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Abstract:



In this paper, we study some algebraic invariants of the edge ideal of generalized theta graphs, such as arithmetical rank, big height and height. We give an upper bound for the difference between the arithmetical rank and big height. Moreover, all Cohen-Macaulay (and unmixed) graphs of this type will be characterized.
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1. Introduction


For an ideal I of a commutative ring R with identity , the arithmetical rank (ara I) of the ideal I is defined as the minimum number s of elements [image: there is no content] of R such that [image: there is no content]. For a squarefree monomial ideal I, it is known that [image: there is no content] and [image: there is no content] (see, for example, [1,2]). Thus,


[image: there is no content]








where [image: there is no content] is the minimum number of generators of I. [image: there is no content] is Cohen–Macaulay if and only if [image: there is no content]. An ideal I is called a set-theoretic complete intersection whenever [image: there is no content]. If I is not unmixed, then I is not a set-theoretic complete intersection. However, it is possible to have [image: there is no content]. The question then arises, “For which ideal does the previous equality hold?”



Given a polynomial ring [image: there is no content] over a field K and a simple graph G with the vertex set [image: there is no content] and the edge set [image: there is no content], the edge ideal of G, denoted by [image: there is no content], is the ideal of R generated by [image: there is no content] such that [image: there is no content]. The graph G is called Cohen–Macaulay over the field K if the ring [image: there is no content] is Cohen–Macaulay.



It is still an open problem to find an explicit formula for the arithmetical rank of the edge ideal of a graph. For the edge ideal of a forest, it is shown that [image: there is no content] by Barile [3] and Kimura and Terai [4]. In [5], Barile et al. proved that [image: there is no content] when G is a cyclic or bicyclic graph. In [6], Mohammadi and Kiani investigated the graphs consisting of some cycles and lines that have a common vertex. It is shown that the projective dimension equals the arithmetical rank for all such graphs. A graph G is called an n-cyclic graph with a common edge if G is a graph consisting of n cycles [image: there is no content] connected through a common edge, where [image: there is no content]. Zhu, Shi and Gu proved that [image: there is no content] for some special n-cyclic graphs with a common edge [7]. For the class of generalized theta graphs, [image: there is no content], the authors in [8] showed that [image: there is no content] except in the following two cases:

	
ni≡0(mod3) for any [image: there is no content];



	
there exists exactly one [image: there is no content] such that nj≡1(mod3), and for any [image: there is no content], we have ni≡2(mod3).








For these cases, they show that [image: there is no content].



Since [image: there is no content], it can be interesting to compare these invariants for the generalized theta graphs. In the sequel, we compute the height of the edge ideal of generalized theta graphs based on the number of vertices being even or odd in any path. Moreover, we show that [image: there is no content] is Cohen–Macaulay (and unmixed) if and only if [image: there is no content].




2. Arithmetical Rank of the Edge Ideal of a Generalized Theta Graph


Let [image: there is no content] be a positive integer and [image: there is no content] be a sequence of positive integers. Let [image: there is no content] be the graph constructed by k paths with [image: there is no content] vertices with only the endpoints in common. Since the graphs are assumed to be simple, at most one of [image: there is no content] can be equal to two. Throughout this paper, we assume that x and y are the common vertices. We define the projective dimension of G to be the projective dimension of the R-module [image: there is no content] and we will write [image: there is no content]. The edge ideal of a cycle of length n with the vertex set [image: there is no content] is [image: there is no content]. The edge ideal of a line (path) with the vertex set [image: there is no content] is [image: there is no content]. In the following, we consider the labeling below:


I(L3si)=(x1,ix2,i,x2,ix3,i,…,x3si−1,ix3si,i);fori=1,…,k3










I(L3rj+1)=(y1,jy2,j,y2,jy3,j,…,y3rj,jy3rj+1,j);forj=1,…,k1










I(L3tl+2)=(z1,lz2,l,z2,lz3,l,…,z3tl+1,lz3tl+2,l);forl=1,…,k2











Suppose that [image: there is no content]. One can consider the graph [image: there is no content] as a [image: there is no content]-cyclic graph with common path [image: there is no content] consisting of [image: there is no content] cycles of lengths [image: there is no content] for any [image: there is no content]. This generalizes the concept of n-cyclic graphs with a common edge.



For instance, let [image: there is no content] be the graph consisting of lines [image: there is no content] such that [image: there is no content]. Without loss of generality, suppose that [image: there is no content]. One can consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content] that the cycles are of lengths [image: there is no content] or [image: there is no content] for [image: there is no content] and [image: there is no content]. Consider the following labeling for [image: there is no content]:


I(C3(s1+rj−1)+2)=(x1,1x2,1,…,x3s1−1,1x3s1,1,x3s1,1y3s1+1,j,y3s1+1,jy3s1+2,j,…,y3(s1+rj−1)+1,jy3(s1+rj−1)+2,j,y3(s1+rj−1)+2,jx1,1)











In this section, we obtain an upper bound for the arithmetical rank of the edge ideal of generalized theta graphs. Using the big height of the edge ideal of these graphs computed in [8], we estimate an upper bound for [image: there is no content]. For this purpose, we consider seven cases that are treated separately in the following theorems.



Theorem 1. 

Let [image: there is no content] be the graph consisting of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content]. Then,


[image: there is no content]













Proof. 

By definition, one can consider G as a [image: there is no content]-cyclic graph with common path of length [image: there is no content]. Without loss of generality, we may assume [image: there is no content]. Since [image: there is no content] for any [image: there is no content], by ([5], Proposition 2.3), we can construct [image: there is no content] as follows: for any [image: there is no content], set [image: there is no content] where


q0=x1,1x2,1q1,i=x1,1x3(s1+si−1)+1,i+x2,1x3,1q2=x4,1x5,1q3=x3,1x4,1+x5,1x6,1⋮q2(s1−1)=x3s1−2,1x3s1−1,1q2s1−1=x3s1−3,1x3s1−2,1+x3s1−1,1x3s1,1q2s1,i=x3s1+1,ix3s1+3,i⋮q2(s1+si−1),i=x3(s1+si−1),ix3(s1+si−1)+1,i













Observe that the sequences [image: there is no content] have [image: there is no content] common elements, namely [image: there is no content]. On the other hand, by ([9] p. 249), we have [image: there is no content]. Therefore, we deduce


[image: there is no content]











Similar to the proof of Theorem 2.11 of [8], we obtain that [image: there is no content], it follows that


[image: there is no content]








as desired.   □



Theorem 2. 

Let [image: there is no content] be the graph consisting of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content]. Then,


[image: there is no content]













Proof. 

For [image: there is no content], a similar argument as in ([3], p. 4701), Put [image: there is no content] is generated up to radical by


y2,iy3,iy1,iy2,i+y3,iy4,i⋮y3j−1,iy3j,iy3j−2,iy3j−1,i+y3j,iy3j+1,i⋮y3ri−2,iy3ri−1,i+y3ri,iy3ri+1,i








we have [image: there is no content] by ([9], p. 249). Then, [image: there is no content]. Similar to the proof of Theorem 2.6 of [8], we obtain that [image: there is no content], it follows that


[image: there is no content]













□



Theorem 3. 

Let [image: there is no content] be the graph consisting of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content]. Then,


[image: there is no content]













Proof. 

We can assume, without loss of generality, that [image: there is no content]. By definition, one may consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content] that any cycle contains only [image: there is no content] vertices. Applying Proposition 2.4 of [5], we construct [image: there is no content] for any [image: there is no content] as follows:


q0=z1,1z2,1q1=z2,1z3,1+z4,1z5,1⋮q2l=z3l,1z3l+1,1+z3l+2,1z3l+3,1q2l+1=z3l+2,1z3l+3,1+z3l+4,1z3l+5,1⋮q2(t1−1)+1=z3t1−1,1z3t1,1+z3t1+1,1z3t1+2,1q2t1,i=z3t1,1z3t1+1,1+z3t1+2,1z3t1+3,i⋮q2(t1+h),i=z3(t1+h),iz3(t1+h)+1,i+z3(t1+h)+2,iz3(t1+h)+3,iq2(t1+h)+1,i=z3(t1+h)+2,iz3(t1+h)+3,i+z3(t1+h)+4,iz3(t1+h)+5,i⋮q2(t1+ti),i=z1,1z3(t1+ti)+2,i+z3(t1+ti),iz3(t1+h)+1,i













We have [image: there is no content], and it follows from ([9], p. 249) that [image: there is no content]. It is easily seen that the sequences [image: there is no content] have the terms [image: there is no content] in common. Hence,


[image: there is no content]











Similar to the proof of Theorem 2.7 of [8], we obtain that [image: there is no content], and it follows that


[image: there is no content]








as required.   □



Theorem 4. 

Let [image: there is no content] be the graph consisting of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then,

	1.

	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content];




	2.

	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content].











Proof. 

We have [image: there is no content] and [image: there is no content] by ([3], p. 4701). It follows that


[image: there is no content]



(1)









	
Without loss of generality, assume that [image: there is no content]. One can consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content] that the cycles are of lengths [image: there is no content] or [image: there is no content] for [image: there is no content] and [image: there is no content]. Now, suppose that


q0=y1,1y2,1q1,i=y1,1y3(r1+ri),i+y2,1y3,1⋮q2(r1−1)+1=y3(r1−1),1y3(r1−1)+1,1+y3(r1−1)+2,1y3(r1−1)+3,1q2r1,i=y3r1+1,1y3r1+2,i⋮q2h,i=y3h+1,iy3h+2,iq2h+1,i=y3h,iy3h+1,i+y3h+2,iy3h+3,i⋮q2(r1+ri−1)+1,i=y3(r1+ri−1),iy3(r1+ri−1)+1,i+y3(r1+ri−1)+2,iy3(r1+ri−1)+3,i








Which generate up to radical [image: there is no content]. Note that the terms [image: there is no content] are in common for any sequences generating ideal [image: there is no content] up to radical and [image: there is no content]. For any [image: there is no content], we define:


q0′=y1,1y2,1q1′=y2,1y3,1+y4,1y5,1⋮q2l′=y3l,1y3l+1,1+y3l+2,1y3l+3,1q2l+1′=y3l+2,1y3l+3,1+y3l+4,1y3l+5,1⋮q2(r1−1)′=y3r1−3,1y3r1−2,1+y3r1−1,1y3r1,1q2r1−1,j′=y3r1−1,1y3r1,1+y3r1+1,1x3r1+2,j⋮q2h,j′=x3h,jx3h+1,j+x3h+2,jx3h+3,jq2h+1,j′=x3h+2,jx3h+3,j+x3h+4,jx3h+5,j⋮q2(r1+sj−1),i′=y1,1x3(r1+sj−1)+2,j+x3(r1+sj−1),jx3(r1+sj−1)+1,j








and we can obtain that [image: there is no content]. We can obtain that there are the common terms [image: there is no content] in any of sequences generating ideal [image: there is no content] up to radical for any [image: there is no content]. On the other hand, we have [image: there is no content] and [image: there is no content], for any [image: there is no content]. Applying these arguments, we obtain


[image: there is no content]



(2)




Thus, the inequalities Equations (1) and (2), together with ([8], Theorem 2.8), imply that


[image: there is no content]











	
We may assume, without loss of generality, that [image: there is no content]. One can consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content] that the cycles are of lengths [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. Applying Proposition 2.3 of [5], we construct the following sequences:


q0=x1,1x2,1q1,i=x1,1x3(s1+si−1)+1,i+x2,1x3,1⋮q2(s1−1)=x3s1−2,1x3s1−1,1q2s1−1=x3s1−3,1x3s1−2,1+x3s1−1,1x3s1,1q2s1,i=x3s1+1,ix3s1+2,i⋮q2h,i=x3h+1,ix3h+2,iq2h+1,i=x3h,ix3h+1,i+x3h+2,ix3h+3,i⋮q2(s1+si−1),i=x3(s1+si−1),ix3(s1+si−1)+1,i








We have [image: there is no content] for any [image: there is no content]. It is easily seen that the above constructed sequences have [image: there is no content] terms in common. Now, suppose that [image: there is no content] where


q0′=x1,1x2,1q1′=x2,1x3,1+x4,1x5,1⋮q2l′=x3l,1x3l+1,1+x3l+2,1x3l+3,1q2l+1′=x3l+2,1x3l+3,1+x3l+4,1x3l+5,1⋮q2(s1−1)′=x3s1−3,1x3s1−2,1+x3s1−1,1x3s1,1q2s1−1,j′=x3s1−1,1x3s1,1+y3s1+1,jy3s1+2,j⋮q2h,j′=y3h,jy3h+1,j+y3h+2,jy3h+3,jq2h+1,j′=y3h+2,jy3h+3,j+y3h+4,jy3h+5,j⋮q2(s1+rj−1),j′=x1,1y3(s1+rj−1)+2,j+y3(s1+rj−1),jy3(s1+rj−1)+1,j








for all [image: there is no content]. One can check that the above constructed sequences have [image: there is no content] terms in common. On the other hand, we have [image: there is no content] and [image: there is no content] for any [image: there is no content]. Using the preceding arguments and the fact that [image: there is no content], we get


[image: there is no content]



(3)




Thus, the inequalities Equations (1) and (3), together with ([8], Theorem 2.8), yield the inequality


[image: there is no content]














□



Theorem 5. 

Let [image: there is no content] be the graph consisting of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then,

	1.

	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content];




	2.

	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content].











Proof. 


	
Without loss of generality, one may assume [image: there is no content]. We can consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content] of which the cycles are of lengths [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. Applying Proposition 2.2 of [5], we have [image: there is no content], where


q0′=x1,1x2,1q1,j′=x1,1z3(s1+tj),j+x2,1x3,1⋮q2(s1−1)+1′=x3(s1−1),1x3(s1−1)+1,1+x3(s1−1)+2,1x3(s1−1)+3,1q2s1,j′=z3s1+1,jz3s1+2,j⋮q2h,j′=z3h+1,jz3h+2,jq2h+1,j′=z3h,jz3h+1,j+z3h+2,jz3h+3,j⋮q2(s1+tj−1)+1,j′=z3(s1+tj−1),jz3(s1+tj−1)+1,j+z3(s1+tj−1)+2,jz3(s1+tj−1)+3,j








for any [image: there is no content]. Note that, for the above constructed sequences, the elements [image: there is no content] are in common. With the same argument as in the proof of Theorem 4, we have [image: there is no content] for any [image: there is no content]. On the other hand, we have [image: there is no content] and [image: there is no content] for any [image: there is no content]. In addition, [image: there is no content]. Thus, it follows that


[image: there is no content]



(4)




Furthermore, ([3], p. 4701) implies that [image: there is no content] and [image: there is no content], and hence


[image: there is no content]



(5)




From the Equations (4) and (5), together with ([8], Theorem 2.9), we get


[image: there is no content]








as desired.



	
Without loss of generality, one may assume [image: there is no content]. One can consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content] which the cycles are of lengths [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. Using the proof of Theorem 3, we get [image: there is no content] for any [image: there is no content]. Assume that


q0′=z1,1z2,1q1,j′=z1,1x3(t1+rj),j+z2,1z3,1⋮q2(t1−1)+1′=z3(t1−1),1z3(t1−1)+1,1+z3(t1−1)+2,1z3(t1−1)+3,1q2t1,j′=z3t1+1,1x3t1+2,j⋮q2h,j′=x3h+1,jx3h+2,jq2h+1,j′=x3h,jx3h+1,j+x3h+2,jx3h+3,j⋮q2(t1+sj−1)+1,j′=x3(t1+sj−1),jx3(t1+sj−1)+1,j+x3(t1+sj−1)+2,jx3(t1+sj−1)+3,j








which generate up to radical [image: there is no content]. Observe that in all sequences generating ideal [image: there is no content] up to the radical, the elements [image: there is no content] are in common, for any [image: there is no content]. We have [image: there is no content] and [image: there is no content] for any [image: there is no content]. Since [image: there is no content],


[image: there is no content]



(6)




Thus, the inequalities Equations (4) and (6), together with ([8], Theorem 2.9), yield the asserted inequality.










□



Theorem 6. 

Let [image: there is no content] be the graph consisting of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then,

	1.

	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content];




	2.

	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content].











Proof. 


	
Without loss of generality, suppose that [image: there is no content]. One can consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content] where the cycles are of lengths [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. Applying the same argument in the proof of Theorem 5 (1), we get


[image: there is no content]



(7)




Hence, ([8], Theorem 2.12), ([3], p. 4701) and Equation (7) imply that [image: there is no content]



	
We may assume, without loss of generality, that [image: there is no content]. One can consider G as a [image: there is no content]-cyclic graph with common path [image: there is no content]. Therefore, the cycles are of lengths [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. The same argument as in the proof of Theorem 4 (2) shows that


[image: there is no content]



(8)




Using ([8], Theorem 2.12), ([3], p. 4701) and Equation (8), one derives that [image: there is no content]










□



Theorem 7. 

Let [image: there is no content] consist of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then,

	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content];



	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content];



	
If there exists [image: there is no content] such that [image: there is no content], then [image: there is no content].










Proof. 


	
Without loss of generality, suppose that [image: there is no content]. One can consider that G is a [image: there is no content]-cyclic graph with common path [image: there is no content] where the cycles are of lengths [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. Using the same argument as in the proof of Theorems 1, 4 (2) and 5 (1), we get


araI(G)≤(2s1−1)+2∑l=1k2tl+k2+(2s1−1)+2∑i=2k3si+(2s1−1)+2∑j=1k1rj−(1+2s1−2)−(1+s1−1)=2∑l=1k2tl+2∑j=1k1rj+2∑i=1k3si+k2+s1−2



(9)




It follows from Equation (9), ([8], Theorem 2.10) and ([3], p. 4701) that


[image: there is no content]











	
Without loss of generality, assume that [image: there is no content]. One can consider that G is a [image: there is no content]-cyclic graph with common path [image: there is no content] where the cycles are of lengths [image: there is no content] for any [image: there is no content], [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. The same argument as in the proof of Theorems 4 (1) and 6 (1) shows that


araI(G)≤(2r1−1)+2∑l=1k1rl+k1−1+(2r1−1)+2∑j=2k2tj+2k2+(2r1−1)+2∑i=1k3si−(2r1−1)−(1+r1−1)=2∑l=1k2tl+2∑j=1k1rj+2∑i=1k3si+2k2+k1+r1−3



(10)




Therefore, by Equation (10), ([8], Theoerem 2.10) and ([3], p. 4701), we conclude that


[image: there is no content]











	
Without loss of generality, assume that [image: there is no content]. One can consider that G is a [image: there is no content]-cyclic graph with common path [image: there is no content], where the cycles are of lengths [image: there is no content] for any [image: there is no content], [image: there is no content] for any [image: there is no content] or [image: there is no content] for any [image: there is no content]. We can use the same argument as in the proof of Theorems 3, 5 (2) and 6 (2) to obtain


araI(G)≤2t1+2∑i=1k3si+2t1+2∑j=1k1rj+k1+2t1+2∑l=2k2tl+(k2−1)−2t1−(1+t1−1)=2∑l=1k2tl+2∑j=1k1rj+2∑i=1k3si+t1+k2+k1−1



(11)




Applying Equation (11), ([8], Theoerem 2.10) and ([3], p. 4701), we get


[image: there is no content]








as desired.










□




3. Cohen-Macaulayness of Generalized Theta Graph


In [2], Mohammadi and Kiani investigated some properties of graphs of the form [image: there is no content], such as shellability, vertex decomposability and sequential Cohen-Macaulayness. The present section is devoted to study Cohen-Macaulayness and unmixedness of these graphs, especially the height of generalized theta graphs. The most important motivation to study this property comes from the fact that [image: there is no content] is Cohen-Macaulay if and only if [image: there is no content]. We check the equality [image: there is no content] to verify Cohen-Macaulayness of the graph [image: there is no content] in some cases. Since the projective dimension of a graph in this class is computed in [8], it only remains to obtain the value of [image: there is no content].



Let us fix some notations that will be used throughout this section. By [image: there is no content], we mean the graph obtaind by the disjoint union of [image: there is no content] and [image: there is no content]. Furthermore, we suppose that the vertices of a line graph [image: there is no content] are labeled by [image: there is no content] where [image: there is no content] and [image: there is no content]. Note that


[image: there is no content]











Lemma 8. 

Let [image: there is no content] such that [image: there is no content] for any [image: there is no content]. Then,


[image: there is no content]













Proof. 

Assume that A is a minimal vertex cover of G. One of the following cases may happen: [image: there is no content], [image: there is no content], [image: there is no content], or [image: there is no content].





	
Suppose that [image: there is no content]. We are going to find the minimum cardinality of minimal vertex cover of G which do not contain y, so it suffices to cover the disjoint lines [image: there is no content] with the minimum number of vertices such that [image: there is no content]. We claim that


[image: there is no content]











Note that [image: there is no content]. Furthermore, there exists a minimal vertex cover [image: there is no content] for [image: there is no content] with the minimum cardinality [image: there is no content] such that [image: there is no content] and [image: there is no content] for any [image: there is no content]. Hence, in this case, the minimum number of vertices of such A to be equal to


[image: there is no content]











The number 1 appears in the above equality because [image: there is no content].



	
Suppose that [image: there is no content]. We can apply the same argument as in the previous case.



	
Assume that [image: there is no content]. To obtain a minimal vertex cover of G with minimum cardiality, we may cover the disjoint lines [image: there is no content] with the minimum number of vertices such that [image: there is no content] and [image: there is no content] are not contained in A. Since [image: there is no content] and there exists a minimal vertex cover [image: there is no content] for [image: there is no content] with the minimum cardinality [image: there is no content] such that [image: there is no content] for any [image: there is no content], we deduce that


[image: there is no content]











It follows that the minimum cardinality of such A to be equal to


[image: there is no content]











The number 2 appears in the above equality because [image: there is no content].



	
Assume that [image: there is no content]. Applying the same argument, we may cover the disjoint lines [image: there is no content] with the minimum number of vertices such that A contains [image: there is no content] and [image: there is no content]. There exists a minimal vertex cover [image: there is no content] of cardinality [image: there is no content] for the line [image: there is no content] having an even number of vertices such that [image: there is no content] for any [image: there is no content]; therefore, we obtain the minimum number of vertices of such A to be equal to [image: there is no content] because [image: there is no content].



Now, by comparing the above cases, we get


[image: there is no content]








as desired.






□



Lemma 9. 

Let [image: there is no content] such that [image: there is no content] for any [image: there is no content]. Then,


[image: there is no content]













Proof. 

The techniques used in this proof are similar to the previous lemma. Suppose that A is a minimal vertex cover of G. The only possible cases for [image: there is no content] are [image: there is no content], [image: there is no content], [image: there is no content], or [image: there is no content].





	
Suppose that [image: there is no content]. We have [image: there is no content]. There exists a minimal vertex cover [image: there is no content] for the line [image: there is no content] having an odd number of vertices such that [image: there is no content] and [image: there is no content] where the minimum cardinality of [image: there is no content] is [image: there is no content] for any [image: there is no content]. Therefore,


[image: there is no content]








Hence, we get the minimum number of vertices of such A to be equal to


[image: there is no content]








The number 1 appears in the above equality because [image: there is no content].



	
Suppose that [image: there is no content]. We can apply the same argument as in the previous case.



	
Suppose that [image: there is no content]. There exists a minimal vertex cover [image: there is no content] for [image: there is no content] such that [image: there is no content], and, furthermore, the minimum number vertices of such [image: there is no content] is [image: there is no content] for any [image: there is no content]. Since [image: there is no content],


[image: there is no content]








It follows that the minimum cardinality of such A is equal to


[image: there is no content]








The number 2 appears in the above equality because [image: there is no content].



	
Suppose that [image: there is no content]. Applying the same argument, we may cover the disjoint lines [image: there is no content] with the minimum number of vertices such that A contains [image: there is no content] and [image: there is no content]. There exists a minimal vertex cover [image: there is no content] of cardinality [image: there is no content] for the line [image: there is no content] having an odd number of vertices such that [image: there is no content] for any [image: there is no content]; therefore, we obtain the minimum number of vertices of such A to be equal to [image: there is no content], because [image: there is no content].



Since [image: there is no content], [image: there is no content]. Now, we compare the results obtained from the cases above to get


[image: there is no content]








as required.






□



Lemma 10. 

Let [image: there is no content] such that [image: there is no content] for any [image: there is no content] and [image: there is no content] for any [image: there is no content]. Then,


[image: there is no content]













Proof. 

Assume that A is a minimal vertex cover for G. Applying the same argument in lemma 8, the only possible cases for the common vertices [image: there is no content] are [image: there is no content], [image: there is no content], [image: there is no content], or [image: there is no content].





	
Assume that [image: there is no content]. We have to cover the disjoint lines [image: there is no content] with the minimum number of vertices such that [image: there is no content]. We have [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content]. It is easily seen that there exists a minimal vertex cover [image: there is no content] for [image: there is no content] having an even number of vertices, and the minimal vertex cover [image: there is no content] for [image: there is no content] having an odd number of vertices such that [image: there is no content] for [image: there is no content], [image: there is no content] for [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content]. The minimum size for [image: there is no content] and [image: there is no content] is [image: there is no content] and [image: there is no content], respectively. Hence, in this case, we need at least [image: there is no content] vertices to create a minimal vertex cover for the disjoint lines [image: there is no content]. Then, the minimum size of such A is


[image: there is no content]











	
Assume that [image: there is no content]. We can apply the same argument as in the previous case.



	
Assume that [image: there is no content]. To obtain the minimum cardinality of such A, it suffices to cover the disjoint graphs [image: there is no content] with the minimum number of vertices such that [image: there is no content] for any [image: there is no content]. There exists a minimal vertex cover [image: there is no content] for the line having an even number of vertices [image: there is no content] with the minimum number of vertices [image: there is no content] such that [image: there is no content] for [image: there is no content] are not contained in A. Moreover, there exists a minimal vertex cover [image: there is no content] for the line having an odd number of vertices [image: there is no content] with the minimum number of vertices [image: there is no content] which does not contain [image: there is no content] for [image: there is no content] . With this argument, to make a minimal vertex cover with the minimum number vertices for the disjoint lines [image: there is no content] we may have


[image: there is no content]








vertices. Then, the minimum cardinalty of such A is equal to


∑i=1k1(mi−1)+∑i=k1+1k(li−1)+2=(∑i=1k1mi)+(∑i=k1+1kli)−k1−(k−k1)+2=(∑i=1k1mi)+(∑i=k1+1kli)−k+2











	
Assume that [image: there is no content]. In this case, we may cover the disjoint lines [image: there is no content] with the minimum number of vertices such that A contains [image: there is no content] and [image: there is no content]. For any line [image: there is no content] ([image: there is no content]) containing even number of vertices, we can find the minimal vertex cover [image: there is no content] with the minimum number of vertices [image: there is no content] which contains [image: there is no content] for [image: there is no content]. In addition, there exists a minimal vertex cover [image: there is no content] with the minimum number of vertices [image: there is no content] which contains [image: there is no content] for [image: there is no content] . Therefore, in this case, the minimum number of vertices for covering the disjoint lines [image: there is no content] is equal to [image: there is no content]. Hence, the minimum cardinality of such A equals


[image: there is no content]








Since [image: there is no content] and [image: there is no content], [image: there is no content]. We compare the results obtained from the above cases to obtain


[image: there is no content]








as desired.






□



To verify Cohen-Macaulayness and unmixedness of the generalized theta graphs, we consider only seven possible cases that are described in the following theorems.



Theorem 11. 

Let G be the graph [image: there is no content] consisting of lines [image: there is no content], i.e., [image: there is no content] for [image: there is no content]. Then, G is not unmixed and hence not Cohen-Macaulay.





Proof. 

Applying Theorem 2.6 of [2], one can conclude that G is not sequentially Cohen–Macaulay. This implies G is neither Cohen-Macaulay by ([10], Lemma 3.6) nor unmixed by ([8], Theorem 2.14).   □





Theorem 12. 

Let G be the graph [image: there is no content] consisting of lines [image: there is no content], i.e., [image: there is no content]for [image: there is no content]. Then, G is not unmixed and hence not Cohen-Macaulay.





Proof. 

It suffices to show that G is not unmixed. We distinguish the three following cases:

	
There exist positive integers [image: there is no content] such that [image: there is no content] for any [image: there is no content];



	
There exist nonnegative integers [image: there is no content] such that [image: there is no content] for any [image: there is no content];



	
There exist positive integers [image: there is no content] such that [image: there is no content] for any [image: there is no content] and nonnegative integer numbers [image: there is no content] such that [image: there is no content] for any [image: there is no content].










Using proof of Lemmas 8–10, it is readily seen that there exist two minimal vertex covers of different sizes in any case, and then G is not unmixed.   □



Theorem 13. 

Let G be the graph [image: there is no content] consisting of lines [image: there is no content], i.e., [image: there is no content]for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then, G is not unmixed and hence not Cohen-Macaulay.





Proof. 

We have to verify the following cases:

	
The set [image: there is no content] does not contain [image: there is no content]. Applying Theorem 2.6 of [2], G is not sequentially Cohen-Macaulay, and then G is not Cohen-Macaulay by ([10], Lemma 3.6). We therefore get G is not unmixed by ([8], Theorem 2.14).



	
[image: there is no content]. There exist positive integers [image: there is no content] such that [image: there is no content] for any [image: there is no content] and there exist nonnegative integers [image: there is no content] such that [image: there is no content] for any [image: there is no content]. Using cases 3 and 4 of Lemma 10, we obtain two minimal vertex covers A and B of cardinalities [image: there is no content] and [image: there is no content], respectively. Since [image: there is no content], [image: there is no content]. Hence, G is not unmixed. Moreover, G is not Cohen-Macaulay.








□





Theorem 14. 

Let G be the graph [image: there is no content] consisting of lines [image: there is no content], i.e., [image: there is no content]for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then, G is not unmixed and hence not Cohen-Macaulay.





Proof. 

It suffices to replace [image: there is no content] by [image: there is no content] in the proof of Theorem 13 and apply the same argument.   □





Theorem 15. 

Let G be the graph [image: there is no content] consisting of lines [image: there is no content], i.e., [image: there is no content]for [image: there is no content]. Then, G is not unmixed and hence not Cohen-Macaulay.





Proof. 

In order to show that G is not unmixed, we use the same argument of Theorem 12.   □





Theorem 16. 

Let G be the graph [image: there is no content] consisting of lines [image: there is no content], i.e., [image: there is no content]for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then, G is not unmixed and hence not Cohen-Macaulay.





Proof. 

From ([2], Lemma 2.6), we obtain that G is not sequentially Cohen-Macaulay and hence G is not Cohen-Macaulay by ([10], Lemma 3.6). Applying Theorem 2.14 of [8], one concludes that G is not unmixed for [image: there is no content]. To complete the proof, it remains to prove that G is not unmixed for [image: there is no content]. In this case, the same argument of Theorem 12 holds.   □





Theorem 17. 

Let G be the graph [image: there is no content] consisting of lines [image: there is no content], i.e., [image: there is no content]for [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] such that [image: there is no content]. Then, G is Cohen-Macaulay (unmixed) if and only if [image: there is no content].





Proof. 



[image: there is no content] Suppose that [image: there is no content]. Set [image: there is no content], [image: there is no content] and [image: there is no content]. Using CoCoA, [image: there is no content] has the minimal primary decomposition as


[image: there is no content]








Hence, G is unmixed and Cohen-Macaulay by ([8], Theorem 2.14).



[image: there is no content] We know that G is Cohen-Macaulay (and hence unmixed) if and only if [image: there is no content]. It is not difficult to see that [image: there is no content] changes according to being even or odd the numbers [image: there is no content], [image: there is no content], [image: there is no content] ([image: there is no content], [image: there is no content], [image: there is no content]). By the description given above, there are only nine possible cases. By checking all cases, it is seen that the equality [image: there is no content] holds only for one case. In the following, we examine two cases that seem more important.



	
Suppose that there are nonnegative integers [image: there is no content] and [image: there is no content] such that [image: there is no content], [image: there is no content] and [image: there is no content] for any [image: there is no content], [image: there is no content] and [image: there is no content]. By Lemma 10, we get


htI(G)=∑i=1k1(3li)+∑j=1k2(3gj)+∑m=1k3(3hm)+k1+2=32∑i=1k1ri+32∑j=1k2tj+32∑m=1k3sm−k12−32k3+2








Similar to the proof of Theorem 2.10 of [8], we obtain that [image: there is no content]. Applying Theorem 2.10 of [8], we have


htI(G)=pd(G)⟺32∑i=1k1ri+32∑j=1k2tj+32∑m=1k3sm−k12−32k3+2=2∑i=1k1ri+2∑j=1k2tj+2∑m=1k3sm−k3⟺12∑i=1k1ri+12∑j=1k2tj+12∑m=1k3sm=2−k12−k32⟺∑i=1k1ri+∑j=1k2tj+∑m=1k3sm=4−k1−k3⟺k1=k3=1⟺r1+∑j=1k2tj+s1=2⟺r1=s1=1,k2=1,t1=0⟺G=θ2,3,4











	
Suppose that there exist nonnegative integers [image: there is no content] and [image: there is no content] such that [image: there is no content] for any [image: there is no content] and [image: there is no content] for any [image: there is no content], [image: there is no content] for any [image: there is no content] and [image: there is no content] for any [image: there is no content], [image: there is no content] for any [image: there is no content] and [image: there is no content] for any [image: there is no content] which at least one of α, β and γ is non zero. Note that we choose α, β and γ such that any of the other cases do not occur. Using Lemma 10, we obtain


htI(G)=∑i=1α(3li)+∑i=α+1k1(3li)+∑j=1β(3gj)+∑j=β+1k2(3gj)+∑m=1γ(3hm)+∑m=γ+1k3(3hm)+k1+k2−2α−β−γ+2=32∑i=1k1ri+32∑j=1k2tj+32∑m=1k3sm−k12−k22−32k3+2+β2+γ2−α2








Applying Theorem 2.10 of [8], we have


htI(G)=pd(G)⟺32∑i=1k1ri+32∑j=1k2tj+32∑m=1k3sm−k12−k22−32k3+β2+γ2−α2+2=2∑i=1k1ri+2∑j=1k2tj+2∑m=1k3sm−k3⟺12∑i=1k1ri+12∑j=1k2tj+12∑m=1k3sm=2+(β+γ−α)2−(k1+k2+k3)2⟺∑i=1k1ri+∑j=1k2tj+∑m=1k3sm=4+(β−k2)+(γ−k3)−(α+k1)








By assumption, we have [image: there is no content], [image: there is no content] and [image: there is no content]. Then, it follows that [image: there is no content]. Furthermore, we know [image: there is no content]. Assume [image: there is no content]. Since [image: there is no content], [image: there is no content] and [image: there is no content], we conclude [image: there is no content], [image: there is no content] or [image: there is no content] which are contradictions by assumption. Suppose that [image: there is no content], then we have [image: there is no content], [image: there is no content] and [image: there is no content]. This implies that [image: there is no content] and [image: there is no content], a contradiction. Hence, G is not Cohen-Macaulay (unmixed).






□



By considering the nine previous theorems, we get the following result:

Corollary 18. 

Let [image: there is no content]. Then, the following conditions are equivalent:

	(a) 

	
G is Cohen–Macaulay;




	(b) 

	
G is unmixed;




	(c) 

	
[image: there is no content].














4. Conclusions


We have shown that algebraic invariants of the ideals associated to combinatorial structers are computable.
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