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Abstract: Let X be a Banach space, A : D(A) ⊂ X → X the generator of a compact C0-semigroup
S(t) : X → X, t ≥ 0, D(·) : (a, b)→ 2X a tube in X, and f : (a, b)×B → X a function of Carathéodory
type. The main result of this paper is that a necessary and sufficient condition in order that D(·)
be viable of the semilinear differential equation with infinite delay u′(t) = Au(t) + f (t, ut), t ∈
[t0, t0 + T], ut0 = φ ∈ B is the tangency condition lim infh↓0 h−1d(S(h)v(0) + h f (t, v); D(t + h)) = 0
for almost every t ∈ (a, b) and every v ∈ B with v(0) ∈ D(t).
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1. Introduction

The aim of this paper is to prove a necessary and sufficient condition in order that a given tube
of a Banach space X be viable for a semilinear differential equation with infinite delay. Namely, let
X be a real Banach space, A : D(A) ⊂ X → X the infinitesimal generator of a C0-semigroup
S(t) : X → X, t ≥ 0, D(·) : (a, b) → 2X be a tube in X with closed values, −∞ ≤ a < b ≤ +∞.
We consider the semilinear differential equation with infinite delay:

u
′
(t) = Au(t) + f (t, ut), t ∈ [t0, t0 + T] (1)

with the initial condition
ut0 = φ ∈ B (2)

where B is the phase space defined axiomatically, ut : (−∞, 0]→ X defined by ut(θ) = u(t + θ) for all
θ ∈ (−∞, 0]. We are interested to find necessary and sufficient conditions in order that D(·) be viable
for (1), i.e., for each t0 ∈ (a, b) and φ ∈ B with φ(0) ∈ D(t0), there exist a T > 0 and at least a mild
solution to (1) satisfying the initial condition ut0 = φ and u(t) ∈ D(t) for t ∈ [t0, t0 + T].

We recall that the function u : (−∞, t0 + T] → X is a mild solution to (1) and (2) if ut0 = φ, u is
continuous on [t0, t0 + T] and satisfying

u(t) = S(t− t0)φ(0) +
∫ t

t0

S(t− s) f (s, us)ds (3)

for t ∈ [t0, t0 + T].
The viability problem for the differential equation

u
′
(t) = Au(t) + F(t, u(t)), t ∈ [t0, t0 + T] (4)

u(t0) = x0 (5)
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has been studied by many authors by using various frameworks and techniques. In this respect, we
note the pioneering work of Nagumo [1] who considered the finite dimensional case, A = 0 and F is
continuous. In this context, he showed that a necessary and sufficient condition in order that D(t) ≡ D
be a viable domain for (4) is the following tangency condition:

lim inf
h↓0

h−1d(x + hF(t, x); D) = 0

for each (t, x) ∈ (a, b)× D. It is interesting to note that Nagumo’s result (or some variant of it) has
been rediscovered several times, among others by Brezis [2], Crandall [3], Hartman [4], and Martin [5].
For the development in this area, we refer the readers to Ursescu [6], Pavel [7] and [8], Pavel and
Motreanu [9], Cârjǎ and Marques [10], Cârjǎ and Vrabie [11]. Viability for fractional differential
equations was also discussed in [12,13]. Brief reviews of the main contributions in this area can be
found in [10,11]. We emphasize Pavel’s main contribution who was the first who formulated the
corresponding tangency condition applying to the semilinear case. More precisely, Pavel [7] showed
that, whenever A generates a compact C0-semigroup and F is continuous on (a, b)× D, where D is
locally closed in X, a sufficient condition for viability is

lim
h↓0

h−1d(S(h)x + hF(t, x); D) = 0

for each (t, x) ∈ (a, b)× D.
As for the functional differential equations, the development was initialed about existence and

stability by Travis and Webb [14,15] and Webb [16,17]. Since such equations are often more realistic to
describe natural phenomena than those without delay, they have been investigated in variant aspects
by many authors (see, e.g., [18–20] and references therein). Pavel and Iacob [21] discussed the viability
problem for semilinear differential equations with finite delay (the case B = C([−q, 0]; X). They proved
that, whenever A generates a compact C0−semigroup and f is continuous from (a, b)× C([−q, 0]; X)

into X, a necessary and sufficient condition for viability for (1) is

lim
h↓0

h−1d(S(h)v(0) + h f (t, v); D) = 0 (6)

for each t ∈ (a, b), each v ∈ C([−q, 0]; X) with v(0) ∈ D, where D(t) ≡ D is a locally closed subset in
X. Dong and Li [22] proved the same result when f is of Carathéodory type. Necula et al. studied the
viability for delay evolution equations with nonlocal initial conditions in [23].

The purpose of this paper is to discuss the viable problem of the semilinear differential equation
with infinite delay (1). In the study of equations with finite delay, the state space is the space of all
continuous functions on [−q, 0], q > 0, endowed with the uniform norm topology. When the delay is
unbounded, the selection of the state space B plays an important role in the study of both qualitative
and quantitative theory. A usual choice is a semi-normed space satisfying suitable axioms, which
was introduced by Hale and Kato [24]. For a detailed discussion on the topic, we refer to the book
by Hino et al. [25]. We prove that a necessary and sufficient condition in order that D(t) be viable
for (1) is the tangency condition. We only suppose that f is of Carathéodory type. The difficulty is
that the semi-norm on B is defined axiomatically, and the convergence of a sequence in B cannot be
obtained directly. Our result extends and improves that of Pavel and Iacob [21] who considered the
case in which f is continuous, Dong and Li [22] for finite delay and D(t) ≡ D, and also extends the
well-known existence result of Hale [26] who considered the case in which X is finite dimensional
and A = 0. Moreover, using a standard argument based on Zorn’s Lemma, we get the existence of
noncontinuable (saturated) mild solutions.
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2. Preliminaries

Throughout this paper X will be a real Banach space, A : D(A) ⊂ X → X the generator of a
C0−semigroup S(t) : X → X, t ≥ 0. Then {S(t); t ≥ 0} is exponentially bounded, i.e., there are
constants C ≥ 1 and ω ≥ 0 such that

‖S(t)‖ ≤ Ceωt, ∀t ≥ 0

Moreover, if S(t), t ≥ 0 is a compact semigroup (i.e., S(t) maps bounded subsets into relatively
compact subsets for t > 0), then S(t) is continuous in the uniformly operator topology for t > 0
(see Pazy [27]) and X is separable (see [10]). For more details of semigroups of linear operators, we
refer the readers to Pazy [27].

In this paper we will employ an axiomatic definition of the space B introduced by Hale and
Kato [24]. To establish the axioms of space B, we follow the terminology used in [25]. Thus, B will be a
linear space of functions mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B . We will assume
that B satisfies the following axioms:

(A) If x : (−∞, σ + a) → X, a > 0, is continuous on [σ, σ + a] and xσ ∈ B then for every
t ∈ [σ, σ + a), the following conditions hold:
(i) xt is in B;
(ii) ‖x(t)‖ ≤ H‖xt‖B ;
(iii) ‖xt‖B ≤ K(t− σ)sup{‖x(s)‖ : σ ≤ s ≤ t}+ M(t− σ)‖xσ‖B ,

where H ≥ 0 is a constant; K, M : [0,+∞)→ [0,+∞), K is continuous and M is locally bounded and
H, K and M are independent on x(·).

(A1) For the function x(·) in (A), xt is a B-valued continuous function on [σ, σ + a).

(B) The space B is complete.
We first list the conditions here, for the convenience of reference.

(C1) A : D(A) ⊂ X → X is the infinitesimal generator of the C0 semigroup S(t). For t > 0, S(t)
is compact.

(C2) D(·) : (a, b) → 2X is closed valued and for each t0 ∈ (a, b) and x ∈ D(t0), there exist
r > 0 and T̄ ∈ (t0, b) such that BX(x, r) ∩ D(t)is nonempty for all t ∈ [t0, T̄], and the mapping
t 7→ BX(x, r) ∩ D(t) is closed on [t0, T̄]. Here BX(x, r) = {y ∈ X : ‖y − x‖ ≤ r} is the closed ball
centered x with radius r.

(T) (Tangency condition)

lim inf
h↓0

h−1d(S(h)v(0) + h f (t, v); D(t + h)) = 0 (7)

for a.e. t ∈ (a, b) and all v ∈ B with v(0) ∈ D(t), where d(x, B) denotes the distance from x ∈ X to the
subset B ⊂ X.

Since the distance is non-expansive, i.e.,

|d(x, B)− d(y, B)| ≤ ‖x− y‖, ∀x, y ∈ X,

by standard arguments (see [8,21]), Condition (T) is equivalent to

lim inf
h↓0

h−1d(S(h)v(0) + h
∫ t+h

t
S(t + h− s) f (t, v)ds; D(t + h)) = 0 (8)

for a.e. t ∈ (a, b) and all v ∈ B with v(0) ∈ D(t).

Remark 1. If D(t) ≡ D then the conditions (C2) means that D is locally closed, and the tangency condition
(T) is reduced to (6).
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We say that a function f : (a, b)×B → X is of Caratheodary type if f satisfies

(1) for each v ∈ B, the function f (·, v) : (a, b)→ X is measurable on (a, b);
(2) for almost every (a.e.) t ∈ (a, b), f (t, ·) : B → X is continuous on B;
(3) for every r > 0, there is a function mr ∈ L(a, b; X) such that

‖ f (t, v)‖ ≤ mr(t) (9)

for a.e. t ∈ (a, b) and every v ∈ B with ‖v‖B ≤ r.
A Carathéodory type function has the following Scorza Dragoni property which is nothing but

the special case of [28,29]. We denote by λ the Lebesgue measure on R and by L, the collection of all
Lebesgue measurable sets in R.

Theorem 1. Let X, Y be separable metric spaces and I = (a, b) or I ∈ L((a, b)). Let f : I × X → Y be
a function such that f (·, x) is measurable for every x ∈ X and f (t, ·) is continuous for almost every t ∈ I.
Then, for each ε > 0, there exists a compact subset K ⊂ I such that λ(I \ K) < ε and the restriction of f to
K× X is continuous.

Suppose that u : (−∞, b)→ X, ua ∈ B and u is continuous on (a, b). Then the mapping t 7→ ut,
from (a, b) into B is also continuous. The following result is a kind of variance of Lebesgue derivative
type, which is useful in the sequel. We omit the proof since it is similar to that of [10], Theorem 2.

Theorem 2. Assume that X is a separable Banach space, D(·) : t 7→ 2X is closed valued and satisfying (C2),
S(t) is a C0−semigroup on X and f : (a, b)× B → X is a function of Carathéodory type. Then there exists
a negligible subset Z of (a, b) such that, for every t ∈ (a, b) \ Z, one has

lim
h↓0

h−1
∫ t+h

t
S(t + h− s) f (s, us)ds = f (t, ut) (10)

for all functions u : (−∞, b)→ X with ua ∈ B, u(t) ∈ D(t) and u is continuous on (a, b).

3. Main Result

We are now ready to state our main result of this paper, the necessary and sufficient condition of
the viability for semilinear differential equations with infinite delay.

Theorem 3. Suppose that the conditions (C1) and (C2) hold, and f is of Carathéodory type. Then a necessary
and sufficient condition in order that D(·) be viable for Equation (1) is the tangency condition (T).

Proof of necessity. Let Z be given by Theorem 2, let t0 ∈ (a, b) \ Z. Let v ∈ B such that v(0) ∈ D(t0).
By hypothesis, there exists T = T(t0, v) > 0 with t0 + T < b and a function u continuous on [t0, t0 + T],
satisfying (3) with φ = v. Since u(t0 + h) ∈ D(t0 + h) for all h ∈ [0, T], we have

h−1d(S(h)v(0) + h f (t0, v); D(t0 + h))
≤ h−1‖S(h)v(0) + h f (t0, v)− u(t0 + h)‖
≤ ‖ f (t0, v)− h−1

∫ t0+h
t0

S(t0 + h− s) f (s, us)ds‖
(11)

Letting h ↓ 0, one obtains the condition (T).

To prove the sufficiency, we need the following lemma.

Lemma 1. Suppose that the hypotheses of Theorem 3 hold. Given t0 ∈ (a, b), φ ∈ B with φ(0) ∈ D(t0), there
exists a T > 0 with t0 + T < b, such that for every positive integer n, there exist an open subset Ln ⊂ (a, b)
with λ(Ln) < 1

n , an increasing sequence {tn
i }∞

i=1 ⊂ [t0, t0 + T], t ∈ [t0, t0 + T] \ Z and an approximate
solution un on [t0, t0 + T] in the following sense:
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(i) tn
0 = t0, tn

i+1 − tn
i = dn

i ≤
1
n , limi→∞ tn

i = t0 + T;
(ii) un

t0
= φ, un(tn

i ) = xn
i ∈ D(tn

i ) ∩ BX(φ(0), r);
(iii) hn(s) = f (tn

i , un
tn
i
) in case tn

i 6∈ Ln while hn(s) = f (t, un
tn
i
) in case tn

i ∈ Ln for s ∈ [tn
i , tn

i+1);

(iv) un(t) = S(t− tn
i )xn

i +
∫ t

tn
i

S(t− s)hn(s)ds + (t− tn
i )pn

i

for t ∈ [tn
i , tn

i+1], where ‖pn
i ‖ ≤

1
n . Moreover, un

tn
i
∈ BB(φ, r) = {v ∈ B : ‖v− φ‖B ≤ r}.

Proof. Let φ ∈ B with φ(0) ∈ D(t0). Due to (C2), there exist r > 0 and T > 0 such that BX(φ(0), r) ∩
D(t) 6= ∅ for t ∈ [t0, t0 + T]. Define φ̄ : (−∞, t0 + T] by φ̄(θ) = φ(θ − t0) for θ ≤ t0 and φ̄(θ) = φ(0)
for θ ∈ [t0, t0 + T]. Then φ̄t0 = φ and t 7→ φ̄t is continuous on [t0, t0 + T] by the axiom (A1). Set
K = sup{K(t) : 0 ≤ t ≤ T}, R = r + φ(0) and M =

∫ t0+T
t0

mR(s)ds, where K and mR are the functions
appeared in the axiom (A) and (9) respectively. We may assume that K ≥ 1. Further, on the basis of the
definition of B and the continuity of the semigroup S(t), we may choose T > 0 small enough such that
t0 + T < b and

‖φ̄t − φ̄t0‖B = ‖φ̄t − φ‖B ≤
1
2

r, t ∈ [t0, t0 + T], (12)

K[ max
0≤t≤T

‖S(t)φ(0)− φ(0)‖+ N(M + T)] ≤ 1
2

r, (13)

where N = CeωT .
In view of Theorems 1 and 2, we may choose an open set Ln ⊂ (a, b), with Z ⊂ Ln and λ(Ln) ≤ 1

n ,
such that f is continuous on ((a, b) \ Ln)×B, where Z is the set obtained in Theorem 2. We can also
assume that for each t ∈ (a, b) \ Z, (8) and (9) hold. Fix t ∈ (a, b) \ Ln. We shall construct un and tn

i by
induction. Set tn

0 = t0, un(tn
0 ) = φ(0) = xn

0 , un
tn
0
= φ. To simplify notation, we drop n as a superscript

for ti, xi, u, pi etc. Suppose that u is constructed on (−∞, ti]. Then we define ti+1 in the following
manner. If ti = t0 + T, set ti+1 = t0 + T, and if ti < t0 + T, then we define ti+1 as the following
two cases.

Case 1 : ti ∈ Ln. Set

δi = sup{h ∈ (0, 1
n ] : ti + h ≤ t0 + T, [ti, ti + h) ∈ Ln,

d(S(h)xi +
∫ ti+h

ti
S(ti + h− s) f (t, uti )ds; D(ti + h)) ≤ h

2n}.
(14)

In view of (7) and the fact that

lim
h↓0

h−1
∫ ti+h

ti

S(ti + h− s) f (t, uti )ds = f (t, uti ), (15)

one can easily see that δi > 0. Choose a number di ∈ ( 1
2 δi, δi], such that

d(S(di)xi +
∫ ti+di

ti

S(ti + di − s) f (t, uti )ds; D(ti + di)) ≤
di
2n

. (16)

Define ti+1 = ti + di. By (16), there is xi+1 ∈ D(ti+1) such that

‖S(di)xi +
∫ ti+1

ti

S(ti+1 − s) f (t, uti )ds− xi+1‖ ≤
di
n

.

Consequently, xi+1 can be written as

xi+1 = S(ti+1 − ti)xi +
∫ ti+1

ti

S(ti+1 − s) f (t, uti )ds + (ti+1 − ti)pi (17)
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with ‖pi‖ ≤ 1
n . In this case we define u on [ti, ti+1] as

u(t) = S(t− ti)xi +
∫ t

ti

S(t− s) f (t, uti )ds + (t− ti)pi. (18)

Case 2 : ti 6∈ Ln. In this case we set

δi = sup{h ∈ (0, 1
n ] : ti + h ≤ t0 + T,

d(S(h)xi +
∫ ti+h

ti
S(ti + h− s) f (ti, uti )ds; D(ti + h)) ≤ h

2n}.
(19)

By (8) we see that δi > 0. Choose di ∈ ( 1
2 δi, δi], such that

d(S(di)xi +
∫ ti+di

ti

S(ti + di − s) f (ti, uti )ds; D(ti + di)) ≤
di
2n

. (20)

Define ti+1 = ti + di. By (20), there is xi+1 ∈ D(ti+1) such that

‖S(di)xi +
∫ ti+1

ti

S(ti+1 − s) f (ti, uti )ds− xi+1‖ ≤
di
n

.

Consequently, xi+1 can be written as

xi+1 = S(ti+1 − ti)xi +
∫ ti+1

ti

S(ti+1 − s) f (ti, uti )ds + (ti+1 − ti)pi (21)

with ‖pi‖ ≤ 1
n . In this case we define u on [ti, ti+1] as

u(t) = S(t− ti)xi +
∫ t

ti

S(t− s) f (ti, uti )ds + (t− ti)pi. (22)

Setting h(s) = f (t, uti ) in case ti ∈ Ln and h(s) = f (ti, uti ) in case ti 6∈ Ln for s ∈ [ti, ti+1]. Let us
define the step functions αn and βn as αn(s) = ti in case ti 6∈ Ln, αn(s) = t in case ti ∈ Ln and βn(s) = ti
for s ∈ [ti, ti+1). Then hn can be written as h(s) = f (α(s), uβ(s)). By the induction hypotheses, u can be
written in the form

u(t) = S(t− t0)φ(0) +
i−1
∑

m=0

∫ tm+1
tm

S(t− s)h(s)ds

+
∫ t

ti
S(t− s)h(s)ds +

i−1
∑

m=0
(tm+1 − tm)S(t− tm+1)pm

+(t− ti)pi.

(23)

Let us check that uti+1 ∈ B(φ, r). To do this, we first note that each s ∈ [t0, ti+1], there is an integer
k such that tk < s ≤ tk+1. Due to (23), we have

‖u(s)− φ(0)‖ ≤ ‖S(s− t0)φ(0)− φ(0)‖

+N
k
∑

m=0

∫ tm+1
tm
‖h(s)‖ds +

k
∑

m=0
(tm+1 − tm)N‖pm‖

≤ ‖S(s− t0)φ(0)− φ(0)‖+ N(M + T)
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On the basis of the definition of B, (12), (13) and the above inequality, we have

‖uti+1 − φ‖B ≤ ‖uti+1 − φ̄ti+1‖B + ‖φ̄ti+1 − φ‖B
≤ K(ti+1 − t0) sup{‖u(s)− φ̄(s)‖ : t0 ≤ s ≤ ti+1}+ ‖φ̄ti+1 − φ‖B
≤ K sup{‖u(s)− φ(0)‖ : t0 ≤ s ≤ ti+1}+ ‖φ̄ti+1 − φ‖B
≤ K[[ max

0≤t≤T
‖S(t)φ(0)− φ(0)‖+ N(M + T)] + 1

2 r

≤ 1
2 r + 1

2 r = r,

hence uti+1 ∈ BB(φ, r). Using (23) again , we derive

‖u(t)− φ(0)‖ ≤ ‖S(t− t0)φ(0)− φ(0)‖+ N(M + T) ≤ 1
2

r < r

for all t ∈ [t0, ti+1], i.e., u(t) ∈ BX(φ(0), r) for t ∈ [t0, ti+1]. Thus, properties (ii), (iii) and (iv)
are verified.

To prove property (i), we first note that limi→∞ ti exists, since {ti}∞
i=1 is increasing and ti ≤ t0 + T

for all i = 1, 2, · · · . Suppose that limi→∞ ti = t∗, then t∗ ≤ t0 + T. We have to prove t∗ = t0 + T. To do
this, we first show that limi→∞ xi also exists. In fact, let j ≥ i. Using (23) for t = ti and t = tj, we derive

‖xj − xi‖ ≤ ‖S(ti − t0)(S(tj − ti)φ(0)− φ(0)‖

+
i−1
∑

m=0

∫ tm+1
tm
‖S(ti − s)(S(tj − ti)h(s)− h(s))‖ds

+
i−1
∑

m=0
(tm+1 − tm)‖S(ti − tm+1)(S(tj − ti)pm − pm)‖

+
j−1
∑

m=i
‖
∫ tm+1

tm
S(tj − s)h(s)ds‖

+
j−1
∑

m=i
(tm+1 − tm)‖S(tj − tm+1)pm‖

≤ N‖S(tj − ti)φ(0)− φ(0)‖

+N
i−1
∑

m=0

∫ tm+1
tm
‖S(tj − ti)h(s)− h(s)‖ds

+N
i−1
∑

m=0
(tm+1 − tm)‖S(tj − ti)pm − pm‖.

+N
∫ tj

ti
mR(s)ds + N(tj − ti)

1
n .

(24)

Now given ε > 0. Since mR ∈ L(a, b; X), there is η > 0 such that
∫ t
′′

t′ mR(s)ds ≤ ε/(5N) for
t
′
, t
′′ ∈ (a, b) with |t′′ − t

′ | < η. By the existence of limi→∞ ti = t∗, there is a positive integer k0

such that
tj − ti < min{ ε

10N(N + 1)M
,

ε

10(N + 1)
, η} (25)

for all j > i ≥ k0. Choose k1 > k0 with the properties: for j > i ≥ k1,

• ‖S(tj − ti)φ(0)− φ(0)‖ ≤ ε/(5N);
• ‖S(tj − ti)pm − pm‖ ≤ ε/(10NT), 1 ≤ m ≤ k0 − 1;
• ‖S(tj − ti) f (tm, utm)− f (tm, utm)‖ ≤ ε/(10NT), 1 ≤ m ≤ k0 − 1 with tm 6∈ Ln;
• ‖S(tj − ti) f (t, utm)− f (t, utm)‖ ≤ ε/(10NT), 1 ≤ m ≤ k0 − 1 with tm ∈ Ln.

Then we have
N‖S(tj − ti)φ(0)− φ(0)‖ ≤ N

ε

5N
=

ε

5
; (26)
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N
i−1
∑

m=0

∫ tm+1
tm
‖S(tj − ti)h(s)− h(s)‖ds

≤ N(
k0−1
∑

m=0

∫ tm+1
tm
‖S(tj − ti)h(s)− h(s)‖ds

+
i−1
∑

m=k0

∫ tm+1
tm
‖S(tj − ti)h(s)− h(s)‖ds)

≤ N(tk0 − t0)
ε

10NT + N(ti − tk0)(N + 1)M
≤ ε

5 ;

(27)

N
∫ tj

ti

mR(s)ds ≤ N
ε

5N
=

ε

5
; (28)

N
i−1
∑

m=0
(tm+1 − tm)‖S(tj − ti)pm − pm‖

≤ N
k0−1
∑

m=0
(tm+1 − tm)‖S(tj − ti)pm − pm‖

+N
i−1
∑

m=k0

(tm+1 − tm)‖S(tj − ti)pm − pm‖

≤ N(tk0 − t0)
ε

10NT + (ti − tk0)N(N + 1)
≤ ε

5 ;

(29)

N(tj − ti) <
ε

5
. (30)

From (24) to (30), we obtain that
‖xj − xi‖ ≤ ε (31)

for all j > i ≥ k1, i.e., {xi} is a Cauchy sequence. Therefore limi→∞ xi = x∗ exists, and
x∗ ∈ B(φ(0), r) ∩ D(t∗) since B(φ(0), r) ∩ D(t) 6= ∅ is closed for all t ∈ [t0, t0 + T]. We define
u(t∗) = x∗. By (iv) we have

‖u(t)− xi‖ ≤ ‖S(t− ti)xi − xi‖+ (ti − t)(M + 1)

and therefore limt↑t∗ u(t) = x∗ = u(t∗). Accordingly, u is continuous on [t0, t∗], and hence ut is
continuous on [t0, t∗]. Therefore, limi→∞ uti = ut∗ ∈ BB(φ, r).

We assert that t∗ 6∈ Ln for sufficiently large n. Indeed, if t∗ ∈ Ln, then there are only finite many
ti 6∈ Ln since [t0, t∗] \ Ln is closed. Therefore there is a positive integer i0 such that ti ∈ Ln for all i ≥ i0.
But then [ti0 , t∗] ⊂ Ln by (15), which contradicts the fact that λ(Ln) <

1
n for sufficiently large n.

We now assume by contradiction that t∗ < t0 + T. We choose h∗ ∈ (0, 1
n ] such that

d(S(h∗)x∗ +
∫ t∗+h∗

t∗
S(t∗ + h∗ − s) f (t∗, ut∗)ds; D(t∗ + h∗) ≤ h∗

4n
. (32)

Since 1
2 δi < di and di = ti+1 − ti → 0 as i → ∞, there is a positive integer i0 such that δi < h∗ for all

i > i0. On the basis of (19), we have

d(S(h∗)x∗ +
∫ ti+h∗

ti

S(ti + h∗ − s) f (t∗, ut∗)ds; D(ti + h∗)) >
h∗

2n
(33)

for i > i0 and ti 6∈ Ln. Letting i → ∞ in (33), one obtains an inequality which contradicts (32).
Hence t∗ = t0 + T, which concludes the proof.
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Proof of sufficiency. Let {Ln} be a sequence of open subsets of R such that Z ⊂ Ln and λ(Ln) <
1
n

for all n ∈ N. Take L = ∩n≥1Ln and a sequence of n-approximate solutions {un} and {tn
i } obtained in

Lemma 1. Let us define

gn(t) =
i−1

∑
m=0

(tn
m+1 − tn

m)S(t− tn
m+1)pn

m + (t− tn
i )pn

i

for t ∈ [ti, ti+1]. Then ‖gn(t)‖ ≤ NT
n for all t ∈ [t0, t0 + T] and un can be written in the form

un(t) = S(t− t0)φ(0) +
∫ t

t0

S(t− s)hn(s)ds + gn(t) (34)

for all t ∈ [t0, t0 + T], un
t0
= φ. Set

yn(t) =
∫ t

t0

S(t− s)hn(s)ds, t ∈ [t0, t0 + T].

Since the semigroup S(t) : X → X, t ≤ 0, is compact and {hn} is uniformly integrable
on [t0, t0 + T], by a standard argument involving a compactness result, it follows that there is
a y ∈ C([t0, t0 + T]; X) such that at least on a subsequence we have

lim
n→∞

yn(t) = y(t)

uniformly in t ∈ [t0, t0 + T]. Since ‖gn(t)‖ ≤ NT
n for all t ∈ [t0, t0 + T], it follows that

lim
n→∞

un(t) = S(t− t0)φ(0) + y(t) ≡ u(t) (35)

uniformly in t ∈ [t0, t0 + T]. Let us observe that if s 6∈ L, then s 6∈ Ln for sufficiently large n, and then
we have αn(s) → s as n → ∞. Also we have βn(s) → s as n → ∞ for all s ∈ [t0, t0 + T]. Therefore
hn(s) → f (s, us) as n → ∞ for a.e. s ∈ [t0, t0 + T]. Moreover, un(αn(s)) ∈ D(αn(s)) ∩ B(φ(0), r)
implies u(s) ∈ D(s) ∩ B(φ(0), r) due to (C2). Finally, passing to limit in (34), one obtains (3), which
completes the proof.

Remark 2. In [10], the function f is defined on [a, b)× D, and not on the whole [a, b)× X, which is more
general. Here, if we define K1 = {v ∈ B : v(0) ∈ ⋃

t∈(a,b) D(t)}, and let K = {v ∈ B : d(v,K1) < r}, where
d(v,K1) denotes the distance between v ∈ B and K1 ⊂ B and r > 0 is the number appeared in the proof of
Lemma 1. From the proof of Lemma 1 we can see that, if f is defined on (a, b)×K, then the result of Theorem 3
still holds.

Concerning the continuation of the solution to (1) satisfying (2). Recall that a solution
v : [t0, t0 + T1]→ X of (1), with T1 ≥ T is said to be a continuation to the right of the solution
u : [t0, t0 + T]→ X to (1), if v(t) = u(t) for all t ∈ [t0, t0 + T]. A solution u is said to be noncontinuable
if it has no proper continuation. Using a standard argument based on Zorn’s Lemma, one can easily
verify that, if the hypotheses of Theorem 3 hold, and u : [t0, b0)→ X is a noncontinuable mild solution
to (1) satisfying (2), then either b0 = b or limt↑b0 ‖u(t)‖ = +∞. Moreover, the tangency condition (T) is
also necessary. Precisely, we have

Theorem 4. Under the hypotheses of Theorem 3, a necessary and sufficient condition in order that for each
t0 ∈ (a, b), and each φ ∈ B with φ(0) ∈ D(t0), there is a noncontinuable mild solution u(t) ∈ D(t) to (1)
satisfying (2) is the tangency condition (T).

Remark 3. Consider (1) with finite delay (i.e., the case B = C([−q, 0]; X)). If D(t) ≡ D, then the condition
(C2) reduce to “D is locally closed”. We can obtain the following result [22].
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Theorem 5. Let D ⊂ X be a locally closed subset in a general Banach space, f : (a, b)× C([−q, 0]; X)→ X a
function of Carathéodory type, and let A : D(A)→ X be the infinitesimal generator of a compact C0−semigroup
S(t) : X → X, t ≥ 0. Then a necessary and sufficient condition in order that D be a viable domain of (1) is the
tangency condition (T).

Remark 4. If D is open, then the tangency condition (T) is automatically satisfied. In this case, by Theorem 3,
one obtains the locally existence result of problem (1) and (2), which extends the well-known result of
J. K. Hale [26], who considered the case in which X is finite dimensional (i.e., X = Rn) and A = 0.

Theorem 6. Let X be a real Banach space X, f : (a, b)× C([−q, 0]; X)→ X a function of Carathéodory type,
and let A be the infinitesimal generator of a compact C0−semigroup S(t) : t ≥ 0. Then for each t0 ∈ (a, b),
and each φ ∈ C([−q, 0]; X) with φ(0) ∈ D, the problem (1) and (2) has a locally mild solution, for some
T = T(t0, φ) > 0, with T < b− t0.

4. Conclusions

We have extended the main result of [22] on the viability of semilinear functional differential
equations from the case of with finite delay to infinite delay, and from a single set D (viable domain) to
a tube D(·). Our approach is still via constructing a sequence of approximate solutions. Such sequence
of approximate solutions convergence uniformly to a viable solution due to the compactness of relevant
semigroup {S(t) : t ≥ 0}. So a further question is whether the result holds if the semigroup is not
compact. This will be studied in the future.
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