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Abstract: In our previous work (Journal of Nonlinear Science and Applications 9: 1202–1215, 2016),
we studied the well-posedness and general decay rate for a transmission problem in a bounded
domain with a viscoelastic term and a delay term. In this paper, we continue to study the similar
problem but without the frictional damping term. The main difficulty arises since we have no
frictional damping term to control the delay term in the estimate of the energy decay. By introducing
suitable energy and Lyapunov functionals, we establish an exponential decay result for the energy.
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1. Introduction

In our previous work [1], we considered the following transmission system with a viscoelastic
term and a delay term:

utt(x, t)− auxx(x, t) +
∫ t

0
g(t− s)uxx(x, s)ds

+µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞)

vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞)

(1)

where 0 < L1 < L2 < L3, Ω = (0, L1) ∪ (L2, L3), a, b, µ1, µ2 are positive constants, and τ > 0 is the
delay. In that work, we first proved the well-posedness by using the Faedo–Galerkin approximations
together with some energy estimates when µ2 ≤ µ1. Then, a general decay rate result was established
under the hypothesis that µ2 < µ1. As for the previous results and developments of transmission
problems, and the research of wave equations with viscoelastic damping or time delay effects, we have
stated and summarized in great detail in our previous work [1], thus we just omit it here. The readers,
for a better understanding of present work, are strongly recommended to [1] and the reference therein
(see [2–33]).

It is worth pointing out that, in our previous work, the assumption “µ2 < µ1" plays an important
role in the proof of the above-mentioned general decay result. In this paper, we intend to investigate
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system (1) with µ1 = 0. That is, we study the exponential decay rate of the solutions for the following
transmission system with a viscoelastic term and a delay term but without the frictional damping:

utt(x, t)− auxx(x, t) +
∫ t

0
g(t− s)uxx(x, s)ds

+µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞)

vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞)

(2)

under the boundary and transmission conditions

u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), i = 1, 2(
a−

∫ t

0
g(s)ds

)
ux(Li, t) = bvx(Li, t), i = 1, 2

(3)

and the initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ [0, τ]

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L1, L2)

(4)

where µ2 is a real number, a, b are positive constants and u1(x) = f0(x, 0).
The main difficulty in dealing with this problem is that in the first equation of system (2), we have

no frictional damping term to control the delay term in the estimate of the energy decay. To overcome
this difficulty, our basic idea is to control the delay term by making use of the viscoelastic term. In order
to achieve this goal, a restriction of the size between the parameter µ2 and the relaxation function g and
a suitable energy is needed. This is motivated by Dai and Yang’s work [34], in which the viscoelastic
wave equation with delay term but without a frictional damping term was studied and an exponential
decay result was established. In the work here, we will establish an exponential decay rate result for
the energy.

The remaining part of this paper is organized as follows. In Section 2, we give some notations and
hypotheses needed for our work and state the main results. In Section 3, under some restrictions of µ2

(see (35) below), we prove the exponential decay of the solutions for the relaxation function satisfying
assumption (H1) and (H2).

2. Preliminaries and Main Results

In this section, we present some materials that shall be used in order to prove our main result.
Let us first introduce the following notations:

(g ∗ h)(t) :=
∫ t

0
g(t− s)h(s)ds

(g � h)(t) :=
∫ t

0
g(t− s)(h(t)− h(s))ds

(g�h)(t) :=
∫ t

0
g(t− s)|h(t)− h(s)|2ds
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We easily see that the above operators satisfy

(g ∗ h)(t) =
(∫ t

0
g(s)ds

)
h(t)− (g � h)(t)

|(g � h)(t)|2 ≤
(∫ t

0
|g(s)|ds

)
(|g|�h)(t)

Lemma 1. For any g, h ∈ C1(R), the following equation holds

2[g ∗ h]h′ = g′�h− g(t)|h|2 − d
dt

{
g�h−

(∫ t

0
g(s)ds

)
|h|2

}
For the relaxation function g, we assume
(H1) g: R+ → R+ is a C1 function satisfying

g(0) > 0, β0 := a−
∫ ∞

0
g(s)ds = a− ḡ > 0

(H2) There exists a positive constant ξ satisfying ξ > ξ0 > 0 (ξ0 defined by (39) below) and

g′(t) ≤ −ξg(t), ∀t ≥ 0

According to previous results in the literature (see [1]), we state the following well-posedness
result, which can be proved by using the Faedo–Galerkin method.

Theorem 2. Assume that (H1) and (H2) hold. Then, given (u0, v0) ∈ V , (u1, v1) ∈ L2, and
f0 ∈ L2((0, 1), H1(Ω)), Equations (2)–(4) have a unique weak solution in the following class:

(u, v) ∈ C(0, ∞;V) ∩ C1(0, ∞;L2)

where

V =

{
(u, v) ∈ H1(Ω) ∩ H1(L1, L2) : u(0, t) = u(L3, 0) = 0, u(Li, t) = v(Li, t)(

a−
∫ t

0
g(s)ds

)
ux(Li, t) = bvx(Li, t), i = 1, 2

}
and

L2 = L2(Ω)× L2(L1, L2)

To state our decay result, we introduce the following energy functional:

E(t) =
1
2

∫
Ω

u2
t (x, t)dx +

1
2

(
a−

∫ t

0
g(s)ds

) ∫
Ω

u2
x(x, t)dx +

1
2

∫
Ω
(g�ux)dx

+
1
2

∫ L2

L1

[
v2

t (x, t) + bv2
x(x, t)

]
dx +

ζ

2

∫ t

t−τ

∫
Ω

eσ(s−t)u2
s ((x, s)dxds

(5)

where σ and ζ are positive constants to be determined later.

Remark 1. We note that the energy functional defined here is different from that of [1] in the
construction of the last term. This is motivated by the idea of [28], in which wave equations with time
dependent delay was studied.

Our decay results read as follows:
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Theorem 3. Let (u, v) be the solution of Equations (2)–(4). Assume that (H1), (H2) and

a >
8(L2 − L1)

L1 + L3 − L2
β0, b >

8(L2 − L1)

L1 + L3 − L2
β0 (6)

hold. Let a0 be the constants defined by (35) below. If |µ2| < a0, then there exists constants γ1, γ2 > 0 such that

E(t) ≤ γ2e−γ1ξ(t−t0), t ≥ t0 (7)

3. Proof of Theorem 3

For the proof of Theorem 3, we use the following lemmas.

Lemma 4. Let (u, v) be the solution of Equations (2)–(4). Then, we have the inequality

d
dt

E(t) ≤1
2

∫
Ω
(g′�ux)(t)dx +

(
|µ2|

2
+

ζ

2

) ∫
Ω

u2
t (x, t)dx−

(
ζ

2
e−στ − |µ2|

2

) ∫
Ω

u2
t (x, t− τ)dx

− 1
2

g(t)
∫

Ω
u2

x(x, t)dx− σζ

2

∫ t

t−τ

∫
Ω

e−σ(t−s)u2
s ((x, s)dxds

(8)

Proof. Differentiating (5) and using (2), we have

d
dt

E(t) =
∫

Ω

[
ututt +

(
a−

∫ t

0
g(s)ds

)
uxuxt −

1
2

g(t)u2
x

]
dx +

∫ L2

L1

[vtvtt + bvxvxt]dx

+
∫ t

0
g(t− s)

∫
Ω

uxt(ux(t)− ux(s))dxds +
1
2

∫
Ω

g′�uxdx +
ζ

2

∫
Ω

u2
t (x, t)dx

− ζ

2

∫
Ω

e−στu2
t (x, t− τ)dx− σζ

2

∫ t

t−τ

∫
Ω

e−σ(t−s)u2
s (x, s)dxds

=
1
2

∫
Ω

g′�uxdx− 1
2

g(t)
∫

Ω
u2

xdx− |µ2|
∫

Ω
ut(t)ut(t− τ)dx +

ζ

2

∫
Ω

u2
t (x, t)dx

− ζ

2

∫
Ω

e−στu2
t (x, t− τ)dx− σζ

2

∫ t

t−τ

∫
Ω

e−σ(t−s)u2
s (x, s)dxds

(9)

By Cauchy inequalities, we get

d
dt

E(t) ≤1
2

∫
Ω
(g′�ux)(t)dx +

(
|µ2|

2
+

ζ

2

) ∫
Ω

u2
t (x, t)dx +

(
|µ2|

2
− ζ

2
e−στ

) ∫
Ω

u2
t (x, t− τ)dx

− 1
2

g(t)
∫

Ω
u2

x(x, t)dx− σζ

2

∫ t

t−τ

∫
Ω

e−σ(t−s)u2
s ((x, s)dxds

The proof is complete.

Remark 2. In ([1] Lemma 4.1), we proved that the energy functional defined in [1] is non-increasing.

However, since
(
|µ2|

2
+

ζ

2

) ∫
Ω

u2
t dx ≥ 0, E(t) may not be non-increasing here.

Now, we define the functional D(t) as follows:

D(t) =
∫

Ω
uutdx +

∫ L2

L1

vvtdx

Then, we have the following estimate:
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Lemma 5. The functional D(t) satisfies

d
dt

D(t) ≤
∫

Ω
u2

t dx +
∫ L2

L1

v2
t dx +

(
δ1|µ2|L2 + δ1 −

(
a−

∫ t

0
g(s)ds

)) ∫
Ω

u2
xdx

+
1

4δ1

∫ t

0
g(s)ds

∫
Ω
(g�ux)dx +

|µ2|
4δ1

∫
Ω

u2
t (x, t− τ)dx−

∫ L2

L1

bv2
xdx

(10)

Proof. Taking the derivative of D(t) with respect to t and using (2), we have

d
dt

D(t) =
∫

Ω
u2

t dx−
∫

Ω
(aux − g ∗ ux)uxdx− |µ2|

∫
Ω

ut(x, t− τ)udx +
∫ L2

L1

v2
t dx−

∫ L2

L1

bv2
xdx

=
∫

Ω
u2

t dx−
(

a−
∫ t

0
g(s)ds

) ∫
Ω

u2
xdx−

∫
Ω
(g � ux)uxdx− |µ2|

∫
Ω

ut(x, t− τ)udx

+
∫ L2

L1

v2
t dx−

∫ L2

L1

bv2
xdx

(11)

By the boundary condition (3), we have

u2(x, t) =
(∫ x

0
ux(x, t)dx

)2
≤ L1

∫ L1

0
u2

x(x, t)dx, x ∈ [0, L1]

u2(x, t) ≤ (L3 − L2)
∫ L3

L2

u2
x(x, t)dx, x ∈ [L2, L3]

which implies ∫
Ω

u2(x, t)dx ≤ L2
∫

Ω
u2

xdx, x ∈ Ω (12)

where L = max{L1, L3 − L2}. By exploiting Young’s inequality and (12), we get for any δ1 > 0

− |µ2|
∫

Ω
ut(x, t− τ)udx ≤ |µ2|

4δ1

∫
Ω

u2
t (x, t− τ)dx + δ1|µ2|L2

∫
Ω

uxdx (13)

Young’s inequality implies that

∫
Ω
(g � ux)uxdx ≤ δ1

∫
Ω

u2
xdx +

1
4δ1

∫ t

0
g(s)ds

∫
Ω
(g�ux)dx (14)

Inserting the estimates (13) and (14) into (11), then (10) is fulfilled. The proof is complete.

Now, as in Lemma 4.5 of [24], we introduce the function

q(x) =



x− L1

2
, x ∈ [0, L1]

L1

2
− L1 + L3 − L2

2(L2 − L1)
(x− L1), x ∈ (L1, L2)

x− L2 + L3

2
, x ∈ [L2, L3]

(15)

It is easy to see that q(x) is bounded, that is, |q(x)| ≤ M, where M = max
{

L1

2
,

L3 − L2

2

}
is a

positive constant. In addition, we define the functionals:

F1(t) = −
∫

Ω
q(x)ut(aux − g ∗ ux)dx, F2(t) = −

∫ L2

L1

q(x)vxvtdx (16)

Then, we have the following estimates.
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Lemma 6. The functionals F1(t) and F2(t) satisfy

d
dt

F1(t) ≤
[
− q(x)

2
(aux − g ∗ ux)

2
]

∂Ω
−
[ a

2
q(x)u2

t

]
∂Ω

+

[
a
2
+

M2

4δ2

] ∫
Ω

u2
t dx

+

[
2a2 + δ2M2a2|µ2|+ g2(0)δ2 + (4 + δ2|µ2|)

(∫ t

0
g(s)ds

)2
] ∫

Ω
u2

xdx

+

[
δ2|µ2|M2 +

|µ2|
4δ2

+
|µ2|M2

4δ2

] ∫
Ω

u2
t (x, t− τ)dx

+

(
4 +
|µ2|
4δ2

)(∫ t

0
g(s)ds

) ∫
Ω
(g�ux)dx− g(0)δ2

∫
Ω
(g′�ux)dx

(17)

and

d
dt

F2(t) ≤−
L1 + L3 − L2

4(L2 − L1)

(∫ L2

L1

v2
t dx +

∫ L2

L1

bv2
xdx

)
+

L1

4
v2

t (L1) +
L3 − L2

4
v2

t (L2)

+
b
4

(
(L3 − L2)v2

x(L2, t) + L1v2
x(L1, t)

)
(18)

Proof. Taking the derivative of F1(t) with respect to t and using (2), we get

d
dt

F1(t) =−
∫

Ω
q(x)utt(aux − g ∗ ux)dx−

∫
Ω

q(x)ut
(
auxt − g(t)ux(t) + (g′ � ux)(t)

)
dx

=

[
− q(x)

2
(aux − g ∗ ux)

2
]

∂Ω
+

1
2

∫
Ω

q′(x)(aux − g ∗ ux)
2dx−

[ a
2

q(x)u2
t

]
∂Ω

+
a
2

∫
Ω

q′(x)u2
t dx−

∫
Ω

q(x)|µ2|ut(x, t− τ)(g ∗ ux)dx

+
∫

Ω
q(x)aux|µ2|ut(x, t− τ)dx−

∫
Ω

q(x)ut[(g′ � ux)(t)− g(t)ux]dx

(19)

We note that

1
2

∫
Ω

q′(x)(aux − g ∗ ux)
2dx

≤2
∫

Ω
a2u2

xdx + 2
∫

Ω
(g ∗ ux)

2dx

≤2
∫

Ω
a2u2

xdx + 2
∫

Ω

(∫ t

0
g(t− s)(ux(s)− ux(t) + ux(t))ds

)2
dx

≤2a2
∫

Ω
u2

xdx + 4
(∫ t

0
g(s)ds

)2 ∫
Ω

u2
xdx + 4

(∫ t

0
g(s)ds

) ∫
Ω
(g�ux)dx

(20)

Young’s inequality gives us for any δ2 > 0,

∫
Ω

q(x)aux|µ2|ut(x, t− τ)dx ≤ δ2M2a2|µ2|
∫

Ω
u2

xdx +
|µ2|
4δ2

∫
Ω

u2
t (x, t− τ)dx (21)

∫
Ω

q(x)|µ2|ut(x, t− τ)(g ∗ ux)dx

=|µ2|
∫

Ω
(g � ux)q(x)ut(x, t− τ)dx + |µ2|

∫ t

0
g(s)ds

∫
Ω

q(x)ut(x, t− τ)uxdx

≤δ2M2|µ2|
∫

Ω
u2

t (x, t− τ)dx +
|µ2|
4δ2

∫ t

0
g(s)ds

∫
Ω
(g�ux)dx + δ2|µ2|

(∫ t

0
g(s)ds

)2 ∫
Ω

u2
xdx

+
|µ2|M2

4δ2

∫
Ω

u2
t (x, t− τ)dx

(22)
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and

−
∫

Ω
q(x)ut[(g′ � ux)(t)− g(t)ux]dx

≤M2

4δ2

∫
Ω

u2
t dx + g2(0)δ2

∫
Ω

u2
xdx− g(0)δ2

∫
Ω
(g′�ux)dx (23)

Inserting (20)–(23) into (19), we get (17).
By the same method, taking the derivative of F1(t) with respect to t, we obtain

d
dt

F2(t) =−
∫ L2

L1

q(x)vxtvtdx−
∫ L2

L1

q(x)vxvttdx

=

[
−1

2
q(x)v2

t

]L2

L1

+
1
2

∫ L2

L1

q′(x)v2
t dx +

1
2

∫ L2

L1

bq′(x)v2
xdx +

[
− b

2
q(x)v2

x

]L2

L1

≤− L1 + L3 − L2

4(L2 − L1)

(∫ L2

L1

v2
t dx +

∫ L2

L1

bv2
xdx

)
+

L1

4
v2

t (L1) +
L3 − L2

4
v2

t (L2)

+
b
4

(
(L3 − L2)v2

x(L2, t) + L1v2
x(L1, t)

)
Thus, the proof of Lemma 6 is finished.

In [1], the authors pointed out that if µ2 < µ1, then the energy is non-increasing. Thus, the negative

term −
∫

Ω
u2

t dx appeared in the derivative energy can be used to stabilize the system. However, in this

paper, the energy is not non-increasing. In this case, we need some additional negative term−
∫

Ω
u2

t dx.

For this purpose, let us introduce the functional

F3(t) = −
∫

Ω
ut(g � u)dx

Then, we have the following estimate.

Lemma 7. The functionals F3(t) satisfies

d
dt

F3(t) ≤−
(∫ t

0
g(s)ds− α4

2

) ∫
Ω

u2
t (x, t)dx +

[
δ4 + δ4

(∫ t

0
g(s)ds

)2
] ∫

Ω
u2

x(x, t)dx

+ δ4|µ2|
∫

Ω
u2

t (x, t− τ)dx +

[(
δ4 +

1
2δ4

+
a2

4δ4
+
|µ2|L2

4δ4

) ∫ t

0
g(s)ds

] ∫
Ω
(g�ux)dx

− g(0)L2

2α4

∫
Ω
(g′�ux)dx

(24)

Proof. Taking the derivative of F3(t) with respect to t and using (2), we get

d
dt

F3(t) =−
∫

Ω
utt(g � u)dx−

∫ t

0
g(s)ds

∫
Ω

u2
t (x, t)dx−

∫
Ω

ut(g′ � u)dx

=−
∫

Ω

(
auxx(x, t)−

∫ t

0
g(t− s)uxx(x, s)ds− |µ2|ut(x, t− τ)

)
(g � u)dx

−
∫ t

0
g(s)ds

∫
Ω

u2
t (x, t)dx−

∫
Ω

ut(g′ � u)dx

=−
∫

Ω

(∫ t

0
g(t− s)ux(x, s)ds

)
(g � ux)dx + a

∫
Ω

ux(g � ux)dx

+ |µ2|
∫

Ω
ut(x, t− τ)(g � u)dx−

∫ t

0
g(s)ds

∫
Ω

u2
t (x, t)dx−

∫
Ω

ut(g′ � u)dx

(25)



Mathematics 2016, 4, 42 8 of 13

Young’s inequality implies that for any δ4 > 0:

−
∫

Ω

(∫ t

0
g(t− s)ux(x, s)ds

)
(g � ux)dx

≤ δ4

2

∫
Ω

(∫ t

0
g(t− s)(ux(t)− ux(s)− ux(t))ds

)2
dx +

1
2δ4

∫
Ω
(g � ux)

2dx

≤δ4

(∫ t

0
g(s)ds

)2 ∫
Ω

u2
x(x, t)dx +

(
δ4 +

1
2δ4

) ∫
Ω
(g � ux)

2dx

≤δ4

(∫ t

0
g(s)ds

)2 ∫
Ω

u2
x(x, t)dx +

(
δ4 +

1
2δ4

) ∫ t

0
g(s)ds

∫
Ω
(g�ux)dx

(26)

and

a
∫

Ω
ux(g � ux)dx ≤ δ4

∫
Ω

u2
x(x, t)dx +

a2

4δ4

∫ t

0
g(s)ds

∫
Ω
(g�ux)dx (27)

By Young’s inequality and (12), we get for any δ4 > 0, α1 > 0

|µ2|
∫

Ω
ut(x, t− τ)(g � u)dx ≤ δ4|µ2|

∫
Ω

u2
t (x, t− τ)dx +

|µ2|L2

4δ4

∫ t

0
g(s)ds

∫
Ω
(g�ux)dx (28)

and

−
∫

Ω
ut(g′ � u)dx ≤ α4

2

∫
Ω

u2
x(x, t)dx +

1
2α4

∫ t

0
(−g′(s))ds

∫
Ω
(−g′�u)dx

≤ α4

2

∫
Ω

u2
x(x, t)dx− g(0)L2

2α4

∫
Ω
(g′�ux)dx (29)

Inserting (26)–(29) into (25), we get (24).

Now, we are ready to prove Theorem 3.

Proof. We define the Lyapunov functional:

L(t) = N1E(t) + N2D(t) +F1(t) + N4F2(t) + N5F3(t) (30)

where N1, N2, N4 and N5 are positive constants that will be fixed later.
Since g is continuous and g(0) > 0, then for any t ≥ t0 > 0, we obtain

∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0 (31)
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Taking the derivative of (30) with respect to t and making the use of the above lemmas, we have

d
dt

L(t) ≤−
{

N5

(
g0 −

α4

2

)
− N1

(
|µ2|

2
+

ζ

2

)
− N2 −

(
a
2
+

M2

4δ2

)} ∫
Ω

u2
t dx

− {N2β0 − N2(δ1 + L2δ1|µ2|)− (2a2 + 4ḡ2 + δ2|µ2|ḡ2 + δ2M2a2|µ2|+ g2(0)δ2)

− N5(δ4 + δ4 ḡ2)}
∫

Ω
u2

xdx

+

{
N1

(
|µ2|

2
− ζ

2
e−στ

)
+

N2|µ2|
4δ1

+

(
δ2|µ2|M2 +

|µ2|(1 + M2)

4δ2

)
+ N5δ4|µ2|

} ∫
Ω

u2
t (x, t− τ)dx

−
{

b(L1 + L3 − L2)

4(L2 − L1)
N4 + N2b

} ∫ L2

L1

v2
xdx−

{
L1 + L3 − L2

4(L2 − L1)
N4 − N2

} ∫ L2

L1

v2
t dx

− (b− N4)
b
4

(
(L3 − L2)v2

x(L2, t) + L1v2
x(L1, t)

)
− (a− N4)

[
L1

4
v2

t (L1, t) +
L3 − L2

4
v2

t (L2, t)
]

+

[
N2 ḡ
4δ1

+

(
4ḡ +

|µ2|ḡ
4δ2

)
+ N5

(
δ4 +

1
2δ4

+
(a2 + |µ2|L2)

4δ4

)
ḡ
] ∫

Ω
(g�ux)dx

+

[
N1

2
− g(0)δ2 −

N5g(0)L2

2α4

] ∫
Ω
(g′�ux)dx

(32)

At this moment, we wish all coefficients except the last two in (32) will be negative. We want to
choose N2 and N4 to ensure that 

a− N4 ≥ 0

b− N4 ≥ 0

L1 + L3 − L2

4(L2 − L1)
N4 − N2 > 0

(33)

For this purpose, since
8l(L2 − L1)

L1 + L3 − L2
< min{a, b}, we first choose N4 satisfying

8l(L2 − L1)

L1 + L3 − L2
< N4 ≤ min{a, b}

Then, we pick

α4 = g0, δ1 <
β0

8
and δ2 <

1
g2(0)

such that
N5

(
g0 −

α4

2

)
=

N5g0

2
, N2β0 − N2δ1 >

7N2β0

8
, and g2(0)δ2 < 1

Once δ2 is fixed, we take N2 satisfying

N2 >
8(2a2 + 4ḡ + g2(0)δ2)

β0

such that
(2a2 + 4ḡ + g2(0)δ2) <

N2β0

8
Furthermore, we choose N5 satisfying

N5g0

8
> N2 +

a
2
+

M2

4δ2

such that

N2 <
N5β0

8
,

a
2
<

N5β0

8
,

M2

4δ2
<

N5β0

8
and

N5g0

8
− N2 −

(
a
2
+

M2

4δ2

)
> 0
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Then, we pick δ4 satisfying

δ4 <
β0N2

8N5(1 + ḡ2)

such that
N5(δ4 + δ4 ḡ2) <

N2β0

8
Once the above constants are fixed, we choose N1 satisfying

N1

2
> g(0)δ2 +

N5g(0)L2

2α4

Now, we need to choose suitable |µ2| and ζ such that

K1 − N1

(
|µ2|

2
+

ζ

2

)
> 0

5β0N2

8
− K2|µ2| > 0

K3
|µ2|

2
− N1

ζ

2
e−στ < 0

(34)

where

K1 =
N5g0

8
− N2 −

(
a
2
+

M2

4δ2

)
, K2 = N2δ1L2 + δ2 ḡ2 + δ2M2a2

K3 = N1 +
N2

2δ1
+ 2δ2M2 +

1
2δ2

+
M2

2δ2
+ 2N5δ4

We first choose ζ satisfying
2K1

N1
− ζ > 0

Then, we pick |µ2| satisfying

|µ2| < min
{

5β0N2

8K2
,

N1ζ

K3eστ
,

2K1

N1
− ζ

}
:= a0 (35)

From the above, we deduce that there exist two positive constants α5 and α6 such that (32) becomes

d
dt

L(t) ≤ −α5E(t) + α6

∫
Ω
(g�ux)dx (36)

Multiplying (36) by ξ, we have

ξ
d
dt

L(t) ≤ −α5ξE(t) + α6ξ
∫

Ω
(g�ux)dx

On the other hand, by the definition of the functionals D(t), F1(t), F2(t), F3(t) and E(t), for N1

large enough, there exists a positive constant α3 satisfying

|N2D(t) + N3F1(t) + N4F2(t) +F3(t)| ≤ η1E(t)

which implies that
(N1 − η1)E(t) ≤ L(t) ≤ (N1 + η1)E(t)
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Exploiting (H2) and (8), we have

ξ
∫

Ω
(g�ux)dx ≤ −

∫
Ω
(g′�ux)dx ≤ −2

d
dt

E(t) +
2K1

N1

∫
Ω

u2
t dx (37)

Thus, (36) becomes

ξ
d
dt

L(t) ≤ −α5ξE(t)− 2α6
d
dt

E(t) +
4K1α6

N1
E(t) (38)

We add a restriction condition on ξ, that is, we suppose that

ξ >
4K1α6

N1
:= ξ0 (39)

Then, (38) becomes, for some positive constants

ξ
d
dt

L(t) ≤ −α7ξE(t)− α8
d
dt

E(t)

Now, we define functionals L (t) as

L (t) = ξL(t) + α8E(t)

It is clear that
L (t) ∼ E(t) (40)

Then, we have
d
dt

L (t) ≤ −α7ξE(t) (41)

A simple integration of (41) over (t0, t) leads to

L (t) ≤ L (t0)e−cξ(t−t0), ∀t ≥ t0 (42)

Recalling (40), Equation (42) yields the desired result (7). This completes the proof of Theorem 3.

4. Conclusions

The main purpose of present work is to investigate decay rate for a transmission problem with
a viscoelastic term and a delay term but without the frictional damping term. It is based upon our
previous work ([1]), in which we studied the well-posedness and general decay rate for a transmission
problem in a bounded domain with a viscoelastic term and a delay term. The main difficulty in dealing
with the problem here is that in the first equation of system (2), we have no frictional damping term to
control the delay term in the estimate of the energy decay. To overcome this difficulty, our basic idea
is to control the delay term by making use of the viscoelastic term. In order to achieve this target, a
restriction of the size between the parameter µ2 and the relaxation function g and a suitable energy is
needed. This is motivated by Dai and Yang’s work [34], in which the viscoelastic wave equation with
delay term but without a frictional damping term was considered and an exponential decay result
was established. In Section 2, we give some notations and hypotheses needed for our work and state
the main results. In Section 3, because the energy is not non-increasing, we introduce the additional

functional to produce negative term −
∫

Ω
u2

t dx. Then by introducing suitable Lyaponov functionals,

we prove the exponential decay of the solutions for the relaxation function satisfying assumption (H1)

and (H2).
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