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Abstract:



Inspired by a metrical-fixed point theorem from Choudhury et al. (Nonlinear Anal. 2011, 74, 2116–2126), we prove some order-theoretic results which generalize several core results of the existing literature, especially the two main results of Harjani and Sadarangani (Nonlinear Anal. 2009, 71, 3403–3410 and 2010, 72, 1188–1197). We demonstrate the realized improvement obtained in our results by using a suitable example. As an application, we also prove a result for mappings satisfying integral type [image: there is no content]-generalized weakly contractive conditions.
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1. Introduction and Preliminaries


Banach contraction principle is a pivotal result of metric-fixed point theory. In subsequent years, this classical result has been generalized and improved in numerous ways and by now there exists extensive literature on this theme. In 1997, Alber and Guerre-Delabriere [1] introduced the notion of weak contraction and utilized the same to prove the existence and uniqueness of a fixed point of a self-mapping, satisfying a weak contraction condition on Hilbert spaces. In 2001, Rhoades [2] showed that this result remains true for complete metric spaces too. In recent years, the idea of weak contraction has been exploited by several researchers (e.g., [3,4,5,6,7,8,9,10,11,12,13]).



On the other hand, in 2004, Ran and Reurings [14] proved an order-theoretic analogue of Banach contraction principle which marks the beginning of a vigorous research activity. This noted-paper of Ran and Reurings is well followed by two very useful articles from Nieto and Rodríguez-López [15,16]. Presently, proving an order-theoretic analogue of metric-fixed point results is an area of active research and by now there exists considerable literature on this topic (e.g., [17,18,19,20,21,22,23,24,25,26,27]). Our work in this paper is on similar lines wherein our results are proved using [image: there is no content]-generalized weakly contractive mappings.



To present our main results, the following definitions, basic results and relevant historical overviews are needed.



We denote by [image: there is no content] the set of natural numbers including zero, i.e., [image: there is no content]. As usual, [image: there is no content] stands for the identity mapping defined on X. For brevity, we write [image: there is no content] instead of [image: there is no content].



Definition 1.

[28] A function [image: there is no content] is called an altering distance function if it is continuous, increasing and satisfies [image: there is no content] if and only if [image: there is no content]. We denote the set of all altering distance functions by Ψ.





Definition 2.

[7] A self-mapping f on a metric space [image: there is no content] is said to be [image: there is no content]-weakly contractive mapping if for all [image: there is no content]


[image: there is no content]



(1)




where [image: there is no content].





Remark 1.

In Definition 2, if we set [image: there is no content], then f is known as φ-weakly contractive mapping (see [1]).





Definition 3.

[29] A self-mapping f on a metric space [image: there is no content] is said to be [image: there is no content]-generalized weakly contractive mapping if for all [image: there is no content]


[image: there is no content]



(2)




where [image: there is no content][image: there is no content] and φ:[image: there is no content] is a continuous function with [image: there is no content] if and only if [image: there is no content]





Definition 4.

[27] A triple [image: there is no content] is called an ordered metric space if [image: there is no content] is a metric space and [image: there is no content] is an ordered set. Moreover, two elements [image: there is no content] are said to be comparable if either [image: there is no content] or [image: there is no content]. For brevity, we denote it by [image: there is no content].





Remark 2.

With a view to emphasize the order-theoretic analogue of Definition 2 (resp. Definition 3), it can be pointed out that the inequality (1) (resp. (2)) is required to hold merely for comparable elements, i.e., for all [image: there is no content] such that [image: there is no content] (rather than for every pair of elements in X).





Definition 5.

[21] Let [image: there is no content] be a pair of self-mappings on an ordered set [image: there is no content]. Then the mapping

	(i) 

	
f is said to be g-increasing if [image: there is no content], for all [image: there is no content],




	(ii) 

	
f is said to be g-decreasing if [image: there is no content], for all [image: there is no content],




	(iii) 

	
f is said to be g-monotone if f is either g-increasing or g-decreasing.











Definition 6.

[30] Let [image: there is no content] be a pair of self-mappings on a metric space [image: there is no content] and [image: there is no content]. We say that f is g-continuous at x if [image: there is no content], for any sequence [image: there is no content]. Moreover, f is called g-continuous if it is g-continuous at every point of X.





Let [image: there is no content] be a sequence in an ordered metric space [image: there is no content]. If [image: there is no content] is an increasing (resp. decreasing, monotone) and converges to x, we denote it by [image: there is no content] (resp. [image: there is no content], [image: there is no content]).



Definition 7.

[20] Let [image: there is no content] be a pair of self-mappings on an ordered metric space [image: there is no content] and [image: there is no content]. Then f is called [image: there is no content]-continuous (resp. [image: there is no content]-continuous, [image: there is no content]-continuous) at [image: there is no content] if [image: there is no content] for every sequence [image: there is no content] with [image: there is no content] (resp. [image: there is no content], [image: there is no content]). Moreover, f is called [image: there is no content]-continuous (resp. [image: there is no content]-continuous, [image: there is no content]-continuous) if it is [image: there is no content]-continuous (resp. [image: there is no content]-continuous, [image: there is no content]-continuous) at every point of X.





On setting [image: there is no content], Definition 7 reduces to the usual definition of [image: there is no content]-continuity (resp. [image: there is no content]-continuity, [image: there is no content]-continuity) of self-mapping f on X.



Remark 3.

In an ordered metric space, g-continuity ⇒ [image: there is no content]-continuity ⇒ [image: there is no content]-continuity (as well as [image: there is no content]-continuity).





Definition 8.

Let [image: there is no content] be a pair of self-mappings on an ordered metric space [image: there is no content]. Then the pair [image: there is no content] is said to be

	
[31] compatible if [image: there is no content] whenever [image: there is no content] is a sequence in X such that [image: there is no content]



	
[20] [image: there is no content]-compatible (resp. [image: there is no content]-compatible, O-compatible) if [image: there is no content] whenever [image: there is no content] is a sequence in X such that [image: there is no content] and [image: there is no content] are increasing (resp. decreasing, monotone) sequences with [image: there is no content].



	
[32] weakly compatible if [image: there is no content], for every coincidence point [image: there is no content] of f and g.










Remark 4.

In an ordered metric space, compatibility ⇒ O-compatibility ⇒ [image: there is no content]-compatibility (as well as [image: there is no content]-compatibility) ⇒ weak compatibility.





Definition 9.

[20] An ordered metric space [image: there is no content] is called [image: there is no content]-complete (resp. [image: there is no content]-complete, O-complete ) if every increasing (resp. decreasing, monotone) Cauchy sequence in X converges to a point of X.





Remark 5.

In an ordered metric space, completeness ⇒ O-completeness [image: there is no content]-completeness (as well as [image: there is no content]-completeness).





Definition 10.

[20] Let [image: there is no content] be a pair of self-mappings on an ordered metric space [image: there is no content]. Then

	(i) 

	
[image: there is no content] is said to have g-ICU-property (Increasing-Convergence-Upper-Bound) if g-image of every increasing convergent sequence [image: there is no content] in X is bounded above by g-image of its limit, i.e.,


xn↑x⇒g(xn)⪯g(x)∀n∈N0,












	(ii) 

	
[image: there is no content] is said to have g-DCL-property (Decreasing-convergence-Lower-Bound) if g-image of every decreasing convergent sequence [image: there is no content] in X is bounded below by g-image of its limit, i.e.,


xn↓x⇒g(xn)⪰g(x)∀n∈N0,












	(iii) 

	
[image: there is no content] is said to have g-MCB-property (Monotone-Convergence-Boundedness) if it has both g-ICU as well as g-DCL-property.











On setting [image: there is no content], Definition 10(i) (resp. 10(ii), 10(iii)) reduces to the definition of the ICU-property (resp. DCL-property, MCB-property).



Definition 11.

[24] Let D be a subset of an ordered set [image: there is no content] and g a self-mapping on X. We say that D is g-directed if for every pair of elements [image: there is no content] there is [image: there is no content] such that [image: there is no content] and [image: there is no content].





Notice that, on setting [image: there is no content] in Definition 11, D is said to be directed due to [24].



The following three lemmas are needed to prove our results:



Lemma 1.

[33] Let [image: there is no content] be a pair of self-mappings defined on an ordered set [image: there is no content]. If f is g-monotone and [image: there is no content], then [image: there is no content].





Lemma 2.

[33] Let [image: there is no content] be a pair of weakly compatible self-mappings defined on non-empty set X. Then every point of coincidence of the pair [image: there is no content] is also a coincidence point.





Proof. 

Let x be a point of coincidence of f and g such that [image: there is no content] for some [image: there is no content]. On using the weak compatibility of f and g, we have


[image: there is no content]








which implies that [image: there is no content] is a coincidence point of f and g.  ☐





The following lemma was proved as a part of the proof of Theorem 2.1 of [23].



Lemma 3.

[23] Let [image: there is no content] be an ordered metric space and [image: there is no content] a sequence in X such that [image: there is no content] If [image: there is no content] is not a Cauchy sequence, then there exist [image: there is no content] and two subsequences [image: there is no content] and [image: there is no content] of [image: there is no content] such that

	(i) 

	
[image: there is no content]




	(ii) 

	
[image: there is no content]




	(iii) 

	
[image: there is no content]




	(iv) 

	
the sequences d(xmk,xnk),d(xmk+1,xnk),d(xmk,xnk+1),d(xmk+1,xnk+1) tend to ϵ when [image: there is no content]











Alber and Guerre-Delabriere [1] proved that every [image: there is no content]-weakly contractive mapping defined on a Hilbert space possesses a unique fixed point. Thereafter, Rhoads [2] proved that this result is also true for complete metric spaces.



Theorem 1.

[2] (Theorem 1) Let [image: there is no content] be a complete metric space. If the mapping [image: there is no content] is a φ-weakly contractive mapping, then f has a unique fixed point.





It is worth noting that, Alber and Guerre-Delabriere [1] assumed that the altering distance function [image: there is no content] satisfies an extra condition (which is [image: there is no content]), but Rhoades [2] obtained the above result without using this condition.



Thereafter, Dutta and Choudhury [7] proved a generalization of Theorem 1 as follows:



Theorem 2.

[7] (Theorem 2.1) Let [image: there is no content] be a complete metric space and [image: there is no content] a [image: there is no content]-weakly contractive mapping. Then f has a unique fixed point.





Choudhury et al. [29] proved a generalization of the above two theorems as follows:



Theorem 3.

[29] (Theorem 3.1) Let [image: there is no content] be a complete metric space and [image: there is no content] a [image: there is no content]-generalized weakly contractive mapping on X. Then f has a unique fixed point.





On the other hand, in the setting of ordered metric spaces, Harjani and Sadarangani [22] proved an order-theoretic analogue of Theorem 1 as follows:



Theorem 4.

[22] (Theorems 2 and 3) Let [image: there is no content] be a complete ordered metric space and f an increasing self-mapping on X. Suppose that the following conditions hold:

	(i) 

	
f is a φ-weakly contractive mapping with [image: there is no content],




	(ii) 

	
either f is a continuous mapping or [image: there is no content] enjoys ICU-property.









Then f has a fixed point provided there exists [image: there is no content] such that [image: there is no content].





Subsequently, Harjani and Sadarangani [23] proved the following result which is an order-theoretic analogue of Theorem 2 as well as a generalization of Theorem 4.



Theorem 5.

[23] (Theorems 2.1 and 2.2) Let [image: there is no content] be a complete ordered metric space and f an increasing self-mapping on X. Suppose that the following conditions hold:

	(i) 

	
f is a [image: there is no content]-weakly contractive mapping,




	(ii) 

	
either f is a continuous mapping or [image: there is no content] enjoys ICU-property.









Then f has a fixed point provided there exists [image: there is no content] such that [image: there is no content].





Here, it can be pointed out that Harjani and Sadarangani [22,23] proposed the following sufficient condition for the uniqueness of the fixed point in Theorems 4 and 5:


Xisdirected.



(3)







The aim of this article is to prove an order-theoretic analogue of Theorem 3 so as to improve and generalize Theorems 4 and 5. The improvement realized in our results is three-fold which we describe as under:

	(a)

	
relatively weaker notions of the continuity and completeness are employed,




	(b)

	
the [image: there is no content]-weak contractive condition is replaced by a [image: there is no content]-generalized weak contractive condition (defined later) involving a pair of self mappings,




	(c)

	
a weaker uniqueness condition is utilized.









We demonstrate the genuineness of our results by a suitable example. As an application, we prove a result for mappings satisfying integral type [image: there is no content]-generalized weak contractive condition.




2. Results on Coincidence Point


In the sequel, we use the following definition:



Definition 12.

Let [image: there is no content] be a pair of self-mappings on an ordered metric space [image: there is no content]. Then f is said to be a [image: there is no content]-generalized weakly contractive mapping if for all [image: there is no content] such that [image: there is no content] we have


[image: there is no content]



(4)




where [image: there is no content], [image: there is no content] and [image: there is no content] is a lower-semi continuous function with [image: there is no content] if and only if [image: there is no content]





Observe that, on setting [image: there is no content], Definition 12 remains relatively weaker than the order-theoretic analogue of Definition 3 as the class of lower-semi continuous functions is larger than the class of continuous functions.



Now, we prove our main result as follows:



Theorem 6.

Let [image: there is no content] be an ordered metric space and Y an [image: there is no content]-complete subspace of X. Let [image: there is no content] be a pair of self-mappings on X such that the mapping f is g-increasing. Suppose the following conditions hold:

	(i) 

	
f is a [image: there is no content]-generalized weakly contractive mapping,




	(ii) 

	

	(a) 

	
[image: there is no content] and




	(b) 

	
either f is [image: there is no content]-continuous or f and g are continuous or [image: there is no content] has ICU-property.















Then the pair [image: there is no content] has a coincidence point provided there exists [image: there is no content] such that [image: there is no content].





Proof. 

Choose [image: there is no content] such that [image: there is no content]. As the mapping f is g-increasing and [image: there is no content], we can define increasing mapping sequences [image: there is no content] and [image: there is no content] in X such that for all [image: there is no content]


[image: there is no content]



(5)







Observe that, [image: there is no content] and [image: there is no content] are in Y. Moreover, if [image: there is no content] for some [image: there is no content], then [image: there is no content] is the required coincidence point and we are done. Henceforth, we assume that [image: there is no content] for all [image: there is no content].



We assert that [image: there is no content] On setting [image: there is no content] in (4), we get


ψ(d(gxn+1,gxn+2))=ψ(d(fxn,fxn+1))≤ψ(Mf,g(xn,xn+1))-φ(max{d(gxn,gxn+1),d(gxn+1,gxn+2)})



(6)




for all [image: there is no content], where


Mf,g(xn,xn+1)=maxd(gxn,gxn+1),d(gxn,fxn),d(gxn+1,fxn+1),d(gxn,fxn+1)+d(gxn+1,fxn)2=maxd(gxn,gxn+1),d(gxn+1,gxn+2),d(gxn,gxn+2)2











By the triangular inequality, [image: there is no content]. If possible, assume [image: there is no content], then [image: there is no content] so that (6) reduces to


ψ(d(gxn+1,gxn+2))≤ψ(d(gxn+1,gxn+2)-φ(d(gxn+1,gxn+2))<ψ(d(gxn+1,gxn+2)),








a contradiction. Thus, [image: there is no content] and (6) becomes


ψ(d(gxn+1,gxn+2))≤ψ(d(gxn,gxn+1))-φ(d(gxn,gxn+1))<ψ(d(gxn,gxn+1)).











As [image: there is no content] is an increasing function, [image: there is no content] is a decreasing sequence of positive real numbers so that


[image: there is no content]











On taking the limit superior as [image: there is no content] in inequality (6), we obtain


[image: there is no content]








which implies that [image: there is no content], a contradiction. Therefore, [image: there is no content] i.e., [image: there is no content]



Now, we assert that [image: there is no content] is a Cauchy sequence in Y. For if it is not Cauchy, owing to Lemma 3, there exist [image: there is no content] and two subsequences [image: there is no content] and [image: there is no content] of [image: there is no content] such that nk>mk≥k,d(gxmk,gxnk)≥ϵ,d(gxnk-1,gxmk)<ϵ and


limk→∞d(gxmk,gxnk)=limk→∞d(gxmk+1,gxnk)=limk→∞d(gxmk,gxnk+1)=limk→∞d(gxmk+1,gxnk+1)=ϵ.











Since [image: there is no content], on putting [image: there is no content] and [image: there is no content] in (4), we have (for all [image: there is no content])


ψ(d(gxnk+1,gxmk+1))=ψ(d(fxnk,fxmk))≤ψ(Mf,g(xnk,xmk))-φ(max{d(gxnk,gxmk),d(gxmk,gxmk+1)})



(7)




where


Mf,g(xnk,xmk))=max{d(gxnk,gxmk),d((gxnk,gxnk+1),d(gxmk,gxmk+1),12[d(gxnk,gxmk+1)+d(gxmk,gxnk+1)]}.











Taking limit superior as [image: there is no content] in (7), we have


[image: there is no content]








a contradiction. Thus, [image: there is no content] is a Cauchy sequence in Y. Therefore, there exists some [image: there is no content] such that


[image: there is no content]



(8)







Due to the condition (ii)a, there exists some [image: there is no content] such that [image: there is no content], so that


[image: there is no content]



(9)







Now, using the condition (ii)b, we show that z is a coincidence point of the pair [image: there is no content]. Firstly, assume that f is [image: there is no content]-continuous. In view of (9), we have [image: there is no content] which (in view of (5)) by the uniqueness of the limit implies [image: there is no content].



Secondly, let f and g be continuous mappings. Then, the proof can be outlined on the lines of the proof of Theorem 1 in [20].



Lastly, assume that [image: there is no content] enjoys [image: there is no content]-property. Then, gxn⪯gz∀n∈N, and on setting [image: there is no content] in (4), we have (for all [image: there is no content])


ψ(d(gxn+1,fz))=ψ(d(fxn,fz))≤ψ(Mf,g(xn,z))-φ(max{d(gxn,gz),d(gz,fz)})



(10)




where


[image: there is no content]











On using (5), (9) and taking limit superior in (10) as [image: there is no content], we have


[image: there is no content]








a contradiction unless [image: there is no content]. This concludes the proof.  ☐





Theorem 7.

Theorem 6 remains true if assumptions embodied in the condition (ii) are replaced by the following (besides retaining the rest of the hypotheses).

	(ĩi) 

	

	(a) 

	
[image: there is no content],




	(b) 

	
g is [image: there is no content]-continuous,




	(c) 

	
[image: there is no content] is [image: there is no content]-compatible pair and




	(d) 

	
either f is [image: there is no content]-continuous or [image: there is no content] has g-ICU-property.

















Proof. 

The proof runs on the lines of the proof of Theorem 6 except wherever we used conditions in (ii), which can be altered as follows: Owing to (5) and (8), we have


fxn↑xandgxn↑x,



(11)




where [image: there is no content]. In view of the condition (ĩi)b, we have


[image: there is no content]











Also, in view of the condition (ĩi)c, we have


[image: there is no content]








so that,


[image: there is no content]











Now, on using the condition (ĩi)d, we show that x is a coincidence point of f and g. Let f be [image: there is no content]-continuous. Then, from (11), we have


[image: there is no content]











Combining last two equations, we get [image: there is no content] and hence we are done.



Alternately, let [image: there is no content] enjoy g-ICU-property. By (11), we have [image: there is no content] for all [image: there is no content]. On putting [image: there is no content] in (4), we get


[image: there is no content]



(12)




for all [image: there is no content], where,


[image: there is no content]








On taking the limit of (12) as [image: there is no content], we arrive at a contradiction unless [image: there is no content]. This concludes the proof.  ☐





Remark 6.

Observe that the condition (ĩi)a utilized in Theorem 7 is relatively weaker than the condition (ii)a of Theorem 6.





On setting [image: there is no content] in Theorems 6 and 7, we deduce the following:



Corollary 1.

Let [image: there is no content] be an ordered metric space, Y an [image: there is no content]-complete subspace of X and f an increasing self-mapping on X such that [image: there is no content]. Suppose the following conditions hold:

	(i) 

	
f is a [image: there is no content]-generalized weakly contractive mapping,




	(ii) 

	
either f is [image: there is no content]-continuous or [image: there is no content] has ICU-property.









Then, f has a fixed point provided there exists [image: there is no content] such that [image: there is no content].





Remark 7.


	(a) 

	
If [image: there is no content], then Corollary 1 reduces to a sharpened version of Theorem 5, as the increasing condition on the altering distance function φ is found unnecessary and a weaker notion of the continuity of φ is utilized.




	(b) 

	
If [image: there is no content] and [image: there is no content] in Corollary 1, we get Theorem 4 without the assumption [image: there is no content].




	(c) 

	
The completeness in Theorems 4 and 5 is merely required on any subspace rather than the whole space X such that this subspace contains [image: there is no content]. Further, these results can be obtained utilizing a relatively weaker notion of the continuity and completeness.











Example 1.

Consider [image: there is no content] endowed with the usual metric d. Then, [image: there is no content] is an [image: there is no content]-complete ordered metric space wherein the partial order ‘⪯’ is defined by: [image: there is no content] iff [image: there is no content] for [image: there is no content] and [image: there is no content]. Define [image: there is no content] by [image: there is no content] and [image: there is no content]. Consider f and g two self-mappings on X defined by: [image: there is no content] and [image: there is no content]. Then, the left hand side of the inequality (4) is


ψ(d(fx,fy))=|x-y|=x-y,fory≤xy-x,fory≥x.











To compute the right hand side of the inequality, we have


ψMf,g(x,y)=ψmax{d(gx,gy),d(gx,fx),d(gy,fy),12[d(gx,fy)+d(gy,fx)]}=ψmax{23|x-y|,13|x|,13|y|,16|x-2y|+|y-2x|}=2(x-y),for-1<y≤2x-y,for2x≤y≤x-x,forx≤y≤12x2(y-x),for12x≤y≤0,








and


φmax{d(gx,gy),d(gy,fy)}=max23|x-y|,13|y|=23(x-y),for-1<y≤2x-13y,for2x≤y≤23x23(y-x),for23x≤y≤0.











Thus, the right hand side of (4) is


ψ(Mf,g(x,y))-φ(max{d(gx,gy),d(gy,fy)})=43(x-y),for-1<y≤2x-23y,for2x≤y≤x-x+13y,forx≤y≤23x-13(x+2y),for23x≤y≤12x43(y-x),forx2<y≤0.











By a routine calculation, we can see that inequality (4) is satisfied, that is, f is a [image: there is no content]-generalized weakly contractive mapping and the pair [image: there is no content] has a coincidence point (namely [image: there is no content]) supporting Theorems 6 and 7.



On setting [image: there is no content] in Example 1, we create a situation wherein neither Theorem 4 nor Theorem 5 can be used, as the whole space is not complete while our Corollary 1 works. This substantiates the genuineness of our results proved in this paper.





Definition 13.

Let [image: there is no content] be a pair of self-mappings on an ordered metric space [image: there is no content]. Then, f is said to be a lean [image: there is no content]-generalized weakly contractive mapping if for all [image: there is no content] such that [image: there is no content] we have


[image: there is no content]



(13)




where [image: there is no content], [image: there is no content] and [image: there is no content] is a continuous function with [image: there is no content] if and only if [image: there is no content]





As [image: there is no content], Definition 12 is weaker than Definition 13.



Corollary 2.

Theorem 6 remains true if the condition (i) is replaced by the following condition (besides retaining the rest of the hypothesis).

	(ï) 

	
f is a lean [image: there is no content]-generalized weakly contractive mapping.











Corollary 3.

Theorem 7 remains true if the condition (i) is replaced by the condition (ï) (besides retaining the rest of the hypothesis).






3. Results on Common Fixed Points


Theorem 8.

In addition to the hypotheses of Corollary 2, if [image: there is no content] is g-directed, then the pair [image: there is no content] has a unique point of coincidence.





Proof. 

Let [image: there is no content] be such that


gx=fx=x¯andgy=fy=y¯.











We assert that [image: there is no content]. By the hypothesis, there exists [image: there is no content] such that [image: there is no content] is comparable to both [image: there is no content] and [image: there is no content]. For [image: there is no content], we may assume [image: there is no content] (other case is similar).



Set [image: there is no content] Since [image: there is no content] and f is a g-increasing mapping, one can define a sequence [image: there is no content] such that


gzn+1=fznandgx⪯gznforalln∈N.











We assert that


[image: there is no content]



(14)







To establish the assertion, we distinguish two cases:



Firstly, if [image: there is no content] for some [image: there is no content]. Then by Lemma 1, [image: there is no content], that is, [image: there is no content] On using induction on m, [image: there is no content] for all [image: there is no content] establishing the assertion in this case.



Secondly, if [image: there is no content] for all [image: there is no content], then on setting [image: there is no content] and [image: there is no content] in (13), we get


ψ(d(gx,gzn+1))=ψ(d(fx,fzn))≤ψ(mf(x,zn))-φ(max{d(gx,gzn),d(gzn,fzn)})



(15)




for all [image: there is no content], where


[image: there is no content]











Obviously, [image: there is no content]. Assume that [image: there is no content]. Then [image: there is no content] Therefore, from (15), we have


[image: there is no content]











As [image: there is no content] is increasing, we have [image: there is no content] a contradiction to our assumption. Hence, [image: there is no content] so that [image: there is no content] and (15) reduces to


ψ(d(gx,gzn+1))≤ψ(d(gx,gzn))foralln∈N0











Now, [image: there is no content] is a decreasing sequence of strictly positive real numbers which must posses a limit [image: there is no content]. Letting [image: there is no content] in (15), we get [image: there is no content] which is a contradiction unless [image: there is no content]. Thus, in all, our assertion is established.



Similarly, when [image: there is no content], one can show that


[image: there is no content]



(16)







On using triangular inequality, (14) and (16), we have


d(x¯,y¯)=d(gx,gy)≤d(gx,gzn)+d(gzn,gy)→0asn→∞,








which shows that the pair [image: there is no content] has a unique point of coincidence.  ☐





Theorem 9.

In addition to the hypotheses of Theorem 8, if the pair [image: there is no content] is weakly compatible, then the pair has a unique common fixed point.





Proof. 

Let [image: there is no content] be an arbitrary coincidence point of the pair [image: there is no content]. Due to Theorem 8, there exists a unique point of coincidence [image: there is no content] (say) such that [image: there is no content]. By Lemma 2, w itself is a coincidence point, i.e., [image: there is no content]. Now, again, Theorem 8 ensures that [image: there is no content] i.e., w is a unique common fixed point of f and g.  ☐





Theorem 10.

In addition to the hypotheses of Corollary 3, if [image: there is no content] is g-directed, then the pair [image: there is no content] has a unique common fixed point.





Proof. 

On the lines of the proof of Theorem 8, one can show that the pair [image: there is no content] has a unique point of coincidence. In view of the hypothesis (condition 1c of Theorem 7), [image: there is no content] is an [image: there is no content]-compatible pair and hence is a weakly compatible pair (by Remark 4). Now, the proof can be completed on the lines of the proof of Theorem 9.  ☐





Remark 8.

On setting [image: there is no content], the uniqueness condition utilized in Theorem 8 (also in Theorem 10) remains slightly weaker than the condition (3).





Remark 9.

One can obtain dual type results corresponding to all results in Section 2 and Section 3 by replacing “[image: there is no content]-analogues” with “[image: there is no content]-analogues” and “ICU-property” with “DCL-property” provided the existence of [image: there is no content] such that [image: there is no content] is replaced by the existence of [image: there is no content] such that [image: there is no content].





Remark 10.

One can obtain companied type results corresponding to all results in Section 2 and Section 3 by replacing “[image: there is no content]-analogues” with “[image: there is no content]-analogues” and “ICU-property” with “MCU-property” provided the existence of [image: there is no content] such that [image: there is no content] is replaced by the existence of [image: there is no content] such that [image: there is no content].





Remark 11.

By using Zermelo’s well-ordering Theorem, the set X can be well ordered and the contraction conditions in all above results of Section 2 and Section 3 are valid for each [image: there is no content]. Therefore, each of Theorems 9 and 10 covers Theorems 1, 2, 3 and Theorem 2.1 of [4].





As an application of Theorem 6 (resp. Theorem 7), we have the following result on coincidence point for mappings satisfying integral type [image: there is no content]-weakly contraction in ordered metric space.



Let Λ be the set of functions [image: there is no content] satisfying the following:

	(a)

	
[image: there is no content] is a Lebesgue-integrable mapping on each compact subset of [image: there is no content]




	(b)

	
[image: there is no content] for all [image: there is no content]









Theorem 11.

Let [image: there is no content] be an ordered metric space and Y an [image: there is no content]-complete subspace of X. Let [image: there is no content] be a pair of self-mappings on X such that f is g-increasing. Suppose that for every [image: there is no content] with [image: there is no content] and [image: there is no content], we have


[image: there is no content]



(17)




where ψ and φ are as in Definition 12. If there exists [image: there is no content] such that [image: there is no content] and the condition (ii) of Theorem 6 (resp. condition (ĩi) of Theorem 7) is satisfied, then the pair [image: there is no content] has a coincidence point.





Proof. 

Define [image: there is no content] by [image: there is no content], then (17) can be written as


[image: there is no content]











Since [image: there is no content] is an altering distance function and [image: there is no content] is a lower semi-continuous function with [image: there is no content] if and only if [image: there is no content] The desired result follows from Theorem 6 (resp. Theorem 7).  ☐
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