper are obtained for the first time. They can be used for further
investigations of function approximations and the geometry of Banach spaces. It is important not
only for the development of mathematical analysis and of functional analysis, but also in their
many-sided applications.

2. Relation between Spaces

To avoid misunderstandings, we first remind about the necessary definitions and notations.

Notation 1. Let C([α,β], F) denote the Banach space of all continuous functions f : [α,β]→ F supplied with
the absolute maximum norm:

‖ f ‖C := max{| f (x)| : x ∈ [α,β]}

where −∞ < α < β < ∞, F is either the real field R or the complex field C.

Then, Lp([α,β], F) denotes the Banach space of all Lebesgue measurable functions f : [α,β]→ F
possessing the finite norm:

‖ f ‖Lp([α,β],F) := (
∫ β
α
| f (x)|pdx)1/p < ∞

where 1 ≤ p < ∞ is a marked number, α < β.
As usual, spanF(vk : k) will stand for the linear span of vectors vk over a field F.

Definition 1. Take a countable infinite subset Λ = {λk : k ∈ N} in the set (0, ∞) so that {λk : k ∈ N} is
a strictly increasing sequence.

Henceforth, it is supposed that the set Λ satisfies the gap condition:

(1) infk{λk+1 − λk} =: α0 > 0 and the Müntz condition:
(2)

∞

∑
k=1

1
λk

=: α1 < ∞.

The completion of the linear space containing all monomials atλ with a ∈ F and λ ∈ Λ and
t ∈ [α,β] relative to the Lp norm is denoted by MΛ,p([α,β], F), where 0 ≤ α < β < ∞, 1 ≤ p, also
by MΛ,C([α,β], F) when it is completed relative to the ‖‖C norm. Briefly, they will also be written as
MΛ,p or MΛ,C, respectively, for α = 0 and β = 1, when F is specified.

Before the subsections about the Fourier approximation in Müntz spaces auxiliary, Lemmas 1
and 2 and Theorem 1 are proven about isomorphisms of Müntz spaces MΛ,Lp . With their help, our
consideration reduces to a subclass of Müntz spaces MΛ,Lp so that a set Λ is contained in the set of
natural numbers N.

Lemma 1. For each 0 < δ < 1, the Müntz spaces MΛ,p([0, 1], F) and MΛ,p([δ, 1], F) are linearly topologically
isomorphic, where 1 ≤ p < ∞.

Proof. For every 0 < δ < 1 and 0 < ε ≤ 1 and f ∈ E := Lp([0, 1], F), the norms ‖ f ‖E[0,1] and
ε‖ f |[0,δ]‖E[0,δ] + ‖ f |[δ,1]‖E[δ,1] are equivalent, where E[α,β] := E ∩ Lp([α,β], F) for 0 ≤ α < β ≤ 1.
Due to the Remez-type and the Nikolski-type inequalities (see Theorem 6.2.2 in [16] and Theorem 7.4
in [17]) for each Λ satisfying the Müntz condition, there is a constant η > 0, so that ‖h|[0,δ]‖E[0,δ] ≤
η‖h|[δ,1]‖E[δ,1] for each h ∈ MΛ,p, where η is independent of h. Therefore, the norms ‖h|[δ,1]‖E[δ,1] and
‖h‖E[0,1] are equivalent on MΛ,p[0, 1]. Certainly, each polynomial a1tλ1 + ... + antλn defined on the
segment [δ, 1] has the natural extension on [0, 1], where a1, ..., an ∈ F are constants and t is a variable.
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Thus, the Müntz spaces MΛ,p[0, 1] and MΛ,p[δ, 1] are linearly topologically isomorphic as normed
spaces for each 0 < δ < 1.

Lemma 2. The Müntz spaces MΛ,p and MΞ∪(αΛ+β),p are linearly topologically isomorphic for every β ≥ 0
and α > 0 and a finite subset Ξ in (0, ∞), where 1 ≤ p < ∞.

Proof. We have that a sequence {λk : k ∈ N} is strictly increasing and satisfies the gap condition.
This implies that limn→∞ λn = ∞. Without loss of generality, a set Ξ ∪ (αΛ + β) can also be ordered
into a strictly increasing sequence.

By virtue of Theorem 9.1.6 [20], the Müntz space MΛ,p contains a complemented isomorphic copy
of lp; consequently, MΛ,p and MΞ∪Λ,p are linearly topologically isomorphic as normed spaces.

Then, from Lemma 1 taking α > 0, we deduce that:

∫ 1

δ
| f (t)|pdt = α

∫ 1

δ1/α
| f (xα)|px(α−1)dx ≤ αmax(1, δ(1−α

−1))
∫ 1

δ1/α
| f (xα)|pdx (1)

and: ∫ 1

δ
| f (xα)|pdx = α−1

∫ 1

δα
| f (t)|pt(α

−1−1)dt ≤ α−1 max(1, δ(1−α))
∫ 1

δα
| f (t)|pdt (2)

for each f ∈ MΛ,p, and hence, MαΛ,p is isomorphic with MΛ,p. Considering the set Λ1 = Λ ∪ {βα}
and then the set αΛ1, we get that MΛ,p and MαΛ+β,p are linearly topologically isomorphic as normed
spaces, as well.

Theorem 1. Let increasing sequences Λ = {λn : n} and Υ = {υn : n} of positive numbers satisfy Conditions
1(1,2), and let λn ≤ υn for each n. If supn(υn − λn) = δ, where δ < (8 ∑∞

n=1 λ
−1
n )−1, then MΛ,p and MΥ,p

are the isomorphic Banach spaces, where 1 ≤ p < ∞.

Proof. There exist the natural isometric linear embeddings of the Müntz spaces MΛ,p and MΥ,p into
MΛ∪Υ,p. We choose a sequence of sets Υk satisfying the following restrictions (1)–(4):

(1) Υk = {υk,n : n = 1, 2, ...} ⊂ Λ ∪ Υ and υk,n ∈ {λn, υn} for each k = 0, 1, 2, ... and n = 1, 2, ...,
where Υ0 = Λ;

(2) υk,n ≤ υk+1,n for each k = 0, 1, 2, ... and n = 1, 2, ...;
(3) {∆k+1,n : n = 1, 2, ...} is a monotone decreasing subsequence, which may be finite or infinite,

having positive terms ∆k+1,n tending to zero. The terms ∆k+1,n are obtained from the sequence
δk+1,j := υk+1,j− υk,j by elimination of zero terms. Denote by θ = θk+1 : {j : j ∈ N, δk+1,j 6= 0} →
N the corresponding enumeration mapping, such that ∆k+1,θ(j) = δk+1,j 6= 0 for each j ∈ N is
not zero;

(4) {m(k + 1) : k} is a monotone increasing sequence with m(k + 1) := min{n : υn − υk+1,n 6= 0;
∀l < n υl = υk+1,l}.

Take an arbitrary function f in MΥk ,p. In view of Theorem 6.2.3 and Corollary 6.2.4 [20], a function
f has a power series expansion:

f (t) =
∞

∑
n=1

antvk,n on [0, 1)

where an ∈ F for each n ∈ N, where the power series decomposition of f converges for each
0 ≤ t < 1, since f is analytic on [0, 1).

Therefore, for each f ∈ MΥk ,p, we consider the power series
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f1(t) = ∑∞
n=1 antυk+1,n . Then, we infer that:

f (t2)− f1(t2) =
∞

∑
n=1

antυk,n uθ(n)(t) with uθ(n)(t) := tυk,n − tυk,n+2∆k+1,θ(n)

so that ul(t) is a monotone decreasing sequence by l, and hence:

| f (t2)− f1(t2)| ≤ 2|uθ(m(k+1))(t)|| f (t)|

according to Dirichlet’s criterion (see, for example, [25]) for each 0 ≤ t < 1, where θ = θk+1.
Then, we deduce that:

‖ f − f1‖Lp([0,1],F) ≤ 22+1/p‖ f ‖Lp([0,1],F)∆k+1,θ(m(k+1))/λm(k+1) (3)

since the mapping t 7→ t2 is the orientation preserving the diffeomorphism of [0, 1] onto itself,
also |um(k+1)(t)| ≤ 2∆k+1,θ(m(k+1))/λm(k+1) for each 0 ≤ t ≤ 1 by Lemma 7.3.1 [20] and:

‖ f − f1‖Lp([0,1],F) = [
∫ 1

0
| f (τ)− f1(τ)|pdτ]1/p

= [2
∫ 1

0
| f (t2)− f1(t2)|ptdt]1/p ≤ [2p+1

∫ 1

0
|um(k+1)(t)|p| f (t)|ptdt]1/p

≤ 22+1/p[
∫ 1

0
| f (t)|pdt]1/p∆k+1,θ(m(k+1))/λm(k+1)

Thus, the series ∑∞
n=1 antυk+1,n converges on [0, 1), and the function f1(t) is analytic on [0, 1).

Inequality (3) implies that the linear isomorphism Tk of MΥk ,p with MΥk+1,p exists, such that
‖Tk − I‖ ≤ 22+1/p∆k+1,θ(m(k+1))/λm(k+1), Tk : MΥk ,p → MΥk+1,p. Then, we take the sequence of
operators Sn := TnTn−1...T0 : MΛ,p → MΥn+1,p ⊂ MΛ∪Υ,p. The space MΛ∪Υ,p is complete, and the
operator sequence {Sn : n} converges relative to the operator norm to an operator S : MΛ,p → MΛ∪Υ,p,
so that ‖S− I‖ < 1, since:

∞

∑
k=0

∆k+1,θ(m(k+1))/λm(k+1) ≤ δ
∞

∑
n=1

λ−1
n < 1/8

and p ≥ 1, where I denotes the unit operator. Therefore, the operator S is invertible. On the other
hand, from Conditions (1)–(4), it follows that S(MΛ,p) = MΥ,p.

3. Approximation in Müntz Lp Spaces

Now, we recall necessary definitions and notations of the Fourier approximation theory and then
present useful lemmas.

Notation 2. Suppose that Q = (qn,k) is a lower triangular infinite matrix with real matrix elements qn,k
satisfying the restrictions: qn,k = 0 for each k > n, where k, n are nonnegative integers. To each one-periodic
function f : R → R in the space Lp((α,α+ 1), F) or in C0([α,α+ 1], F) := { f : f ∈ C([α,α+ 1], F),
f (α) = f (α+ 1)} is posed a trigonometric polynomial:

Un( f , x, Q) :=
a0

2
qn,0 +

n

∑
k=1

qn,k(ak cos(2πkx) + bk sin(2πkx)) (4)

where ak = ak( f ) and b = bk( f ) are the Fourier coefficients of a function f (x).
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For measurable one-periodic functions h and g, their convolution is defined whenever it exists by
the formula:

(h ∗ g)(x) := 2
∫ α+1

α
h(x− t)g(t)dt (5)

Putting the kernel of the operator Un as:

Un(x, Q) :=
qn,0

2
+

n

∑
k=1

qn,k cos(2πkx) (6)

we get:
Un( f , x, Q) = ( f ∗Un(, Q))(x) = (Un(, Q) ∗ f )(x) (7)

The norms of these operators are:

Ln(Q, E) := sup
f∈E, ‖ f ‖E=1

‖Un( f , x, Q)‖E (8)

which are constants of a summation method, where ‖ ∗ ‖E denotes a norm on a Banach space E,
where either E = C0([α,α+ 1], F) or E = Lp((α,α+ 1), F) with 1 ≤ p < ∞, while α ∈ R is a marked
real number.

Henceforward, the Fourier summation methods prescribed by sequences of operators {Um : m}
that converge on E:

lim
m→∞

Um( f , x, Q) = f (x) (9)

in the E norm will be considered.
Henceforth, F denotes the set of all pairs (ψ,β) satisfying the conditions: (ψ(k) : k ∈ N) is

a sequence of non-zero numbers for which limk→∞ψ(k) = 0 the limit is zero, β is a real number
and also:

Dψ,β(x) :=
∞

∑
k=1

ψ(k) cos(2πkx + βπ/2) (10)

is the Fourier series of some function from L1[0, 1]. By F1 is denoted the family of all positive sequences
(ψ(k) : k ∈ N) tending to zero with ∆2ψ(k) := ψ(k− 1)− 2ψ(k) +ψ(k + 1) ≥ 0 for each k so that
the series:

∞

∑
k=1

ψ(k)
k

< ∞ (11)

converges. The set of all downward convex functions ψ(v) for each v ≥ 1, so that limv→∞ψ(v) = 0 is
denoted byM, whileM1 is its subset of functions satisfying Condition (11).

Then:
ρn( f , x) := f (x)− Sn−1( f , x) (12)

is the approximation precision of f by the Fourier series S( f , x), where:

Sn( f , x) :=
a0

2
+

n

∑
k=1

(ak cos(2πkx) + bk sin(2πkx)) (13)

is the partial Fourier sum approximating a Lebesgue integrable one-periodic function f on (0, 1).
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Definition 2. Suppose that f ∈ L1(α,α+ 1) and S[ f ] is its Fourier series with coefficients ak = ak( f ) and
bk = bk( f ), while ψ(k) is an arbitrary sequence that is real or complex. If the function:

Dψβ f := fψβ :=
∞

∑
k=1

[ak( f ) cos(2πkx + βπ/2) + bk( f ) sin(2πkx + βπ/2)]/ψ(k)

belongs to the space L(α,α+ 1) of all Lebesgue integrable (summable) functions on (α,α+ 1), then fψβ is called

the Weil (ψ,β) derivative of f . Then, Lψβ = Lψβ (α,α+ 1) stands for the family of all functions f ∈ L(α,α+ 1)

with fψβ ∈ L(α,α+ 1); we also put Lψβ,p := { f : f ∈ Lψβ , ‖ fψβ ‖Lp(α,α+1) ≤ 1}. Particularly, for ψ(k) =

k−r, this space Lψβ is Weil–Nagy’s class Wr
β = Wr

β(α,α+ 1), and the notation Wr
β,p can be used instead of

Lψβ,p in this case. Put particularly Wr
βLp(α,α+ 1) := { f : f ∈ Lp(α,α+ 1), ∃ fψβ ∈ Lp(α,α+ 1)}, where

1 < p < ∞.

Then, let En(X) := sup{‖ρn( f ; x)‖Lp(α,α+1) : f ∈ X}

En( f )p := inf{‖ f − Tn−1‖Lp(α,α+1) : Tn−1 ∈ T2n−1}

En(X) := sup{En( f )p : f ∈ X}, where X is a subset in Lp(α,α+ 1) = Lp((α,α+ 1), R)

T2n−1 := {Tn−1(x) =
c0

2
+

n−1

∑
k=1

(ck cos(2πkx) + dk sin(2πkx)); ck, dk ∈ R}

denotes the family of all trigonometric polynomials Tn−1 of a degree not greater than n− 1.

Lemma 3. Suppose that Qα f (t) := f (tα) for each f : [0, 1] → F, where 0 < α, t ∈ [0, 1], 1 < p < ∞.
Then, for each 1 < α < ∞, there exists 0 < δ < 1, such that the operator Qα from Lp(δα, 1) into Lp(δ, 1) has
the norm ‖Qα‖ < 1.

Proof. The Banach spaces Lp(δ, 1) and Lp(δα, 1) are defined with the help of the Lebesgue measure
on R. Then, Equation 2(2) implies that ‖Qα‖ < 1 as soon as α−1 max(1, δ(1−α)) < 1. That is, when
{δ(1−α) < α} ⇐⇒ {ln δ > (1− α)−1 lnα}, since α > 1 and 0 < δ < 1.

Corollary 1. Let 1 < α < ∞ and 0 < δ < 1, so that δ > α1/(1−α); let also ZΛ,p,α,δ := (I −
Qα)[MΛ,p(δ

α, 1)], where 1 < p < ∞, while I is the unit operator. Then, ZΛ,p,α,δ is isomorphic with
MΛ,p(δ

α, 1).

Proof. There is the natural embedding of Lp(a, b) into Lp(c, d) when c ≤ a and b ≤ d, such
that f 7→ fχ(a,b) for each f ∈ Lp(a, b), where χA notates the characteristic function of a set A.
Since ‖Qα‖ < 1, then the operator I −Qα is invertible (see [26]).

Lemma 4. Let f ∈ Lp(0, 1), where 1 < p < ∞. Then:

lim
η↓0

η−1/q
∫ 1

1−η
f (t)dt = 0

where 1/q + 1/p = 1.

Proof. Since f ∈ Lp(0, 1), then | f (t)|pµ(dt) is a σ-additive and finite measure on (0, 1), where µ is
the Lebesgue measure on R (see, for example, [27], Theorems V.5.4.3 and V.5.4.5 [26]). Therefore,
the limit exists:

lim
η↓0

∫ 1

1−η
| f (t)|pdt = 0 (14)
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From Holder’s inequality, it follows that:

|
∫ 1

1−η
f (t)dt| ≤ (

∫ 1

1−η
| f (t)|pdt)1/p(

∫ 1

1−η
1dt)1/q = η1/q(

∫ 1

1−η
| f (t)|pdt)1/p

hence:

|η−1/q
∫ 1

1−η
f (t)dt| ≤ (

∫ 1

1−η
| f (t)|pdt)1/p (15)

Thus, from Equations (14) and (15), the statement of this lemma follows.

Note: We remind about the following definition: the family of all Lebesgue measurable functions
f : (a, b)→ R satisfying the condition:

‖ f ‖Ls,w(a,b) := sup
y>0

(ysµ{t : t ∈ (a, b), | f (t)| ≥ y})1/s < ∞

is called the weak Ls space and denoted by Ls,w(a, b), where µ notates the Lebesgue measure on the
real field R, 0 < s < ∞, (a, b) ⊂ R (see, for example, §9.5 [27], §IX.4 [28,29]).

The following Proposition 1 is used below in Theorem 2 to prove that functions of Müntz
spaces MΛ,p for Λ satisfying the Müntz condition and the gap condition belong to Weil–Nagy’s class,
where 1 < p < ∞.

Proposition 1. Suppose that an increasing sequence Λ = {λn : n} of natural numbers satisfies the Müntz
condition, 1 < p < ∞ and f ∈ MΛ,p. Then, dh(x)/dx ∈ Ls,w(0, 1) for a function h(x) = f (x)− f (x2),
where s = p/(p + 1).

Proof. In view of Theorem 6.2.3 and Corollary 6.2.4 [20], a function f is analytic on (0, 1), and
consequently, h is analytic on (0, 1); hence, a derivative dh(x)/dx is also analytic on (0, 1). Moreover,
the series:

f (z) =
∞

∑
n=1

anzλn (16)

converges on Ḃ1(0), where Ḃr(x) := {y : y ∈ C, |y− x| < r} denotes the open disk in C of radius r > 0
with center at x ∈ C, where an ∈ F is an expansion coefficient for each n ∈ N. That is, the functions
f and h have holomorphic univalent extensions on Ḃ1(0), since Λ ⊂ N (see Theorem 20.5 in [30]).
Take the function H(x) =

∫ 1
x h(t)dt, where x ∈ [0, 1]. In virtue of Theorem VI.4.2 [26] and Lyapunov’s

inequality (Equation (27) in §II.6 [31]), this function is continuous, so that H(1) = 0. Together with
Equation (1), this implies that the function H(x) belongs to M{0}∪(Λ+1),C and has a holomorphic
univalent extension on Ḃ1(0).

Then, we put g(z) = (1− z)−1/qH(z) for each z ∈ Ḃ1(0), where 1/q + 1/p = 1. From Lemma 4,
it follows that:

lim
z→1

g(z) = 0 (17)

Thus, the function g(z) is holomorphic (may be multivalent because of the multiplier (1− z)−1/q)
on Ḃ1(0) and continuous on Ḃ1(0) ∪ {1}.

According to Cauchy’s Equation 21(5) in [30]:

h′(z) = − 1
πi

∫
γ

H(y)
(y− z)3 dy (18)
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for each z ∈ Ḃ1/2(1/2), where γ is an oriented rectifiable boundary γ = ∂G of a simply-connected
open domain G contained in Ḃ1/2(1/2), such that z ∈ G. Particularly, this is valid for each z in (1/2, 1)
and G = Ḃ1/2(1/2).

On the other hand, the function g(z) is bounded on B1/2(1/2), where Br(x) := {y : y ∈
C, |y − x| ≤ r} notates the closed disk of radius r > 0 with the center at x ∈ C. Thus,
K = supz∈B1/2(1/2) |g(z)| < ∞. Estimating the integral (18) and taking into account Equation (17), we

infer that |h′(t)| ≤ 2K/(1− t)1+1/p for each t ∈ (3/4, 1), since 1/q + 1/p = 1. Together with the
analyticity of h′ on [0, 1) this implies that:

sup
y>0

(ysµ{t : t ∈ (a, b), |h′(t)| ≥ y})1/s < ∞

where s = p/(p + 1). Thus, h′ ∈ Ls,w(0, 1).

Theorem 2. Let an increasing sequence Λ = {λn : n} of natural numbers satisfy the Müntz condition, also
1 > δ > 1/2 and 1 < p < ∞, and let σ(x) = δ2 + x(1− δ2), where 0 ≤ x ≤ 1. Then, for each 0 < γ < 1,
there exists β = β(γ) ∈ R, so that ZΛ,p,2,δ ◦ σ ⊂Wγ

βLp(0, 1).

Proof. Let f ∈ MΛ,p(0, 1) and v(x) = (I − Q2) f (σ(x)), then v(x) is analytic on (0, 1), since f is
analytic on (0, 1) and σ[0, 1] = [δ2, 1]. We take its one-periodic extension v0 on R.

According to Proposition 1.7.2 [32] (or see [33]), h ∈ Wγ
βLp(0, 1) if and only if there exists a

function φ = φh,γ,β, which is one-periodic on R, and Lebesgue integrable on [0, 1], such that:

h(x) =
a0(h)

2
+ (φ ∗ Dψ,β)(x) (19)

where a0(h) = 2
∫ 1

0 h(t)dt (see Notation 2 and Definition 2).
We take a sequence Un(t, Q) given by Equation (6), so that:

lim
m

qm,k = 1 for each k and sup
m

Lm(Q, Lp) < ∞ and sup
m,k
|qm,k| < ∞

and write for short Un(t) instead of Un(t, Q). Under these conditions, the limit exists:

lim
n
(v ∗Un)(x) = v(x) (20)

in Lp(0, 1) norm for each v ∈ Lp((0, 1), F) according to Chapters 2 and 3 in [32] (see also [15,33]).
On the other hand, Equation I(10.1) [32] provides:

S[(yψ1
β̄1

)ψ2/ψ1
β̄2−β̄1

] = S[yψ2
β̄2

] (21)

where S[y] is the Fourier series corresponding to a function y ∈ Lψ2
β̄2

, when (ψ1, β̄1) ≤ (ψ2, β̄2).

Put θ(k) = kγ−1 for all k ∈ N. Then, Dθ,−β ∈ L1(0, 1) for each β ∈ R due to Theorems II.13.7,
V.1.5 and V.2.24 [33] (or see [15]). This is also seen from Chapters I and V in [32] and Equations (19)
and (21) above. In view of Dirichlet’s theorem (see §430 in [25]), the function Dθ,−β(x) is continuous
on the segment [δ, 1− δ] for each 0 < δ < 1/4.

According to Equation 2.5.3.(10) in [34]:

∫ ∞

0
xα−1

(
sin(bx)
cos(bx)

)
dx = b−αΓ(α)

(
sin(πα/2)
cos(πα/2)

)



Mathematics 2017, 5, 10 9 of 14

for each b > 0 and 0 < Re(α) < 1. On the other hand, the integration by parts gives:

∫ ∞

a
xα−1

(
sin(bx)
cos(bx)

)
dx = b−1aα−1

(
cos(ab)
− sin(ab)

)
− b−1(α− 1)

∫ ∞

a
xα−2

(
− cos(bx)

sin(bx)

)
dx

for every a > 0, b > 0 and 0 < Re(α) < 1. From Equation V(2.1), Theorems V.2.22 and V.2.24 in [33]
(see also [18,35]), we infer the asymptotic expansions:

∞

∑
n=1

n−α sin(2πnx) ≈ (2πx)α−1Γ(1− α) cos(πα/2) + µxα

∞

∑
n=1

n−α cos(2πnx) ≈ (2πx)α−1Γ(1− α) sin(πα/2) + νxα

in a small neighborhood 0 < x < δ of zero, where 0 < δ < 1/4, 0 < α < 1, µ and ν are real constants.
Taking β = α = 1− γ, we get that Dθ,−β(x) ∈ L∞(0, 1).

Evidently, for Lebesgue measurable functions f : R → R and g : R → R, there is the equality∫ ∞
−∞ f (x − t)χ[0,∞)(x − t)g(t)χ[0,∞)(t)dt =

∫ x
0 f (x − t)g(t)dt for each x > 0 whenever this integral

exists, where χA denotes the characteristic function of a subset A in R, such that χA(y) = 1 for each
y ∈ A, also χA(y) = 0 for each y outside A, y ∈ R \ A. Particularly, if 0 < x ≤ T, where 0 < T < ∞
is a constant, then

∫ x
0 f (x− t)g(t)dt =

∫ ∞
0 f (x− t)χ[0,T](x− t)g(t)χ[0,T](t)dt (see also [25,26]). This is

applicable to Equation (5) putting α = 0 there and with the help of the equality:

∫ 1

0
f (x− t)g(t)dt =

∫ x

0
f (x− t)g(t)dt +

∫ 1−x

0
f1((1− x)− v)g1(v)dv

for each 0 ≤ x ≤ 1 and one-periodic functions f and g and using also that ‖ f |[a,b]‖ ≤ ‖ f |[0,1]‖ =

‖ f1|[0,1]‖ for the considered types here of norms for each [a, b] ⊂ [0, 1], where f1(t) = f (−t) and
g1(t) = g(−t) for each t ∈ R, since:

∫ 1

x
f (x− t)g(t)dt =

∫ 1−x

0
f (v− 1 + x)g(1− v)dv

We mention that according to the weak Young inequality:

‖ξ ∗ η‖p ≤ Kr,s‖ξ‖r‖η‖s,w (22)

for each ξ ∈ Lr and η ∈ Ls,w, where 1 ≤ p, r ≤ ∞, 0 < s < ∞ and r−1 + s−1 = 1 + p−1, Kr,s > 0 is
a constant independent of ξ and η (see Theorem 9.5.1 in [27], §IX.4 in [28]).

By virtue of Equation (21), the weak Young inequality (22) and Proposition 1, there exists a
function s in Lp(0, 1), so that:

s(x) = lim
n
((Dθ,−β ∗Un) ∗ v′0)(x)

where β = 1− γ. Therefore, φv0,γ,β = s and Dψβ v0 = s according to Equations (20) and (22). Thus,
v0 ∈Wγ

βLp(0, 1).

Below, Lemma 5 and Proposition 2 are given. They are used in Theorem 3 for proving the existence
of a Schauder basis. On the other hand, Theorem 2 is utilized to prove Lemma 5.

Lemma 5. If an increasing sequence Λ of natural numbers satisfies the Müntz condition, also 0 < γ < 1 and
1 < p < ∞, 1 > δ > 1/2:

X = {h : h = f ◦ σ, f ∈ ZΛ,p,2,δ; ‖ f ‖Lp((δ2,1),R) ≤ 1}
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then a positive constantω = ω(p,γ) exists, so that:

En(X) ≤ En(X) ≤ ωn−γ (23)

for each natural number n ∈ N.

Proof. By virtue of Theorem 2, the inclusion h(x) ∈ Wγ
βLp(0, 1) is valid for each h ∈ ZΛ,p,2,δ ◦

σ, where ψ is in F1 with ψ(k) = k−γ for each k ∈ N, β = 1 − γ. Then, ‖h‖Lp((0,1),R) = (1 −
δ2)−1/p‖ f ‖Lp((δ2,1),R) ≤ (1− δ2)−1/p for each h ∈ X, since:

∫ 1

0
|h(x)|pdx = (1− δ2)−1

∫ 1

δ2
| f (t)|pdt (24)

Therefore, X ⊂ (1− δ2)−1/pWγ
βLp(0, 1) (see also §7), where bY := { f : f = bg, g ∈ Y} for a linear

space Y over R and a marked real number b.
Then, the estimate (23) follows from Theorem V.5.3 in [32].

4. Existence of Schauder Basis

Proposition 2. Let X be a Banach space over R, and let Y be its Banach subspace, so that they fulfill the
conditions (1–5) below:

(1) there is a sequence (ei : i ∈ N) in X, such that e1, ..., en are linearly independent vectors and ‖en‖X = 1
for each n and;

(2) there exists a Schauder basis (zn : n ∈ N) in X, such that:

zn =
n

∑
k=1

bk,nek

for each n ∈ N, where bk,n are real coefficients;
(3) for every x ∈ Y and n ∈ N, there exist x1, ..., xn ∈ R, so that:

‖x−
n

∑
i=1

xiei‖X ≤ s(n)‖x‖

where s(n) is a strictly monotone decreasing positive function with limn→∞ s(n) = 0 and,
(4)

un =
k(n)

∑
l=m(n)

un,lel

where un,l ∈ R for each natural numbers k and l, where a sequence (un : n ∈ N) of normalized
vectors in Y is such that its real linear span is everywhere dense in Y and 1 ≤ m(n) ≤ k(n) < ∞ and
m(n) < m(n + 1) for each n ∈ N;

(5) vectors u1,...,un are linearly independent in Y for each n ∈ N.

Then, Y has a Schauder basis.

Proof. The real linear span spanR(u1, ...., un) is complemented in Y for each n ∈ N due to
Theorem (8.4.8) in [4]. Put Ln,∞ := clXspanR(uk : k ≥ n) and Ln,m := clXspanR(uk : n ≤ k ≤ m),
where clX A denotes the closure of a subset A in X, where spanR A denotes the real linear span of A.
Since Y is a Banach space and uk ∈ Y for each k, then Ln,∞ ⊂ Y and Ln,m ⊂ Y for each natural number
n and m. Then, we infer that:

Ln,j ⊂ spanR(el : m(n) ≤ l ≤ kn,j)
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where kn,j := max(k(l) : n ≤ l ≤ j).
Take arbitrary vectors f ∈ L1,j and g ∈ Lj+1,q, where 1 ≤ j < q. Therefore, there are real

coefficients fi and gi, such that:

f =

k1,j

∑
i=1

fiei

and:

g =

kj+1,q

∑
i=m(j+1)

giei

Hence, due to Condition (2):

‖ f −
m(j)

∑
i=1

fiei‖X ≤ s(m(j))‖ f ‖

and:

‖g−
kj+1,q

∑
i=k1,j+1

giei‖X ≤ s(k1,j + 1)‖g‖X

On the other hand:

f =
m(j)

∑
i=1

fiei +

k1,j

∑
i=m(j)+1

fiei

consequently:
‖ f [j+1]‖ ≤ s(m(j + 1)))‖ f ‖

where f [j+1] := ∑
k1,j
i=m(j+1) fiei and ∑b

i=a fiei := 0, when a > b.

When 0 < δ < 1/4 and s(m(j)+ 1) < δ, we infer using the triangle inequality that ‖ f [j+1]− h‖X ≤
δ‖ f [j+1]‖X/(1− δ) ≤ δs(m(j + 1)− 1)‖ f ‖X/(1− δ) for the best approximation h of f [j+1] in Lj+1,∞,
since m(j) < m(j + 1) for each j. Therefore, the inequality ‖ f − g‖X ≥ ‖ f − f [j+1‖X − ‖ f [j+1] − g‖X
and s(n) ↓ 0 imply that there exists n0, such that the inclination of L1,j to Lj+1,∞ is not less than 1/2 for
each j ≥ n0. Condition (4) implies that L1,n0 is complemented in Y. By virtue of Theorem 1.2.3 [20], the
Schauder basis exists in Y.

Theorem 3. If a set Λ satisfies the Müntz and gap conditions and 1 < p < ∞, then the Müntz space
MΛ,p([0, 1], F) has a Schauder basis.

Proof. In view of Lemma 2 and Theorem 1, it is sufficient to prove the existence of a Schauder basis
in the Müntz space MΛ,p for Λ ⊂ N. We mention that if the Müntz space MΛ,p([0, 1], R) over the
real field has the Schauder basis, then MΛ,p([0, 1], C) over the complex field has it as well. Thus, it is
sufficient to consider the real field F = R.

Let Um(x, Q) be kernels of the Fourier summation method in Lp(0, 1) as in Notation 2, such that:

(1) limm qm,k = 1 for each k and supm Lm(Q, Lp) < ∞ and supm,k |qm,k| < ∞ .

For example, Cesaro’s summation method of order one can be taken, to which Fejér kernels
Fn correspond, so that the limit:

lim
n→∞

Fn ∗ f = f

converges in Lp(0, 1) (see Theorem 19.1 and Corollary 19.2 in [36]). That is, there exists the Schauder
basis zn in Lp(0, 1), such that:

z2n(t) = a0,2n + [
n−1

∑
k=1

(ak,2n cos(2πkt) + bk,2n sin(2πkt)] + an,2n cos(2πnt)
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and:

z2n+1(t) = a0,2n+1 +
n

∑
k=1

(ak,2n+1 cos(2πkt) + bk,2n+1 sin(2πkt))

for every t ∈ (0, 1) and n ∈ N, where ak,j and bk,j are real expansion coefficients.
By virtue of Theorem 6.2.3 and Corollary 6.2.4 [20], each function g ∈ MΛ,p[0, 1] has an analytic

extension on Ḃ1(0), and hence:

(2)

g(z) =
∞

∑
n=1

cnzλn =
∞

∑
k=1

pkuk(z)

are the convergent series on the unit open disk Ḃ1(0) in C with the center at zero (see Proposition
1), where Λ ⊂ N and cn = cn(g) ∈ N, pn = pn(g) = c1 + ... + cn, u1(z) := zλ1 , un+1(z) :=
zλn+1 − zλn for each n = 1, 2, .... On the other hand, the Müntz spaces MΛ,p[0, 1] and MΛ,p[δ

2, 1]
are isomorphic for each 0 < δ < 1 (see Lemma 1 above). Therefore, we consider henceforward the
Müntz space MΛ,p on the segment [δ2, 1], where 1 > δ > 1/2. We mention that MΛ,p[δ

2, 1] and
MΛ,p ◦ σ[0, 1] are isomorphic (see Theorem 2). Then, ZΛ,p,2,δ and ZΛ,p,2,δ ◦ σ|[0,1] are isomorphic,
as well. In view of Corollary 1, it is sufficient to prove the existence of a Schauder basis in
ZΛ,p,2,δ ◦ σ|[0,1].

Take the finite dimensional subspace Xn := spanR(u1, ..., un) in MΛ,p, where n ∈ N.
Due to Lemma 2, the Banach space Mλ,p 	 Xn exists and is isomorphic with Mλ,p. By virtue of

Equation I(10.1) [32] S[(yψ1
β̄1

)ψ2/ψ1
β̄2−β̄1

] = S[yψ2
β̄2

], where y ∈ Lψ2
β̄2

, when (ψ1, β̄1) ≤ (ψ2, β̄2).
Consider the trigonometric polynomials Um( f , x, Q) for f ∈ (ZΛ,p,2,δ 	 (I − Q2)Xn) ◦ σ,

where m = 1, 2, .... Put YK,n as the Lp completion of the linear span spanR(Um( f , x, Q) : (m, f ) ∈ K),
where K ⊂ N× (ZΛ,p,2,δ 	 (I −Q2)Xn) ◦ σ, m ∈ N, f ∈ (ZΛ,p,2,δ 	 (I −Q2)Xn) ◦ σ.

It is known (see Proposition 1.7.1 [32]) that f ∈ Lψβ (α,α + 1) if and only if there exists

g ∈ L(α,α+ 1), so that f = a0( f )
2 +Dψ,β ∗ g, where the function Dψ,β is prescribed by Equation (10);

the constant a0( f ) is as above. In view of Lemma 2, it is sufficient to consider the case a0( f ) = 0.
There exists a countable subset { fn : n ∈ N} in ZΛ,p,2,δ, such that fn ◦ σ = Dψ,β ∗ gn with

gn ∈ L(0, 1) for each n ∈ N and so that spanR{ fn : n ∈ N} is dense in ZΛ,p,α,δ, since ZΛ,p,2,δ is
separable. Using Properties (1) and (2) in this proof, Proposition 1 and Lemma 5, we deduce that
a countable set K and a sufficiently large natural number n0 exist, so that the Banach space YK,n0

is isomorphic with (ZΛ,p,2,δ 	 (I − Q2)Xn0) and YK,n0 |(0,1) ⊂ Wγ
βLp(0, 1), where 0 < γ < 1 and

β = 1− γ. Therefore, by the construction above, the Banach space YK,n0 is the Lp completion of the
real linear span of a countable family (sl : l ∈ N) of trigonometric polynomials sl .

Without loss of generality, this family can be refined by induction, such that sl is linearly
independent of s1, ..., sl−1 over F for each l ∈ N. With the help of transpositions in the sequence
{sl : l ∈ N}, the normalization and the Gaussian exclusion algorithm, we construct a sequence
{rl : l ∈ N} of trigonometric polynomials that are finite real linear combinations of the initial
trigonometric polynomials {sl : l ∈ N} and satisfying the conditions:

(3) ‖rl‖Lp(0,1) = 1 for each l

(4) the infinite matrix having the l-th row of the form ..., al,k, bl,k, al,k+1, bl,k+1, ... for each l ∈ N is
upper trapezoidal (step), where:

rl(x) =
al,0

2
+

n(l)

∑
k=m(l)

[al,k cos(2πkx) + bl,k sin(2πkx)]

with a2
l,m(l) + b2

l,m(l) > 0 and a2
l,n(l) + b2

l,n(l) > 0, where 1 ≤ m(l) ≤ n(l), deg(rl) = n(l) or r1(x) = a1,0
2

when deg(r1) = 0; al,k, bl,k ∈ R for each l ∈ N and 0 ≤ k ∈ Z.
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Then, as X and Y in Proposition 2, we take X = Lp[0, 1] and Y = YK,n0 . In view of Proposition 2
and Lemma 2, the Schauder basis exists in YK,n0 and, consequently, in MΛ,p, as well.

5. Conclusions

Besides the applications mentioned in the Introduction, the results of this article can be used,
for example, for the analysis of the perturbations of periodic functions to almost periodic functions
with the trend [37] and in the analysis of distortions in high-frequency pulse acoustic signals [38] with
the help of function approximations.
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