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Abstract:



Toric posets are in some sense a natural “cyclic” version of finite posets in that they capture the fundamental features of a partial order but without the notion of minimal or maximal elements. They can be thought of combinatorially as equivalence classes of acyclic orientations under the equivalence relation generated by converting sources into sinks, or geometrically as chambers of toric graphic hyperplane arrangements. In this paper, we define toric intervals and toric order-preserving maps, which lead to toric analogues of poset morphisms and order ideals. We develop this theory, discuss some fundamental differences between the toric and ordinary cases, and outline some areas for future research. Additionally, we provide a connection to cyclic reducibility and conjugacy in Coxeter groups.
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1. Introduction


A finite poset can be described by at least one directed acyclic graph where the elements are vertices and directed edges encode relations. We say “at least one” because edges implied by transitivity may be present or absent. The operation of converting a source vertex into a sink generates an equivalence relation on finite posets over a fixed graph. Equivalence classes are called toric posets. These objects have arisen in a variety of contexts in the literature, including but not limited to chip-firing games [1], Coxeter groups [2,3,4], graph polynomials [5], lattices [6,7], and quiver representations [8]. These equivalence classes were first formalized as toric posets in [9], where the effort was made to develop a theory of these objects in conjunction with the existing theory of ordinary posets. The name “toric poset” is motivated by a bijection between toric posets over a fixed (undirected) graph and chambers of the toric graphic hyperplane arrangement of that graph. This is an analogue to the well-known bijection between ordinary posets over a fixed graph G and chambers of the graphic hyperplane arrangement of G, first observed by Greene [10] and later extended to signed graphs by Zaslavsky [11].



Combinatorially, a poset over a graph G is determined by an acyclic orientationω of G. We denote the resulting poset by [image: there is no content]. A toric poset over G is determined by an acyclic orientation, up to the equivalence generated by converting sources into sinks. We denote this by [image: there is no content]. Though most standard features of posets have elegant geometric interpretations, this viewpoint is usually unnecessary. In contrast, for most features of toric posets, i.e., the toric analogues of standard posets features, the geometric viewpoint is needed to see the natural proper definitions and to prove structure theorems. Once this is done, the definitions and characterizations frequently have simple combinatorial (non-geometric) interpretations.



To motivate our affinity for the geometric approach, consider one of the fundamental hallmarks of an ordinary poset P: its binary relation, [image: there is no content]. Most of the classic features of posets (chains, transitivity, morphisms, order ideals, etc.) are defined in terms of this relation. Toric posets have no such binary relation, and so this is why we need to go to the geometric setting to define the basic features. Perhaps surprisingly, much of the theory of posets carries over to the toric setting despite the absence of a relation, and current toric poset research strives to understand just how much and what does carry over. As an analogy from a different area of mathematics, topology can be thought of as “analysis without the metric.” A fundamental hallmark of a metric space is its distance function. Many of the classic features of metric spaces, such as open, closed, and compact sets, and continuous functions, are defined using the distance function. However, once one establishes an equivalent characterization of continuity in terms of the inverse image of open sets, many results can be proven in two distinct ways: via epsilon-delta proofs, or topologically. When one moves from metric spaces to topological spaces, one loses the distance function and all of the tools associated with it, so this first approach goes out the window. Remarkably, much of the theory of real analysis carries over from metric spaces to topological spaces. Back to the poset world, one can prove theorems of ordinary posets using either the binary relation or the geometric definitions. However, upon passing to toric posets, the binary relation and all of the tools associated with it are lost, so one is forced to go to the geometric setting. Remarkably, much of the theory of ordinary posets still carries over to toric posets. This analogy is not perfect, because toric posets are not a generalization of ordinary posets like how topological spaces extend metric spaces. However, it should motivate the reliance on geometric methods throughout this paper.



An emerging theme of toric poset structure theorems, from both the original paper [9] and this one, is that characterizations of toric analogues, when they exist, usually have one of two forms. In one, the feature of a toric poset [image: there is no content] is characterized by it being the analogous feature of the ordinary poset [image: there is no content], for all [image: there is no content]. In the other, the feature of [image: there is no content] is characterized by it being the analogous feature of [image: there is no content]for some [image: there is no content]. Several examples of this are given below. It is not obvious why this should happen or which type of characterization a given toric analogue should have a priori. Most of these are results from this paper, and so this list provides a good overview for what is to come.



The “For All” structure theorems:

	■

	
A set [image: there is no content] is a toric chain of [image: there is no content] iff C is a chain of [image: there is no content] for all [image: there is no content]. (Proposition 5.3)




	■

	
The edge [image: there is no content] is in the toric transitive closure of [image: there is no content] iff [image: there is no content] is in the transitive closure of [image: there is no content] for all [image: there is no content]. (Proposition 5.15)









The “For Some” structure theorems:

	■

	
A partition [image: there is no content] is a closed toric face partition of [image: there is no content] iff π is a closed face partition of [image: there is no content] for some [image: there is no content]. (Theorem 4.7)




	■

	
A set [image: there is no content] is a (geometric) toric antichain of [image: there is no content] iff A is an antichain of [image: there is no content] for some [image: there is no content]. (Proposition 5.17)




	■

	
If a set [image: there is no content] is a toric interval of [image: there is no content], then I is an interval of [image: there is no content] for some [image: there is no content]. (Proposition 5.14)




	■

	
A set [image: there is no content] is a toric order ideal of [image: there is no content] iff J is an order ideal of [image: there is no content] for some [image: there is no content]. (Proposition 7.3)




	■

	
Collapsing [image: there is no content] by a partition [image: there is no content] is a morphism of toric posets iff collapsing [image: there is no content] by π is a poset morphism for some [image: there is no content]. (Corollary 6.2)




	■

	
If an edge [image: there is no content] is in the Hasse diagram of [image: there is no content] for some [image: there is no content], then it is in the toric Hasse diagram of [image: there is no content]. (Proposition 5.15)









This paper is organized as follows. In the next section, we formally define posets and preposets and review how to view them geometrically in terms of faces of chambers of graphic hyperplane arrangements. In Section 3, we translate well-known properties of poset morphisms to this geometric setting. In Section 4, we define toric posets and preposets geometrically in terms of faces of chambers of toric hyperplane arrangements, and we study the corresponding “toric face partitions” and the bijection between toric preposets and lower-dimensional faces. In Section 5, we define the notion of a toric interval and review some features of toric posets needed for toric order-preserving maps, or morphisms, which are finally presented in Section 6. In Section 7, we introduce toric order ideals and filters, which are essentially the preimage of one element upon mapping into a two-element toric poset. The toric order ideals and filters of a toric poset turn out to coincide. They form a graded poset [image: there is no content], but unlike the ordinary case, this need not be a lattice. In Section 8, we provide a connection of this theory to Coxeter groups, and then we conclude with a summary and discussion of current and future research in Section 9.




2. Posets Geometrically


2.1. Posets and Preposets


A binary relation R on a set V is a subset [image: there is no content]. A preorder or preposet is a binary relation that is reflexive and transitive. This means that [image: there is no content] for all [image: there is no content], and if [image: there is no content], then [image: there is no content]. We will use the notation [image: there is no content] instead of [image: there is no content], and say that [image: there is no content] if [image: there is no content] and [image: there is no content]. Much of the basics on preposets can be found in [12].



An equivalence relation is a preposet whose binary relation is symmetric. For any preposet P, we can define an equivalence relation [image: there is no content] on P by saying [image: there is no content] if and only if [image: there is no content] and [image: there is no content] both hold. A partially ordered set, or poset, is a preposet P such that every [image: there is no content]-class has size 1. We say that a preposet is acyclic if it is also a poset.



Every preorder P over V determines a directed graph [image: there is no content] over V that contains a directed edge (which we denote by [image: there is no content]) if and only if [image: there is no content] and [image: there is no content]. Not every directed graph arises from such a preorder, since edge transitivity is required. That is, if [image: there is no content] and [image: there is no content] are edges, then [image: there is no content] must also be an edge if [image: there is no content]. However, for any directed graph Γ, there is a unique minimal preorder [image: there is no content] containing the edge set of Γ; [image: there is no content] is the transitive closure of Γ. The graph [image: there is no content] is acyclic if and only if P is a poset. The strongly connected components are the [image: there is no content]-classes, and so the quotient ω(P)/∼P is acyclic and P/∼P inherits a natural poset structure from P.



If [image: there is no content] and [image: there is no content] are preorders on V, then we can define their union [image: there is no content] as the union of the subsets [image: there is no content] and [image: there is no content] of [image: there is no content]. This need not be a preorder, but its transitive closure [image: there is no content] will be.



Another way we can create a new preorder from an old one is by an operation called contraction. Given a binary relation [image: there is no content], let [image: there is no content] denote the opposite binary relation, meaning that [image: there is no content] if and only if [image: there is no content]. If P and Q are preposets on V, then Q is a contraction of P if there is a binary relation [image: there is no content] such that [image: there is no content]. Intuitively, each added edge [image: there is no content] forces [image: there is no content] because [image: there is no content] by construction. Note that in this context, contraction is a different concept than what it often means in graph theory – modding out by a subset of vertices, or “collapsing” a set of vertices into a single vertex.




2.2. Chambers of Hyperplane Arrangements


Every finite poset corresponds to a chamber of at least one graphic hyperplane arrangement. The interested reader is encouraged to consult the excellent texts of Zaslavsky [13] on the combinatorial geometry of arrangements, or of Wachs [14] on poset topology. A brief correspondence between posets and chambers of graphic hyperplane arrangements will be descsribed here.



Let P be a poset over a finite set [image: there is no content]. This poset can be identified with the following open polyhedral cone in [image: there is no content]:


c=c(P):={x∈RV:xi<xjifi<Pj}



(1)







The (topological) closure of the cone [image: there is no content] is c(P)¯={x∈RV:xi≤xjifi<Pj}.



It is easy to see how the cone c determines the poset [image: there is no content]: one has [image: there is no content] if and only if [image: there is no content] for all x in c. Each such cone c is a connected component of the complement of the graphic hyperplane arrangement for at least one graph [image: there is no content]. In this case, we say that P is a poset over G (or “on G”; both are used interchangeably). Given distinct vertices [image: there is no content] of a simple graph G, the hyperplane [image: there is no content] is the set


Hij:={x∈RV:xi=xj}











The graphic arrangement of G is the set [image: there is no content] of all hyperplanes [image: there is no content] in [image: there is no content] where [image: there is no content] is in E. Under a slight abuse of notation, at times it is convenient to refer to [image: there is no content] as the set of points in [image: there is no content] on the hyperplanes, as opposed to the actual finite set of hyperplanes themselves. It should always be clear from the context which is which.



Each point [image: there is no content] in the complement [image: there is no content] determines an acyclic orientation [image: there is no content] of the edge set E: direct the edge [image: there is no content] in E as [image: there is no content] if and only if [image: there is no content]. Clearly, the fibers of the mapping [image: there is no content] are the chambers of the hyperplane arrangement [image: there is no content]. Thus, [image: there is no content] induces a bijection between the set [image: there is no content] of acyclic orientations of G and the set [image: there is no content] of chambers of [image: there is no content]:


 [image: Mathematics 04 00039 i001]



(2)







We denote the poset arising from an acyclic orientation [image: there is no content] by [image: there is no content]. An open cone [image: there is no content] may be a chamber in several graphic arrangements, because adding or removing edges implied by transitivity does not change the poset. Geometrically, the hyperplanes corresponding to these edges do not cut c, though they intersect its boundary. Thus, there are, in general, many pairs [image: there is no content] of a graph G and acyclic orientation ω that lead to the same poset [image: there is no content]. Fortunately, this ambiguity is not too bad, in that with respect to inclusion of edge sets, there is a unique minimal graph [image: there is no content] called the Hasse diagram of P and a unique maximal graph [image: there is no content], where [image: there is no content] is transitive closure.



Given two posets [image: there is no content] on a set V, one says that [image: there is no content] is an extension of P when [image: there is no content] implies [image: there is no content]. Geometrically, [image: there is no content] is an extension of P if and only if [image: there is no content]. Moreover, [image: there is no content] is a linear extension if [image: there is no content] is a chamber of [image: there is no content], where [image: there is no content] is the complete graph.




2.3. Face Structure of Chambers


Let [image: there is no content] be a partition of V into nonempty blocks. The set [image: there is no content] of all such partitions has a natural poset structure: [image: there is no content] if every block in π is contained in some block in [image: there is no content]. When this happens, we say that π is finer than [image: there is no content], or that [image: there is no content] is coarser than π.



Intersections of hyperplanes in [image: there is no content] are called flats, and the set of flats is a lattice, denoted [image: there is no content]. Flats are partially ordered by reverse inclusion: If [image: there is no content], then [image: there is no content]. Every flat of [image: there is no content] has the form


Dπ:={x∈RV:xi=xjforeverypairi,jinthesameblockBkofπ}








for some partition π of V. Note that [image: there is no content] if and only if [image: there is no content]; this should motivate the convention of partially ordering [image: there is no content] by reverse inclusion.



Given a poset [image: there is no content] over [image: there is no content], a partition π of V defines a preposet [image: there is no content] on the blocks, where [image: there is no content] whenever [image: there is no content] for some [image: there is no content] and [image: there is no content] (and taking the transitive closure). This defines a directed graph ω/∼π, formed by collapsing out each block [image: there is no content] into a single vertex. Depending on the context, we may use [image: there is no content] or ω/∼π interchangeably. If this preposet is acyclic (i.e., if [image: there is no content] is a poset, or equivalently, the directed graph ω/∼π is acyclic), then we say that π is compatible with P. In this case, there is a canonical surjective poset morphism [image: there is no content]. We call such a morphism a quotient, as to distinguish it from inclusions and extensions which are fundamentally different.



Compatibility of partitions with a poset can be characterized by a closure operator on [image: there is no content]. If [image: there is no content] is a preposet, then there is a unique minimal coarsening [image: there is no content] of π such that the contraction [image: there is no content] is acyclic. This is the partition achieved by merging all pairs of blocks [image: there is no content] and [image: there is no content] such that [image: there is no content], and we call it the closure of π with respect to P. If P is understood, then we may write this as simply [image: there is no content]. A partition π is closed (with respect to P) if [image: there is no content], which is equivalent to being compatible with P. Geometrically, it means that for any [image: there is no content], there is some [image: there is no content] such that [image: there is no content] for some [image: there is no content] and [image: there is no content]. If π is not closed, then [image: there is no content] has strictly lower dimension than [image: there is no content]. In this case, [image: there is no content] is the unique coarsening that is closed with respect to P and satisfies [image: there is no content].



Still assuming that P is a poset over [image: there is no content], and π is a partition of V, define


F¯π(P):=c(P)¯∩Dπ



(3)







If [image: there is no content] is a flat of [image: there is no content], then [image: there is no content] is a face of the (topologically) closed polyhedral cone [image: there is no content]. In the latter case, we say that π is a face partition of P. Since it is almost always clear what P is, we will usually write [image: there is no content] instead of [image: there is no content]. If [image: there is no content] is not a flat of [image: there is no content], then the subspace [image: there is no content] still intersects [image: there is no content] in at least the line [image: there is no content]. Though this may intersect in the interior of [image: there is no content], it is a face of [image: there is no content], for at least one extension [image: there is no content] of P.



To characterize the facial structure of the cone [image: there is no content], it suffices to characterize the closed face partitions. This is well known – it was first described by Geissinger [15], and also done in 1 of Stanley [16] in the characterization of the face structure of the order polytope of a poset, defined by


O(P)={x∈[0,1]V:xi≤xjifi≤Pj}=c(P)¯∩[0,1]V



(4)







Our notation is a little different from [16]; for example, we do not adjoin a minimal or maximal element ([image: there is no content] or [image: there is no content]) to P. Also, our definition of “closed faced partitions” is in terms of [image: there is no content] rather than [image: there is no content], but since [image: there is no content], our “closed face partitions” correspond to those of [image: there is no content] with [image: there is no content] and [image: there is no content] as singleton blocks, yielding the faces of [image: there is no content] that don’t lie in any hyperplane [image: there is no content]. These correspond to the faces of [image: there is no content], and each closed face intersects at least the diagonal [image: there is no content]. Clearly, if π is a closed face partition of P, then the subposets induced by the individual blocks are connected (that is, their Hasse diagrams are connected). We call such a partition connected, with respect to P.



Theorem 2.1. 

([16], Theorem 1.2) Let P be a poset over [image: there is no content]. A partition π of V is a closed face partition of P if and only if it is connected and compatible with P.





To summarize Theorem 2.1, characterizing the faces of [image: there is no content] amounts to characterizing which face partitions π are closed. If π is not compatible with P, then it is not closed. On the other hand, if π not connected, then the flat [image: there is no content] might cut through the interior of [image: there is no content] (and hence of [image: there is no content]); see Example 2.2, or it might lie in a proper face of [image: there is no content]; see Example 2.5. In either case, π is not a face partition.



Example 2.2. 

Let P be the poset shown at left in Figure 1; its lattice of closed face partitions is shown at right. In this and in later examples, we denote the blocks of a partition using dividers rather than set braces, e.g., [image: there is no content].


Figure 1. A poset P and its lattice of closed face partitions.



[image: Mathematics 04 00039 g001 1024]








The partition [image: there is no content] is closed but not connected; it is not a face partition because [image: there is no content] intersects the interior of [image: there is no content]. The partition [image: there is no content] is connected but not closed. Finally, the partition [image: there is no content] is neither connected nor closed. However, both π and [image: there is no content] are face partitions because the subspaces [image: there is no content] and [image: there is no content] intersect [image: there is no content] in the line [image: there is no content], which is the flat [image: there is no content]. Therefore, both of these partitions have the same closure: [image: there is no content].



If [image: there is no content] is a closed face partition of P, then [image: there is no content] is an r-dimensional flat of [image: there is no content], and the closed face [image: there is no content] is an r-dimensional subset of [image: there is no content]. The interior of [image: there is no content] with respect to the subspace topology of [image: there is no content] will be called an open face. So as to avoid confusion between open and closed faces, and open and closed chambers, we will speak of faces as being features of the actual poset, not of the chambers. It should be easy to relate these definitions back to the chambers if one so desires.



Definition 2.3. A set [image: there is no content] is a closed face of the poset P if [image: there is no content] for some closed face partition [image: there is no content] of V. The interior of [image: there is no content] with respect to the subspace topology of [image: there is no content] is called an open face of P, and denoted [image: there is no content]. Let [image: there is no content] and [image: there is no content] denote the set of open and closed faces of P, respectively. Finally, define the faces of the graphic arrangement [image: there is no content] to be the faces of the posets over G:


FaceA(G)=⋃ω∈Acyc(G)Face(P(G,ω)),Face¯A(G)=⋃ω∈Acyc(G)Face¯(P(G,ω))











Faces of co-dimension 1 are called facets.



Remark 2.4. 

The dimension of the face [image: there is no content] is the number of strongly connected components of ω/∼π. As long as G is connected, there is a unique 1-dimensional face of [image: there is no content], which is the line [image: there is no content] and is contained in the closure of every chamber. There are no 0-dimensional faces of [image: there is no content]. The open n-dimensional faces of [image: there is no content] are its chambers. Additionally, [image: there is no content] is a disjoint union of open faces of [image: there is no content]:


RV=⋃F∈FaceA(G)˙F.













Example 2.5. 

Let P be the poset over [image: there is no content], where the only covering relation is [image: there is no content], and consider the partition [image: there is no content], which is closed but not connected with respect to P. Explicitly, [image: there is no content] and [image: there is no content] are the following sets:


c(P)={x∈R4:x1<x2},Dπ={x∈R4:x1=x2,x3=x4}













Since [image: there is no content], the intersection is [image: there is no content], which is not a face of the polyhedral cone [image: there is no content]; rather it is a proper subset of the face


F¯12/3/4=D12/3/4∩c(P)¯=D12/3/4={x∈R4:x1=x2}











Finally, note that [image: there is no content] is a face of an extension [image: there is no content] of P, namely the one formed by adding the covering relation [image: there is no content]. Therefore, π is not a face partition of P, but it is a face partition of [image: there is no content].



If P is a fixed poset over G, then there is a canonical isomorphism between the lattice of closed face partitions and the lattice of faces of P, given by the mapping [image: there is no content]. Recall that since π is closed, [image: there is no content] is an acyclic preposet (i.e., poset) of size [image: there is no content]. This induces an additional preposet over V (i.e., of size [image: there is no content]), which is [image: there is no content] with the additional relations that [image: there is no content] for all [image: there is no content]. We will say that this is a preposet over G, because it can be described by an (not necessarily acyclic) orientation [image: there is no content] of G, where one allows bi-directed edges. These were called Type B fourientations in a recent paper by Backman and Hopkins [17], though we will simply call them “orientations” since we don’t refer to them often, and when we do, it should always be clear from the context that bi-directed edges are allowed. The notation [image: there is no content] reflects the fact that this orientation can be constructed by starting with some [image: there is no content] and then making each edge bidirected if both endpoints are contained in the same block of π. Specifically, [image: there is no content] orients edge [image: there is no content] as [image: there is no content] if [image: there is no content] and as [image: there is no content] if additionally [image: there is no content]. Let [image: there is no content] be the set of all such orientations of G that arise in this manner. That is,


Pre(G)={ωπ∣ω∈Acyc(G),πclosedfacepartitionofP(G,ω)}








when working with preposets over G, sometimes it is more convenient to quotient out by the strongly connected components and get an acyclic graph ωπ/∼π. Note that this quotient is the same as ω′/∼π for at least one [image: there is no content]. In particular, [image: there is no content] will always do. In summary, a preposet over G can be expressed several ways:

	(i)

	
as a unique orientation [image: there is no content] of G, where π is the partition into the strongly connected components;




	(ii)

	
as a unique acyclic quotient ω/∼π of an acyclic orientation [image: there is no content].









Note that while the orientation [image: there is no content] and acyclic quotient ω/∼π are both unique to the preposet, the choice of representative ω is not. Regardless of how an element in [image: there is no content] is written, it induces a canonical partial order [image: there is no content] on the blocks of π. However, information is lost by writing it this way; in particular, the original graph G cannot necessarily be determined from just [image: there is no content].



The mapping [image: there is no content] in Equation (2) can be extended to all of [image: there is no content] by adding both edges [image: there is no content] and [image: there is no content] if [image: there is no content]. This induces a bijection between the set [image: there is no content] of all preposets on G and the set of faces of the graphic hyperplane arrangement:


 [image: Mathematics 04 00039 i002]



(5)







Consequently, for any preposet [image: there is no content] over G, we can let [image: there is no content] denote the open face of [image: there is no content] containing any (equivalently, all) [image: there is no content] such that [image: there is no content].



Moreover, if we restrict to the preposets on exactly r strongly connected components, then the [image: there is no content]-fibers are the r-dimensional open faces of [image: there is no content]. If x lies on a face [image: there is no content] for some poset P and closed face partition [image: there is no content], then the preposet [image: there is no content] has vertex set [image: there is no content]; these are the strongly connected components of the orientation [image: there is no content].





3. Morphisms of Ordinary Posets


Poset isomorphisms are easy to describe both combinatorially and geometrically. An isomorphism between two finite posets P and [image: there is no content] on vertex sets V and [image: there is no content] is a bijection [image: there is no content] characterized

	
combinatorially by the condition that [image: there is no content] is equivalent to [image: there is no content] for all [image: there is no content];



	
geometrically by the equivalent condition that the induced isomorphism [image: there is no content] maps [image: there is no content] to [image: there is no content] bijectively.








By “induced isomorphism,” we mean that Φ permutes the coordinates of [image: there is no content] in the same way that ϕ permutes the vertices of V:


(x1,x2,⋯,xn)⟼Φ(xϕ-1(1),xϕ-1(2),⋯,xϕ-1(n))



(6)







Morphisms of ordinary posets are also well understood. The “combinatorial” definition is easiest to modify. If P and [image: there is no content] are as above, then a morphism, or order-preserving map, is a function [image: there is no content] such that [image: there is no content] implies [image: there is no content] for all [image: there is no content]. The geometric characterization is trickier because quotients, injections, and extensions are inherently different. These three types of order-preserving maps generate all poset morphisms, up to isomorphism. Below we will review this and give a geometric interpretation of each, which will motivate their toric analogues.



3.1. Quotient


3.1.1. Contracting Partitions


Roughly speaking, a quotient morphism of a poset [image: there is no content] is described combinatorially by contracting ω by the blocks of a partition [image: there is no content] while preserving acyclicity. Geometrically, the chamber [image: there is no content] is orthogonally projected to [image: there is no content], where [image: there is no content]. This is the mapping


dπ:c(P)⟶Dπ,dπ(x)=(x+Dπ¯⊥)∩Dπ¯



(7)







By construction, the image of this map is [image: there is no content], which is a face of P if π is a face partition. Though the map [image: there is no content] extends to the closure [image: there is no content], it does not do so in a well-defined manner; the image [image: there is no content] for some x on a hyperplane depends on the choice of P, and each hyperplane intersects at least two (closed) chambers along facets, and intersects the boundary of every chamber (because each hyperplane and each closed chamber contains the line [image: there is no content]).



Remark 3.1. 

The map [image: there is no content] simply replaces every coordinate of x by the average of the coordinates from the same π-block. This is a basic fact from statistics about the usual estimator for the mean; see a book on linear models, e.g., Chapter 2 (Estimation) of [18] for details.





Example 3.2. 

Let [image: there is no content], the complete graph on three vertices. There are six acyclic orientations of G, and three of them are shown in Figure 2. The curved arrows point to the chamber [image: there is no content] of [image: there is no content] for each [image: there is no content], [image: there is no content]. The intersection of each closed chamber [image: there is no content] with [image: there is no content] is the order polytope, [image: there is no content].


Figure 2. The hyperplane arrangement [image: there is no content] for [image: there is no content]. Three orientations in [image: there is no content] are shown, along with the corresponding chambers of [image: there is no content], and the preposet that results when contracting [image: there is no content] by the partition π={B1={1},B2={2,3}} of V. The intersection of each (closed) chamber [image: there is no content] with [image: there is no content] is the order polytope [image: there is no content] of [image: there is no content]. The point y is supposed to lie on the hyperplane [image: there is no content].
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Contracting [image: there is no content] and [image: there is no content] by the partition π={B1={1},B2={2,3}} yields a poset over [image: there is no content]; these are shown directly below the orientations in Figure 2. Therefore, π is closed with respect to [image: there is no content] and [image: there is no content]. Geometrically, the flat [image: there is no content] intersects the closed chambers [image: there is no content] for [image: there is no content] in 2-dimensional faces.



In contrast, contracting [image: there is no content] by π yields a preposet that is not a poset. Therefore, π is not closed with respect to [image: there is no content]. Indeed, [image: there is no content], and the flat [image: there is no content] intersects the closed chamber [image: there is no content] in a line. Modding out the preposet [image: there is no content] by its strongly connected components yields a one-element poset. Geometrically, the chamber [image: there is no content] projects onto the one-dimensional face [image: there is no content].



To see why the map [image: there is no content] from Equation (7) does not extend to the closure of the chambers in a well-defined manner, consider the point y shown in Figure 2 that lies on the hyperplane [image: there is no content], and the same partition, [image: there is no content]. The orthogonal projection [image: there is no content] as defined in Equation (7) and extended continuously to the closed chamber maps [image: there is no content] onto the line [image: there is no content]. However, if [image: there is no content] is the other closed chamber containing y (that is, the one for which [image: there is no content]), then [image: there is no content] extended to the closure maps [image: there is no content] onto a two-dimensional closed face [image: there is no content]. The point y is projected orthogonally onto the plane [image: there is no content], and does not end up on the line [image: there is no content].



Despite this, there is a natural way to extend [image: there is no content] to all of [image: there is no content], though not continuously. To do this, we first have to extend the notion of the closure of a partition π with respect to a poset, to a preposet P over G. This is easy, since the original definition did not specifically require P to actually be a poset. Specifically, the closure of π with respect to a preposet P is the unique minimal coarsening [image: there is no content] of π such that [image: there is no content] is acyclic. The map [image: there is no content] can now be extended to all of [image: there is no content], as


dπ:RV⟶Dπ,dπ(x)=(x+Dπ¯⊥)∩Dπ¯,whereπ¯=π(x)¯:=clαG(x)(π)



(8)




where [image: there is no content] is the map from Equation (5) sending a point to the unique open face (i.e., preposet over G) containing it.



Let us return to the case where P is a poset over G, and examine the case when π is not a face partition of P. Indeed, for an arbitrary partition π of V with [image: there is no content], the subset [image: there is no content] need not be a face of P; it could cut through the interior of the chamber. In this case, it is the face of at least one extension of P. Specifically, let [image: there is no content] be the graph formed by making each block [image: there is no content] a clique, and let G/∼π be the graph formed by contracting these cliques into vertices, with loops and multiedges removed. Clearly, [image: there is no content] is a flat of the graphic arrangement [image: there is no content] (this choice is not unique, but it is a canonical one that works). Thus, the set [image: there is no content], for [image: there is no content], is a closed face of [image: there is no content], and hence a face of some poset [image: there is no content] over [image: there is no content] for which [image: there is no content].



Whether or not π is a face partition of a particular poset P over G, the map [image: there is no content] in Equation (8) projects a chamber [image: there is no content] onto a flat [image: there is no content] of [image: there is no content], where [image: there is no content]. From here, we need to project it homeomorphically onto a coordinate subspace of [image: there is no content] so it is a chamber of a lower-dimensional arrangement. Specifically, for a partition [image: there is no content], let [image: there is no content] be any subset formed by removing all but 1 coordinate from each [image: there is no content], and let [image: there is no content] be the induced projection. Each hyperplane in [image: there is no content] either gets mapped to a hyperplane in A(G/∼π) or to all of [image: there is no content], and every hyperplane in A(G/∼π) is the [image: there is no content]-image of at least one hyperplane in [image: there is no content]. In other words, [image: there is no content]-preimage of A(G/∼π) is [image: there is no content]. The following ensures that [image: there is no content] is a homeomorphism, and that the choice of W does not matter. We omit the elementary proof.



Lemma 3.3. 

Let [image: there is no content] be a partition of V, and [image: there is no content] with [image: there is no content]. The restriction [image: there is no content] is a homeomorphism.



Moreover, all such projection maps for a fixed π are topologically conjugate in the following sense: If [image: there is no content] with [image: there is no content] and projection map [image: there is no content], and σ is the permutation of V that transposes each [image: there is no content] with [image: there is no content], then the following diagram commutes:
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Here, [image: there is no content] is the map [image: there is no content], with Σ and [image: there is no content] being the induced linear maps as defined in Equation (6).





By convexity, [image: there is no content] induces a well-defined map [image: there is no content] making the following diagram commute:


 [image: Mathematics 04 00039 i004]



(9)







The map [image: there is no content] is best understood by looking at a related map [image: there is no content] on closed faces. Let [image: there is no content] be a closed face of [image: there is no content], for some closed face partition [image: there is no content]. Then the map [image: there is no content] is defined by


δ¯π:Face¯A(G)⟶Face¯A(Gπ′),δ¯π:c(P)¯∩Dσ⟼c(P)¯∩Dσ∩Dπ











The map [image: there is no content] is between the corresponding open faces. These faces are then mapped to faces of the arrangement A(G/∼π) under the projection [image: there is no content]. [Alternatively, we could simply identity the quotient space [image: there is no content] with [image: there is no content].]



To summarize, the open faces of [image: there is no content] arise from preposets [image: there is no content] in [image: there is no content], where without loss of generality, the blocks for [image: there is no content] are the strongly connected components. The contraction of this preposet formed by adding all relations (edges) of the form [image: there is no content] for [image: there is no content] yields a preposet [image: there is no content] over [image: there is no content]. Then, modding out by the strongly connected components yields an acyclic preposet, i.e., a poset. This two-step process is a composition of maps


Pre(G)⟶qπPre(Gπ′)⟶pπPre(G/∼π),ωσ=ω⟼qπωπ′⟼pπωπ′/∼π¯=ω/∼π¯











Here, [image: there is no content], the closure of π with respect to the preposet [image: there is no content], which we have been denoting by [image: there is no content] under a slight abuse of notation.



Putting this all together gives a commutative diagram that illustrates the relationship between the points in [image: there is no content], the open faces of the graphic arrangement [image: there is no content], and the preposets over G. The left column depicts the acyclic preposets – those that are also posets.
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3.1.2. Intervals and Antichains


Poset morphisms that are quotients are characterized geometrically by projecting the chamber [image: there is no content] onto a flat [image: there is no content] of [image: there is no content] for some partition [image: there is no content], and then homeomorphically mapping this down to a chamber of a lower-dimensional graphic arrangement A(G/∼π). Equivalently, contracting [image: there is no content] by [image: there is no content] yields an acyclic preposet [image: there is no content]. It is well known that contracting a poset by an interval or an antichain yields an acyclic preposet. Verification of this is elementary, but first recall how these are defined.



Definition 3.4. 

Let P be a poset over V. An interval of P is a subset [image: there is no content], sometimes denoted [image: there is no content], such that


I={x∈P:i≤Px≤Pj},forsomefixedi,j∈P













An antichain of P is a subset [image: there is no content] such that any two elements are incomparable.



We will take a moment to understand how contracting an interval or antichain fits in the partition framework described above, which will help us understand the toric analogue. Given a nonempty subset [image: there is no content], define the partition [image: there is no content] of V by


πS={B1=S,B2,⋯,Br},where|Bi|=1fori=2,⋯,r



(10)







Contracting an interval [image: there is no content] in a poset P yields the poset [image: there is no content]. In this case, [image: there is no content] is a face partition and [image: there is no content] is a [image: there is no content]-dimensional face of P. Similarly, collapsing an antichain [image: there is no content] yields the poset [image: there is no content]. Note that [image: there is no content] is a flat of [image: there is no content] and lies on the boundary of [image: there is no content], but the [image: there is no content])-dimensional subspace [image: there is no content] cuts through the interior of [image: there is no content]. For both of these cases, [image: there is no content] and [image: there is no content], the subspace [image: there is no content] is trivially a flat of [image: there is no content].





3.2. Extension


Given two posets [image: there is no content] on a set V, one says that [image: there is no content] is an extension of P when [image: there is no content] implies [image: there is no content]. In this case, the identity map [image: there is no content] is a poset morphism. Geometrically, [image: there is no content] is an extension of P if and only if one has an inclusion of their open polyhedral cones [image: there is no content]. Each added relation [image: there is no content] amounts to intersecting [image: there is no content] with the half-space [image: there is no content].




3.3. Inclusion


The last operation that yields a poset morphism is an injection [image: there is no content]. This induces a canonical inclusion [image: there is no content]. Note that [image: there is no content] implies [image: there is no content], but not necessarily vice-versa. Thus, up to isomorphism, an inclusion can be decomposed into the composition [image: there is no content], where the first map adds the elements of [image: there is no content] to P but no extra relations, and then the map [image: there is no content] is an extension. This gives an inclusion of polyhedral cones:


c(P′):={x∈RV′:xi<xjfori<P′j}⊆c(P′′)={x∈RV′:xi<xjfori<Pj}≅c(P)×RV′-V












3.4. Summary


Up to isomorphism, every morphism from a poset [image: there is no content] can be decomposed into a sequence of three steps:

	(i)

	
quotient: Collapsing G by a partition π that preserves acyclicity of ω (projecting [image: there is no content] to a flat [image: there is no content] of [image: there is no content] for some closed partition [image: there is no content]).




	(ii)

	
inclusion: Adding vertices (adding dimensions).




	(iii)

	
extension: Adding relations (intersecting with half-spaces).









In the special case of the morphism [image: there is no content] being surjective, the inclusion step is eliminated and the entire process can be described geometrically by projecting [image: there is no content] to a flat [image: there is no content] and then intersecting with a collection of half-spaces.





4. Toric Posets and Preposets


4.1. Toric Chambers and Posets


Toric posets, introduced in [9], arise from ordinary (finite) posets defined by acyclic orientations under the equivalence relation generated by converting maximal elements into minimal elements, or sources into sinks. Whereas an ordinary poset corresponds to a chamber of a graphic arrangement [image: there is no content], a toric poset corresponds to a chamber of a toric graphic arrangement [image: there is no content], which is the image of [image: there is no content] under the quotient map [image: there is no content]. Elements of [image: there is no content] are toric hyperplanes


Hijtor:={x∈RV/ZV:ximod1=xjmod1}=q(Hij)











Though a point [image: there is no content] is a residue class, we will at times want to compare its coordinates, modulo 1. The convenient way to do this is to identify x with its unique representative in [image: there is no content], and under this slight abuse of notation we can unambiguously make statements such as ximod1≤xjmod1.



Definition 4.1. 

A connected component c of the complement [image: there is no content] is called a toric chamber for G, or simply a chamber of [image: there is no content]. Let [image: there is no content] denote the set of all chambers of [image: there is no content].





A toric poset P is a set c that arises as a toric chamber for at least one graph G. We may write [image: there is no content] or [image: there is no content], depending upon the context.



If we fix a graph [image: there is no content] and consider the arrangement [image: there is no content], then each point in [image: there is no content] naturally determines a preposet on G via a map [image: there is no content]. Explicitly, for x=(x1mod1,…,xnmod1) in [image: there is no content], the directed graph [image: there is no content] is constructed by doing the following for each edge [image: there is no content] in E:

	■

	
If ximod1≤xjmod1, then include edge [image: there is no content];




	■

	
If xjmod1≤ximod1, then include edge [image: there is no content].









The mapping [image: there is no content] is essentially the same as [image: there is no content] from Equation (5) except done modulo 1, so many of its properties are predictably analogous. For example, the undirected version of [image: there is no content] is G. The edge [image: there is no content] is bidirected in [image: there is no content] if and only if ximod1=xjmod1. Therefore, [image: there is no content] is acyclic if and only if x lies in [image: there is no content]; in this case [image: there is no content] describes a poset. Otherwise it describes a preposet (that is not a poset). Modding out by the strongly connected components yields an acyclic graph ω(x)/∼x that describes a poset.



Definition 4.2. 

When two preposets [image: there is no content] and [image: there is no content] are such that the directed graphs ω(x)/∼x and ω(y)/∼y differ only by converting a source vertex (equivalence class) into a sink, or vice-versa, we say they differ by a flip. The transitive closure of the flip operation generates an equivalence relation on [image: there is no content], denoted by ≡.





In the special case of restricting to preposets that are acyclic, we get [image: there is no content] and a bijective correspondence between toric posets and chambers of toric graphic arrangements. This is Theorem 1.4 in [9]. A generalization of this to a bijection between toric preposets and faces of the toric graphic arrangement appears later in this section (Proposition 4.11).



Theorem 4.3. 

([9], Theorem 1.4) The map [image: there is no content] induces a bijection between [image: there is no content] and Acyc(G)/≡ as follows:


 [image: Mathematics 04 00039 i006]



(11)







In other words, two points [image: there is no content] in [image: there is no content] have [image: there is no content] if and only if [image: there is no content] lie in the same toric chamber of [image: there is no content].





By Theorem 4.3, every pair [image: there is no content] of a graph G and [image: there is no content] determines a toric poset, and we denote this by [image: there is no content]. Specifically, [image: there is no content] is the toric poset [image: there is no content] such that [image: there is no content]. If the graph G is understood, then we may denote the corresponding toric chamber by [image: there is no content].



If [image: there is no content] is fixed, then the unit cube [image: there is no content] in [image: there is no content] is the union of order polytopes [image: there is no content], any two of which only intersect in a subset of a flat of [image: there is no content]:


[0,1]V=⋃ω∈Acyc(G)O(P(G,ω))



(12)




when G is understood, we will say that the order polytopes [image: there is no content] and [image: there is no content] are torically equivalent whenever [image: there is no content]. Under the natural quotient [image: there is no content], each order polytope [image: there is no content] is mapped into the closed toric chamber [image: there is no content]. Moreover, by Theorem 4.3, the closed chambers of [image: there is no content] are unions of q-images of torically equivalent order polytopes.



Corollary 4.4. 

Let [image: there is no content] be a toric poset, and [image: there is no content] the natural quotient. The closure of the chamber [image: there is no content] is


c(P)¯=⋃ω′∈[ω]q(O(P(G,ω′)))














4.2. Toric Faces and Preposets


Let [image: there is no content] be a toric poset over [image: there is no content]. To define objects like a face of P or its dimension, it helps to first lift c up to a chamber of the affine graphic arrangement which lies in [image: there is no content]:


Aaff(G):=q-1(Ator(G))=q-1(q(A(G)))=⋃{i,j}∈Ek∈Z{x∈RV:xi=xj+k}



(13)




where [image: there is no content] is the natural quotient. The affine chambers are open unbounded convex polyhedral regions in [image: there is no content], the universal cover of [image: there is no content]. The path lifting property guarantees that two points x and y in [image: there is no content] are in the same toric chamber if and only if they have lifts [image: there is no content] and [image: there is no content] that are in the same affine chamber. Moreover, since Corollary 4.4 characterizes the closed toric chamber [image: there is no content] as a union of torically equivalent order polytopes under a universal covering map, each closed affine chamber is a union of translated copies of torically equivalent order polytopes in [image: there is no content].



We usually denote an affine chamber by [image: there is no content] or [image: there is no content]. Each hyperplane [image: there is no content] has a unique preimage containing the origin in [image: there is no content] called its central preimage; this is the ordinary hyperplane [image: there is no content]. Thus, the set of central preimages of [image: there is no content] is precisely the graphic arrangement [image: there is no content] in [image: there is no content]. Each closed affine chamber [image: there is no content] contains at most one order polytope [image: there is no content] for [image: there is no content]. Affine chambers whose closures contain precisely one order polytope [image: there is no content] are central affine chambers.



We will call nonempty sets that arise as intersections of hyperplanes in [image: there is no content]affine flats and nonempty sets that are intersections of hyperplanes in [image: there is no content]toric flats. Since the toric flats have a nonempty intersection, they form a lattice that is denoted [image: there is no content], and partially ordered by reverse inclusion.



Since a toric flat of [image: there is no content] is the image of a flat of [image: there is no content], it too is determined by a partition π of V, and so it is of the form


Dπtor={x∈RV/ZV:xi=xjforeverypairi,jinthesameblockBkofπ}=q(Dπ)



(14)







Since [image: there is no content] is a covering map, it is well-founded to declare the dimension of a toric flat [image: there is no content] in [image: there is no content] to be the same as the dimension of its central preimage [image: there is no content] in [image: there is no content].



Recall that a partition [image: there is no content] is compatible with an ordinary poset P if contracting the blocks of π yields a preposet [image: there is no content] that is acyclic (also a poset). The notion of compatible partitions does not carry over well to toric posets, because compatibility is not preserved by toric equivalence. Figure 2 shows an example of this: the preposets [image: there is no content] and [image: there is no content] are acyclic but [image: there is no content] is not. Despite this, every set [image: there is no content], whether or not it is a toric flat of [image: there is no content], intersects the closed toric chamber [image: there is no content] in at least the line [image: there is no content]. We denote this intersection by


F¯πtor(P):=c(P)¯∩Dπtor



(15)







If [image: there is no content] does not intersect [image: there is no content], then we say that π is a toric face partition, since it intersects the closed toric chamber along its boundary. Compare this to the definition of face partitions of an ordinary poset [image: there is no content], which are those [image: there is no content] characterized by [image: there is no content] being a flat of the graphic arrangement of the transitive closure, or equivalently, by [image: there is no content]. The transitive closure [image: there is no content] is formed from G by adding all additional edges [image: there is no content] such that [image: there is no content]. Similarly, we can define the toric transitive closure of [image: there is no content] as the graph G along with the extra edges [image: there is no content] such that [image: there is no content]. This was done in [9], and we will return to it in the Section 5.3 when we discuss toric Hasse diagrams.



Now, let [image: there is no content] be an arbitrary partition. Since flats of [image: there is no content] are closed under intersections, there is a unique maximal toric subspace [image: there is no content] (that is, of minimal dimension) for which [image: there is no content]. The partition [image: there is no content] is the unique minimal coarsening of π for which [image: there is no content], and it is the lattice-join of all such partitions. We call it the closure of π with respect to the toric poset P, denoted [image: there is no content], and we define [image: there is no content]. A partition π is closed with respect to the toric poset P if [image: there is no content]. Note that the closure is defined for all partitions, not just toric face partitions.



Definition 4.5. 

A set [image: there is no content] is a closed face of the toric poset P if [image: there is no content] for some closed toric face partition [image: there is no content]. The interior of [image: there is no content] with respect to the subspace topology of [image: there is no content] is called an open face of P, and denoted [image: there is no content]. Let [image: there is no content] and [image: there is no content] denote the set of open and closed faces of P, respectively. Finally, define the faces of the toric graphic arrangement [image: there is no content] to be the faces of the toric posets over G:


FaceAtor(G)=⋃ω∈Acyc(G)Face(P(G,[ω])),Face¯Ator(G)=⋃ω∈Acyc(G)Face¯(P(G,[ω]))













Toric faces of co-dimension 1 are called facets.



The following remark is the toric analogue of Remark 2.4.



Remark 4.6. 

Let [image: there is no content] be a toric poset. The dimension of [image: there is no content] is simply the maximum dimension of [image: there is no content] taken over all affine chambers that descend down to [image: there is no content]. Since closed affine chambers are unions of translations of order polytopes, this is the maximum dimension of [image: there is no content] taken over all [image: there is no content]. In other words,


dimFπtor(P(G,[ω]))=maxω′∈[ω]dimFπ(P(G,ω′))













On the level of graphs, this is the maximum number of strongly connected components that ω′/∼π can have for some [image: there is no content]. In particular, a partition π is closed with respect to [image: there is no content] if and only if ω′/∼π is acyclic for some [image: there is no content].



As long as G is connected, there is a unique 1-dimensional face of [image: there is no content], which is the line [image: there is no content] and is contained in the closure of every chamber. There are no 0-dimensional faces of [image: there is no content]. The n-dimensional faces of [image: there is no content] are its chambers. Additionally, [image: there is no content] is a disjoint union of open faces of [image: there is no content]:


RV/ZV=⋃F∈FaceAtor(G)˙F



(16)







As in the case of ordinary posets, there is a canonical bijection between the closed toric face partitions of P and open faces (or closed faces) of P, via [image: there is no content]. To classify the faces of a toric poset, it suffices to classify the closed toric face partitions.



Theorem 4.7. 

Let [image: there is no content] be a toric poset over [image: there is no content]. A partition π of V is a closed toric face partition of P if and only if it is connected and compatible with [image: there is no content], for some [image: there is no content].





The proof of Theorem 4.7 will be done later in this section, after the following lemma, which establishes that [image: there is no content] is a closure operator [19] on the partition lattice [image: there is no content] and compares it with [image: there is no content].



Lemma 4.8. 

Let ω be an acyclic orientation of a graph [image: there is no content], and π a partition of V.

	(a) 

	
If π is closed with respect to [image: there is no content], then π is closed with respect to [image: there is no content].




	(b) 

	
Closure is monotone: if [image: there is no content], then [image: there is no content].




	(c) 

	
If [image: there is no content], then [image: there is no content].




	(d) 

	
[image: there is no content].











Proof. 

If π is closed with respect to [image: there is no content], then the preposet ω/∼π is acyclic. By Remark 4.6, this means that π is closed with respect to [image: there is no content], which establishes (a).



Part (b) is obvious. Part (c) follows from taking the closure of each term in the chain of inequalities [image: there is no content]:


clPtor(π)≤VclPtor(π′)≤VclPtorclPtor(π)=clPtor(π)











To prove (d), let [image: there is no content], which is closed with respect to [image: there is no content]. By (a), [image: there is no content] is closed with respect to [image: there is no content]. Using this, along with (b) applied to [image: there is no content], yields


clP(G,[ω])tor(π)≤VclP(G,[ω])tor(π¯)=π¯=clP(G,ω)(π)








whence the theorem. ☐





Example 4.9. 

For an example both of where the converse to Lemma 4.8 (a) fails, and where [image: there is no content], consider [image: there is no content], and the partition [image: there is no content]. Using the same notation as in Example 3.2 and Figure 2, we see that [image: there is no content], because the intersection of [image: there is no content] and [image: there is no content] is one-dimensional. Equivalently, the preposet ω3/∼π has one strongly connected component. In contrast, the intersection of [image: there is no content] with [image: there is no content] is two-dimensional. Indeed, the preposets ω1/∼π and ω2/∼π both have two strongly connected components, and [image: there is no content]. Therefore,


1/23=π=clP(G,[ω3])tor(π)⪇VclP(G,ω3)(π)=123








and so π is closed with respect to [image: there is no content] but not with respect to [image: there is no content].





Proof of Theorem 4.7. 

Suppose π is a closed toric face partition of [image: there is no content], and that [image: there is no content] has dimension k. Then for some [image: there is no content], the hyperplane [image: there is no content] must intersect the order polytope [image: there is no content] in a k-dimensional face. Thus, [image: there is no content] has dimension k for some [image: there is no content], and so π is a face partition of [image: there is no content]. To see why π is closed with respect to [image: there is no content], suppose there were a coarsening [image: there is no content] such that


F¯π′=c(P(G,ω′))¯∩Dπ′=c(P(G,ω′))¯∩Dπ=F¯π



(17)







It suffices to show that [image: there is no content]. Descending down to the torus, the intersection [image: there is no content] must have dimension at least k by Equation (17), but no more than k because [image: there is no content]. Thus, we have equality [image: there is no content], which means [image: there is no content], whence [image: there is no content]. Since π is a closed face partition with respect to [image: there is no content], it is connected and compatible with [image: there is no content] by Theorem 2.1.



Conversely, suppose that π is connected and compatible with [image: there is no content] for some [image: there is no content]. By Theorem 2.1, π is a closed face partition of [image: there is no content]. Since π is connected, [image: there is no content] is a flat of [image: there is no content]. Therefore, [image: there is no content] is a toric flat of [image: there is no content], and so [image: there is no content] is a face of the toric poset [image: there is no content]. Therefore, π is a toric face partition. Closure of π with respect to [image: there is no content] follows immediately from Lemma 4.8 (a) applied to the fact that π is closed with respect to [image: there is no content]. ☐





Unlike the ordinary case, where faces of posets are literally faces of a convex polyhedral cone, it is not quite so “geometrically obvious” what subsets can be toric faces. The following example illustrates this.



Example 4.10. 

There are only two simple graphs [image: there is no content] over [image: there is no content]: The edgeless graph [image: there is no content], and the complete graph [image: there is no content]. For both graphs, the complement [image: there is no content] is connected. The respective chambers are


c0:=R2/Z2,andc:=R2/Z2-H12tor








and so they represent different toric posets, [image: there is no content] and [image: there is no content]. Despite this, these chambers have the same topological closures: [image: there is no content]. The lattice of flats of [image: there is no content] contains one element: [image: there is no content], and this flat arises from the permutation [image: there is no content]. The lattice of flats of [image: there is no content] has two elements: [image: there is no content], where [image: there is no content], and [image: there is no content]. Thus, the closed faces of the corresponding toric posets are


Face¯(P(c0))={RV/ZV},andFace¯(P(c))={RV/ZV,H12tor}













The subtlety in Example 4.10 does not arise for ordinary posets, because distinct ordinary posets never have chambers with the same topological closure. In contrast, if [image: there is no content] and [image: there is no content] are both forests, then [image: there is no content] and [image: there is no content] both have a single toric chamber. This is because the number of chambers is counted by the Tutte polynomial evaluation [image: there is no content], which is always 1 for a forest; see [9]. In this case, the closures of both chambers will be all of [image: there is no content]. A more complicated example involving a toric poset over a graph with three vertices, will appear soon in Example 4.13.



Recall the map [image: there is no content] from Equation (11) that sends a point x in [image: there is no content] to a preposet [image: there is no content]. By Theorem 4.3, when restricted to the points in [image: there is no content], this map induces a bijection between toric posets and toric chambers. Toric faces [image: there is no content] that are open in [image: there is no content] are chambers in lower-dimensional arrangements that are contractions of [image: there is no content], namely by the subspace [image: there is no content]. Thus, the bijection between toric equivalence classes of [image: there is no content] (n-element preposets) and toric chambers (n-dimensional faces) extends naturally to a bijection between toric preposets over G and open faces of [image: there is no content].



Proposition 4.11. 

The map [image: there is no content] induces a bijection between [image: there is no content] and Pre(G)/≡ as follows:


 [image: Mathematics 04 00039 i007]



(18)









In other words, given two points [image: there is no content] in [image: there is no content] the equivalence [image: there is no content] holds if and only if [image: there is no content] lie on the same open face of [image: there is no content].



Definition 4.12. 

A toric preposet is a set that arises as an open face of a toric poset [image: there is no content] for at least one graph G.





If x lies on a toric face [image: there is no content] of P, where (without loss of generality) [image: there is no content], then the strongly connected components of the preposet [image: there is no content] are [image: there is no content].



Example 4.13. 

Let [image: there is no content], as in Example 3.2. The six acyclic orientations of G fall into two toric equivalence classes. The three orientations shown in Figure 2 comprise one class, and so the corresponding toric poset is [image: there is no content] for any [image: there is no content]. Equivalently, the closed toric chamber is a union of order polytopes under the natural quotient map:


c(P)¯=c¯[ωi]=⋃i=13q(O(P(G,ωi)))













This should be visually clear from Figure 2. The two chambers in [image: there is no content] are the three-dimensional faces of P. Each of the three toric hyperplanes in [image: there is no content] are two-dimensional faces of P, and these (toric preposets) correspond to the following toric equivalence classes of size-2 preposets ωπ/∼π over [image: there is no content]:


{{3}  →{1,2},    {{2}  →{1,3},    {{1}  →{2,3},{3}  →{1,2}}   {2}  →{1,3}}   {1}  →{2,3}}











The toric flat [image: there is no content] is the unique one-dimensional face of P, and this corresponds to the unique size-1 preposet over [image: there is no content]; when [image: there is no content], which is trivially in its own toric equivalence class.





5. Toric Intervals and Antichains


Collapsing an interval or antichain of an ordinary poset defines a poset morphism. This remains true in the toric case, as will be shown in Section 6, though the toric analogues of these concepts are trickier to define. Toric antichains were introduced in [9], but toric intervals are new to this paper. First, we need to review some terminology and results about toric total orders, chains, transitivity, and Hasse diagrams. This will also be needed to study toric order ideals and filters in Section 7. Much of the content in Section 5.1, Section 5.2 and Section 5.3 can be found in [9]. Throughout, [image: there is no content] is a fixed undirected graph with [image: there is no content], and coordinates [image: there is no content] of points [image: there is no content] in a toric chamber [image: there is no content] are assumed to be reduced modulo 1, i.e., [image: there is no content].



5.1. Toric Total Orders


A toric poset [image: there is no content] is a total toric order if [image: there is no content] is a chamber of [image: there is no content]. If [image: there is no content] is a total toric order, then [image: there is no content] is a total order for each [image: there is no content], and thus [image: there is no content] has precisely [image: there is no content] elements. Since each [image: there is no content] has exactly one linear extension, total toric orders are indexed by the [image: there is no content] cyclic equivalence classes of permutations of V:


[w]=[(w1,⋯,wn)]:=(w1,⋯,wn),(w2,⋯,wn,w1),⋯,(wn,w1,⋯,wn-1)











Recall that if P and [image: there is no content] are toric posets over G, then [image: there is no content] is an extension of P if [image: there is no content]. Moreover, [image: there is no content] is a total toric extension if [image: there is no content] is a total toric order. Analogous to how a poset is determined by its linear extensions, a toric poset P is determined by its set of total toric extensions, denoted [image: there is no content].



Theorem 5.1. 

([9], Proposition 1.7) Any toric poset P is completely determined by its total toric extensions in the following sense:


c(P)¯=⋃P′∈Ltor(P)c(P′)¯














5.2. Toric Directed Paths, Chains, and Transitivity


A chain in a poset P(G,ω) is a totally ordered subset [image: there is no content]. Equivalently, this means that the elements in C all lie on a common directed path [image: there is no content] in ω. Transitivity can be characterized in this language: if i and j lie on a common chain, then i and j are comparable in P(G,ω). Geometrically, i and j being comparable means the hyperplane [image: there is no content] does not cut (i.e., is disjoint from) the chamber c(P(G,ω)).



The toric analogue of a chain is “essentially” a totally cyclically ordered set, but care must be taken in the case when [image: there is no content] because every size-two subset [image: there is no content] is trivially totally cyclically ordered. Define a toric directed path in ω, to be a directed path [image: there is no content] such that the edge [image: there is no content] is also present. We denote such a path by [image: there is no content]. Toric directed paths of size 2 are simply edges, and every singleton set is a toric directed path of size 1. A fundamental property of toric directed paths is that up to cyclic shifts, they are invariants of toric-equivalence classes. That is, [image: there is no content] is a toric directed path of ω if and only if each [image: there is no content] has a toric directed path [image: there is no content], for some cyclic shift [image: there is no content] in [image: there is no content]. This is Proposition 4.2 of [9], and it leads to the notion of a toric chain, which is a totally cyclically ordered subset.



Definition 5.2. 

Let [image: there is no content] be a toric poset. A subset [image: there is no content] is a toric chain of P if there exists a cyclic equivalence class [image: there is no content] of linear orderings of C with the following property: for every [image: there is no content] there exists some [image: there is no content] in [image: there is no content] for which


0≤xj1<xj2<⋯<xjm<1













In this situation, we will say that [image: there is no content].



The following is a reformulation of Proposition 6.3 of [9] using the language of this paper, where notation such as [image: there is no content] and [image: there is no content] is new.



Proposition 5.3. 

Fix a toric poset [image: there is no content], and [image: there is no content]. The first three of the following four conditions are equivalent, and when [image: there is no content], they are also equivalent to the fourth.

	(a) 

	
C is a toric chain in P, with [image: there is no content].




	(b) 

	
For every [image: there is no content], the set C is a chain of [image: there is no content], ordered in some cyclic shift of [image: there is no content].




	(c) 

	
For every [image: there is no content], the set C occurs as a subsequence of a toric directed path in [image: there is no content], in some cyclic shift of the order [image: there is no content].




	(d) 

	
Every total toric extension [image: there is no content] in [image: there is no content] has the same restriction [image: there is no content].











For ordinary posets, all subsets of chains are chains. The same holds in the toric case.



Proposition 5.4. 

Subsets of toric chains are toric chains.





Having the concept of a toric chain leads to the notion of toric transitivity, which is completely analogous to ordinary transitivity when stated geometrically.



Proposition 5.5. 

Let [image: there is no content] be distinct. Then the hyperplane [image: there is no content] does not cut the chamber [image: there is no content] if and only if i and j lie on a common toric chain.






5.3. Toric Hasse Diagrams


One of the major drawbacks to studying toric posets combinatorially, as equivalences of acyclic orientations (rather than geometrically, as toric chambers), is that a toric poset P or chamber [image: there is no content] generally arises in multiple toric graphic arrangements [image: there is no content] over the same vertex set. That is, one can have [image: there is no content] for different graphs, leading to ambiguity in labeling a toric poset P with a pair [image: there is no content] consisting of a graph G and equivalence class [image: there is no content] in Acyc(G)/≡.



Toric transitivity resolves this issue. As with ordinary posets, there is a well-defined notion for toric posets of what it means for an edge to be “implied by transitivity.” The toric Hasse diagram is the graph [image: there is no content] with all such edges removed. In Section 5.3, we encountered the toric transitive closure, which is the graph [image: there is no content] with all such edges included. In other words, given any toric poset [image: there is no content], there is always a unique minimal pair [image: there is no content] and maximal pair [image: there is no content] with the property that the set [image: there is no content] is in [image: there is no content] iff


[image: there is no content]








where ⊆ is inclusion of edges. In this case, ω can be taken to be the restriction to G of any orientation in [image: there is no content].



Geometrically, the existence of a unique toric Hasse diagram is intuitive; it corresponds to the minimal set of toric hyperplanes that bound the chamber [image: there is no content], and the edges implied by transitivity correspond to the additional hyperplanes that do not cut [image: there is no content]. The technical combinatorial reason for the existence of a unique Hasse diagram (respectively, toric Hasse diagram) follows because the transitive closure (respectively, toric transitive closure) [image: there is no content] is a convex closure, meaning it satisfies the following anti-exchange condition; also see [20]:


fora≠bwitha,b∉A¯anda∈A∪{b}¯,onehasb∉A∪{a}¯











Edges [image: there is no content] in the Hasse diagram (respectively, toric Hasse diagram) are precisely those whose removal “change” the poset (respectively, toric poset), and the geometric definitions make this precise. Though the ordinary and toric cases are analogous, there are a few subtle differences. For example, consider the following “folk theorem.”



Proposition 5.6. 

Let P be a poset over [image: there is no content] and [image: there is no content]. Then the following are equivalent:

	(i) 

	
The edge [image: there is no content] is in the Hasse diagram, [image: there is no content].




	(ii) 

	
Removing [image: there is no content] enlarges the chamber [image: there is no content].




	(iii) 

	
[image: there is no content] is a (closed) facet of P.




	(iv) 

	
The interval [image: there is no content] is precisely [image: there is no content].











Since toric posets are defined geometrically as subsets of [image: there is no content] that are chambers of a graphic hyperplane arrangement, the equivalence (i)⇔(ii) is immediate for toric posets. Condition (iii) says that the edges [image: there is no content] of the Hasse diagram are precisely the size-2 intervals, and Condition (iv) says these are the closed face partitions having two blocks of the form [image: there is no content].



Since adding or removing edges implied by toric transitivity does not change the toric poset, it does not change which sets are toric chains. Thus, to characterize the toric chains of [image: there is no content], it suffices to characterize the toric chains of [image: there is no content]. The following is immediate.



Remark 5.7. 

Let P be a toric poset. A size-2 subset [image: there is no content] of V is a toric chain of P if and only if [image: there is no content] is an edge of [image: there is no content]. In particular, if C is a maximal toric chain, then [image: there is no content] is an edge in [image: there is no content].






5.4. Toric Intervals


To motivate the definition of a toric interval, it helps to first interpret the classical definition in several different ways.



Definition 5.8. 

Let i and j be elements of a poset [image: there is no content]. The interval[image: there is no content] is the set I characterized by one of the following equivalent conditions:

	(i)

	
I={k∈V:xi≤xk≤xj,forallx∈c(P)};




	(ii)

	
I={k∈V:kappearsbetweeniandj(inclusive)inanylinearextensionofP};




	(iii)

	
I={k∈V:kliesonadirectedpathfromitojinω}.











Note that if [image: there is no content], then [image: there is no content], and if [image: there is no content], then [image: there is no content].



We will define toric intervals geometrically, motivated by Condition (i), and show how it is equivalent to the toric version of Condition (ii). In contrast, Condition (iii) has a small wrinkle—the property of lying on a directed path from i to j does not depend on the choice of [image: there is no content] for P. Specifically, if [image: there is no content] and k lies on an ω-directed path from i to j, then k lies on an [image: there is no content]-directed path from i to j. This is not the case for toric directed paths in toric posets, as the following example illustrates. As a result, we will formulate and prove a modified version of Condition (iii) for toric intervals.



Example 5.9. 

Consider the circular graph [image: there is no content], and [image: there is no content] as shown at left in Figure 3. Let [image: there is no content], which is a total toric order. Therefore, the toric transitive closure of [image: there is no content] is the pair [image: there is no content], where [image: there is no content] is shown in Figure 3 on the right. Therefore, [image: there is no content].


Figure 3. Despite the equality [image: there is no content], the set [image: there is no content] lies on a toric directed path [image: there is no content] in [image: there is no content] but not for any representative of [image: there is no content].



[image: Mathematics 04 00039 g003 1024]








Now, let [image: there is no content] and [image: there is no content]. The set [image: there is no content] lies on a toric directed path from 1 to 3 in [image: there is no content] (which also contains 2). However, none of the 4 representatives in [image: there is no content] contain a toric directed path from 1 to 3.



Another obstacle to formulating the correct toric analogue of an interval is how to characterize which size-2 subsets should be toric intervals. This ambiguity arises from the aforementioned “size-2 chain problem” of all size-2 subsets being totally cyclically ordered. Since ordinary intervals are unions of chains, we will require this to be a feature of toric intervals.



Definition 5.10. 

Let i and j be elements of a toric poset [image: there is no content]. The toric interval [image: there is no content] is the empty set if [image: there is no content] do not lie on a common toric chain, and otherwise is the set


I=[i,j]tor:={i,j}∪{k∈V:P|{i,j,k}=[(i,k,j)]}



(19)









If there is no [image: there is no content] satisfying Equation (19), then [image: there is no content]. If [image: there is no content], then [image: there is no content].



Remark 5.11. 

If [image: there is no content] are distinct elements of the toric interval [image: there is no content] of [image: there is no content], then for each x in [image: there is no content], exactly one of the following must hold:


0≤xi<xk<xj<1,0≤xj<xi<xk<1,0≤xk<xj<xi<1



(20)









By Theorem 5.1, we can rephrase Remark 5.11 as the toric analogue of Definition 5.8 (ii): the toric interval [image: there is no content] in P is the set of elements between i and j in the cyclic order of any total toric extension of P.



Corollary 5.12. 

Suppose [image: there is no content] is a toric interval of [image: there is no content] of size [image: there is no content]. Then


[i,j]tor={i,j}∪{k:[w|{i,j,k}]=[(i,k,j)],forall[w]∈Ltor(P)}.













Finally, the toric analogue of Definition 5.8(iii) can be obtained by first passing to the toric transitive closure.



Proposition 5.13. 

Fix a toric poset [image: there is no content]. An element k is in [image: there is no content] if and only if k lies on a toric directed path [image: there is no content] in [image: there is no content], for some [image: there is no content].





Proof. 

Throughout, let [image: there is no content]. Assume that [image: there is no content]; the result is trivial otherwise. Suppose k is in [image: there is no content], which means that [image: there is no content]. Take any [image: there is no content] for which i is a source. By Proposition 5.3, the elements of C occur as a subsequence of a toric directed path in [image: there is no content], ordered [image: there is no content]. Since this is a toric chain, the edges [image: there is no content], [image: there is no content], and [image: there is no content] are all implied by toric transitivity. Thus, k lies on a toric directed path [image: there is no content] in [image: there is no content], the unique orientation of [image: there is no content] whose restriction to G is [image: there is no content].



Conversely, suppose that k lies on a toric directed path [image: there is no content] in [image: there is no content], for some [image: there is no content]. Then C is a toric chain, ordered [image: there is no content], hence k is in [image: there is no content]. ☐





Proposition 5.14. 

Let [image: there is no content] be a toric poset. If a set [image: there is no content] is a toric interval [image: there is no content], then there is some [image: there is no content] for which the set I is the interval [image: there is no content] of [image: there is no content]. The converse need not hold.





Proof. 

Without loss of generality, assume that [image: there is no content]. The statement is trivial if [image: there is no content]. We need to consider the cases [image: there is no content] and [image: there is no content] separately. In both cases, we will show that one can take [image: there is no content] to be any orientation that has i as a source.



First, suppose [image: there is no content], which means that [image: there is no content] is an edge of G. Take any [image: there is no content] for which i is a source. Since [image: there is no content], there is no other [image: there is no content] on a directed path from i to j in [image: there is no content], as this would form a toric directed path. Therefore, the interval [image: there is no content] in [image: there is no content] is simply [image: there is no content].



Next, suppose [image: there is no content]. As before, take any [image: there is no content] such that i is a source in [image: there is no content]. Since [image: there is no content], the directed edge [image: there is no content] is present, and so by Proposition 5.13, [image: there is no content] consists of all [image: there is no content] that lie on a directed path from i to j. This is precisely the definition of the interval [image: there is no content] in [image: there is no content].



To see how the converse can fail, take G to be the line graph on 3 vertices, and ω to be the orientation [image: there is no content]. In [image: there is no content], the interval [image: there is no content] is [image: there is no content] but since 1 and 3 do not lie on a common toric chain, [image: there is no content] in [image: there is no content]. ☐





Proposition 5.15. 

For any toric poset [image: there is no content],


E(G^Hasse(P(G,ω)))⊆E(G^torHasse(P(G,[ω])))⊆E(G¯tor(P))=⋂ω′∈[ω]E(G¯(P(G,ω′)))



(21)









Proof. 

Given the toric Hasse diagram of [image: there is no content], the ordinary Hasse diagram of [image: there is no content] is obtained by removing the edge [image: there is no content] for each toric directed path [image: there is no content] in [image: there is no content] of size at least [image: there is no content]. This establishes the first inequality in Equation (21).



The second inequality is obvious. Loosely speaking, the final equality holds because edges in the toric transitive closure are precisely the size-2 toric chains, which are precisely the subsets that are size-2 chains in every representative poset. We will prove each containment explicitly. For “⊆”, take an edge [image: there is no content] of [image: there is no content], which is a size-2 toric chain. By Proposition 5.3, [image: there is no content] is a toric chain of [image: there is no content] for all [image: there is no content], which means that it is an edge of the transitive closure [image: there is no content]. The “⊇” containment is analogous: suppose [image: there is no content] is an edge of [image: there is no content] for each [image: there is no content]. Then by Proposition 5.3, it is a toric chain of P, and hence an edge of [image: there is no content]. ☐






5.5. Toric Antichains


An antichain of an ordinary poset P is a subset [image: there is no content] characterized

	
combinatorially by the condition that no pair [image: there is no content] with [image: there is no content] are comparable, that is, they lie on no common chain of P, or



	
geometrically by the equivalent condition that the [image: there is no content]-dimensional subspace [image: there is no content] intersects the open polyhedral cone [image: there is no content] in [image: there is no content].








As shown in [9], these two conditions in the toric setting lead to different notions of toric antichains which are both easy to formulate. Unlike the case of ordinary posets, these two definitions are non-equivalent; leading to two distinct versions of a toric antichains, combinatorial and geometric. The following is the geometric one which we will use in this paper. Its appearance in Proposition 5.17, which is one of the “For Some” structure theorems listed in the Introduction, suggests that it is the more natural toric analogue of the two.



Definition 5.16. Given a toric poset P on V, say that [image: there is no content] is a geometric toric antichain if [image: there is no content] intersects the open toric chamber [image: there is no content] in [image: there is no content].



The following characterization of toric antichains was established in [9]. It follows because if [image: there is no content] intersects the open toric chamber [image: there is no content] in [image: there is no content], then [image: there is no content] intersects the open chamber upstairs in [image: there is no content].



Proposition 5.17. 

Let [image: there is no content] be a toric poset. Then a set [image: there is no content] is a geometric toric antichain of P if and only if A is an antichain of [image: there is no content] for some [image: there is no content].







6. Morphisms of Toric Posets


Morphisms of ordinary posets have equivalent combinatorial and geometric characterizations. In contrast, while there seems to be no simple or obvious combinatorial description for morphisms of toric posets, the geometric version has a natural toric analogue.



Firstly, it is clear how to define a toric isomorphism between two toric posets P and [image: there is no content] on vertex sets V and [image: there is no content]: a bijection [image: there is no content] such that the induced isomorphism on [image: there is no content] maps [image: there is no content] to [image: there is no content] bijectively. The other types of ordinary poset morphisms have the following toric analogues:

	■

	
quotients that correspond to projecting the toric chamber onto a flat of [image: there is no content] for some closed toric face partition [image: there is no content];




	■

	
inclusions that correspond to embedding a toric chamber into a higher-dimensional chamber;




	■

	
extensions that add relations (toric hyperplanes).









Since every poset morphism can be expressed as the composition of a quotient, an inclusion, and an extension, it is well-founded to define a toric poset morphism to be the composition of the toric analogues of these maps. In the remainder of this section, we will describe toric morphisms in detail. Most of the difficulties have already been done in Section 3, when interpreting the well-known concept of an ordinary poset morphism geometrically. In contrast, this section is simply an adaptation of this geometric framework from [image: there is no content] to [image: there is no content], though there are some noticeable differences. For example, there is no toric analogue of intersecting a chamber with a half-space, because the torus minus a hyperplane is connected.



6.1. Quotient


In the ordinary poset case, a quotient is performed by contracting [image: there is no content] by a partition [image: there is no content]. Each [image: there is no content] gets collapsed into a single vertex, and the resulting acyclic graph is denoted by ω/∼π, which is an element of Acyc(G/∼π). This does not carry over to the toric case, because in general, contracting a partition will make some representatives acyclic and others not. However, the geometric definition has a natural analogue.



Now, let [image: there is no content] be a toric poset, and π be any partition of V closed with respect to P, i.e., [image: there is no content]. By construction, [image: there is no content] is a flat of [image: there is no content], and so the subset [image: there is no content] is a face of [image: there is no content]. First, we need a map that projects a point x in [image: there is no content] onto this face, which is relatively open in the subspace topology of [image: there is no content]. This can be extended to the entire torus, by taking the unique map [image: there is no content] that makes the following diagram commute, where [image: there is no content] is the mapping from Equation (9):


 [image: Mathematics 04 00039 i008]











Explicitly, the map [image: there is no content] takes a point [image: there is no content], lifts it to a point [image: there is no content] in an order polytope in [image: there is no content], projects it onto the flat [image: there is no content] as in Equation (9), and then maps that point down to the toric flat [image: there is no content]. In light of this, we will say that the map [image: there is no content] is a projection onto the toric flat [image: there is no content].



After projecting a chamber [image: there is no content] onto a flat [image: there is no content] of [image: there is no content], we need to project it homeomorphically onto a coordinate subspace of [image: there is no content] so it is a chamber of a lower-dimensional toric arrangement. As in the ordinary case, let [image: there is no content] be any subset formed by removing all but 1 coordinate from each [image: there is no content], and let [image: there is no content] be the induced projection. The [image: there is no content]-image of [image: there is no content] will be the toric arrangement Ator(G/∼π). As before, the following easily verifiable lemma ensures that our choice of [image: there is no content] does not matter.



Lemma 6.1. 

Let [image: there is no content] be a partition of V, and [image: there is no content] with [image: there is no content]. The restriction [image: there is no content] is a homeomorphism.



Moreover, all such projection maps for a fixed π are topologically conjugate in the following sense: If [image: there is no content] with [image: there is no content], and projection map [image: there is no content], and σ is the permutation of V that transposes each [image: there is no content] with [image: there is no content], then the following diagram commutes:


 [image: Mathematics 04 00039 i009]








here, [image: there is no content] is the map [image: there is no content], with [image: there is no content] and [image: there is no content] being the induced linear maps as defined in Equation (6), but done modulo 1.





By convexity (in the fundamental affine chambers), two points in the same face of [image: there is no content] get mapped to the same face in Ator(G/∼π). In other words, [image: there is no content] induces a well-defined map [image: there is no content] from [image: there is no content] to [image: there is no content] making the following diagram commute:


 [image: Mathematics 04 00039 i010]











Explicitly, the map [image: there is no content] is easiest to defined by the analogous map on closed faces:


δ¯π:Face¯Ator(G)⟶Face¯Ator(Gπ′),δ¯π:c(P)¯∩Dσtor⟼c(P)¯∩Dσtor∩Dπtor











The open faces of [image: there is no content] are then mapped to faces of the arrangement Ator(G/∼π) under the projection [image: there is no content]. Combinatorially, the open faces of [image: there is no content] are toric preposets [image: there is no content] over G (i.e., in Pre(G)/≡). These are mapped to toric preposets over G/∼π via the composition


Pre(G)⟶q¯πPre(Gπ′)⟶p¯πPre(G/∼π),[ω]⟼q¯π[ωπ′]⟼p¯π[ωπ′/∼π]=[ω/∼π]











The following commutative diagram illustrates the relationship between the points in [image: there is no content], the faces of the toric graphic arrangement [image: there is no content], and the toric preposets over G. The left column depicts the toric preposets over G that are also toric posets.


 [image: Mathematics 04 00039 i011]











To summarize, toric poset morphisms that are quotients are characterized geometrically by projecting the toric chamber [image: there is no content] onto a flat of [image: there is no content], for some closed toric face partition [image: there is no content]. Applying Theorem 4.7 gives a combinatorial interpretation of this, which was not a priori obvious.



Corollary 6.2. 

Let [image: there is no content] be a toric poset. Contracting G by a partition [image: there is no content] yields a morphism to a toric poset over G/∼π if and only if ω′/∼π is acyclic for some orientation [image: there is no content]. □





The following is now immediate from Propositions 5.14 and 5.17.



Corollary 6.3. 

Let P be a toric poset over V. Then contracting a toric interval [image: there is no content] or a geometric toric antichain [image: there is no content] defines a toric morphism. □






6.2. Inclusion


Just like for ordinary posets, a toric poset can be included in larger one. Let P be a poset over V and let [image: there is no content]. The simplest injection adds vertices (dimension) but no edges (extra relations). In this case, the inclusion [image: there is no content] defines a canonical inclusion [image: there is no content]. This sends the arrangement [image: there is no content] in [image: there is no content], where [image: there is no content], to the same higher-dimensional arrangement:


Ator(G∪(V′-V)):={HijtorinRV′:{i,j}∈E}











The toric chamber [image: there is no content] is sent to the chamber


c(P′)={x∈RV′:xi<xjfor{i,j}∈E}











More generally, an injection [image: there is no content] can have added relations in [image: there is no content] either among the vertices in P or those in [image: there is no content]. Such a map is simply the composition of an inclusion described above and a toric extension, described below.




6.3. Extension


Extensions of ordinary posets were discussed in Section 3.2. A poset [image: there is no content] is an extension of P (both assumed to be over the same set V) if any of the three equivalent conditions holds:

	■

	
[image: there is no content] implies [image: there is no content];




	■

	
[image: there is no content], where ⊆ is inclusion of edge sets;




	■

	
[image: there is no content].









The first of these conditions does not carry over nicely to the toric setting, but the second two do. A toric poset [image: there is no content] is a toric extension of P if and only one has an inclusion of their open polyhedral cones [image: there is no content] in [image: there is no content], which is equivalent to [image: there is no content].




6.4. Summary


Up to isomorphism, every toric poset morphism [image: there is no content] can be decomposed into a sequence of three steps:

	(i)

	
quotient: Collapsing G by a partition π that preserves acyclicity of some [image: there is no content] (projecting to a flat [image: there is no content] of [image: there is no content] for some partition [image: there is no content]).




	(ii)

	
inclusion: Adding vertices (adding dimensions).




	(iii)

	
extension: Adding relations (cutting the chamber with toric hyperplanes).









Note that in the special case of the morphism [image: there is no content] being surjective, the inclusion step is eliminated and the entire process can be described geometrically by projecting [image: there is no content] to a toric flat [image: there is no content] and a then adding toric hyperplanes.





7. Toric Order Ideals and Filters


Let P be a poset over a set V of size at least 2, and suppose [image: there is no content] is a morphism to a poset over a size-2 subset [image: there is no content]. This is achieved by projecting [image: there is no content] onto a flat [image: there is no content] of [image: there is no content] such that [image: there is no content] has at most two blocks, and hence [image: there is no content] is at most 2-dimensional. A point [image: there is no content] on [image: there is no content] has at most two distinct entries. Thus, the partition [image: there is no content] of V satisfies

	■

	
[image: there is no content] for all [image: there is no content] in I;




	■

	
[image: there is no content] for all [image: there is no content] in J;




	■

	
[image: there is no content] for all [image: there is no content] and [image: there is no content].









The set I is called an order ideal or just an ideal of P and J is called a filter.



Ideal/filter pairs are thus characterized by closed partitions π of V such that [image: there is no content] intersects [image: there is no content] in at most two dimensions. The set of ideals has a natural poset structure by subset inclusion. Allowing I or J to be empty, this poset has a unique maximal element [image: there is no content] (corresponding to [image: there is no content]) and minimal element [image: there is no content] (corresponding to [image: there is no content]). Moreover, the order ideal poset is a lattice; this is well-known [21]. Similarly, the set of filters is a lattice as well.



Toric order ideals and filters can be defined similarly.



Definition 7.1. 

Let P be a toric poset over V, and suppose [image: there is no content] is a morphism to a toric poset over a size-2 subset [image: there is no content]. This projects [image: there is no content] onto a toric flat [image: there is no content] of [image: there is no content] for some [image: there is no content] such that [image: there is no content] is at most 2-dimensional. For the partition [image: there is no content] of V, each point [image: there is no content] on [image: there is no content] satisfies

	■

	
xikmod1=xiℓmod1 for all [image: there is no content] in I;




	■

	
xjkmod1=xjℓmod1 for all [image: there is no content] in J.











The set I is called a toric order ideal of P.



Remark 7.2. 

By symmetry, if I is a toric order ideal, then so is [image: there is no content]. A toric filter can be defined analogously, and it is clear that these two concepts are identical. Henceforth, we will stick with the term “toric filter” to avoid ambiguity with the well-established but unrelated notion of a toric ideal from commutative algebra and algebraic geometry [22].





By construction, toric filters are characterized by closed toric partitions π of V such that [image: there is no content] intersects [image: there is no content] in at most two dimensions – either a two-dimensional face of P or of an extension [image: there is no content] over [image: there is no content].



Proposition 7.3. 

Let [image: there is no content] be a toric poset. The following are equivalent for a subset [image: there is no content].

	(i) 

	
I is a toric filter of [image: there is no content];




	(ii) 

	
I is an ideal of [image: there is no content] for some [image: there is no content];




	(iii) 

	
I is a filter of [image: there is no content] for some [image: there is no content];




	(iv) 

	
In at least one total toric extension of [image: there is no content], the elements in I appear in consecutive cyclic order.











Proof. 

The result is obvious if [image: there is no content] or [image: there is no content], so assume that [image: there is no content], and [image: there is no content]. This forces [image: there is no content] to be two-dimensional (rather than one-dimensional).



(i)⇒(ii): If I is a toric filter of [image: there is no content], then [image: there is no content] intersects [image: there is no content] in two-dimensions, and so [image: there is no content] intersects an order polytope [image: there is no content] in two-dimensions, for some [image: there is no content]. Therefore, [image: there is no content] intersects the chamber [image: there is no content] in two-dimensions, and hence I is an ideal of [image: there is no content].



(ii)⇒(i): Suppose that I is an ideal of [image: there is no content] for [image: there is no content]. Then [image: there is no content] is two-dimensional, and it descends to a two-dimensional face [image: there is no content] of the toric poset [image: there is no content] or of some extension (if [image: there is no content] intersects the interior). Therefore, I is a toric filter of [image: there is no content].



(ii)⇔(iii): Immediate by Remark 7.2 upon reversing the roles of I and [image: there is no content].



(ii)⇒(iv): If I is a size-k ideal of [image: there is no content], then by a well-known property of posets, there is a linear extension of the form [image: there is no content], where each [image: there is no content]. The cyclic equivalence class [image: there is no content] is a total toric extension of [image: there is no content] in which the elements of I appear in consecutive cyclic order.



(iv)⇒(ii): Suppose [image: there is no content] is a toric total extension of [image: there is no content]. This means that for some [image: there is no content],


0≤xi1<⋯<xik<xvk+1<⋯<xvn<1



(22)







The unique preimage [image: there is no content] of this point in [image: there is no content] under the quotient map [image: there is no content] is in the order polytope of some [image: there is no content] that maps into [image: there is no content]. Since the coordinates of [image: there is no content] are totally ordered as in Equation (22), [image: there is no content] is a linear extension of [image: there is no content]. Moreover, the coordinates in I form an initial segment of this linear extension, hence I is an ideal of [image: there is no content].



(iii)⇔(iv): Immediate by Remark 7.2 upon reversing the roles of I and [image: there is no content]. ☐





Proposition 7.3 along with a result of Stanley gives a nice characterization of the toric filters in terms of vertices of order polytopes. Every filter I of a poset P has a characteristic function


χI:P⟶R,χI(k)=1,k∈I0,k∉I











We identify [image: there is no content] with the corresponding vector in [image: there is no content].



Proposition 7.4. 

([16], Corollary 1.3) Let P be a poset. The vertices of the order polytope [image: there is no content] are the characteristic functions [image: there is no content] of filters of P.





Given a toric poset, we can define the characteristic function [image: there is no content] of a toric filter similarly. However, one must be careful because under the canonical quotient to the torus, the vertices of every order polytope get identified to [image: there is no content]. Therefore, we will still identify [image: there is no content] with a point in [image: there is no content], not [image: there is no content].



Corollary 7.5. 

Let [image: there is no content] be a toric poset and [image: there is no content]. Then [image: there is no content] is the characteristic function of a toric filter of P if and only if [image: there is no content] is a vertex of [image: there is no content] for some [image: there is no content].





Let [image: there is no content] denote the set of toric filters of P. This has a natural poset structure by subset inclusion. Once again, there is a unique maximal element [image: there is no content] and minimal element [image: there is no content].



Proposition 7.6. 

With respect to subset inclusion and cardinality rank function, [image: there is no content] is a graded poset.





Proof. 

Let [image: there is no content] be a toric poset over [image: there is no content]. It suffices to show that every nonempty toric filter J contains a toric filter [image: there is no content] of cardinality [image: there is no content].



By Proposition 7.3, the set J is an order ideal of [image: there is no content] for some [image: there is no content]. Choose any minimal element [image: there is no content] of [image: there is no content], which is a source of [image: there is no content]. Let [image: there is no content] be the orientation obtained by flipping v into a sink. The set [image: there is no content] is an ideal of [image: there is no content], and so by Proposition 7.3, it is a toric filter of [image: there is no content]. ☐





Example 7.7. 

Let [image: there is no content], the circle graph on 4 vertices, and let [image: there is no content] be the orientation shown at left in Figure 4. The Hasse diagram of the poset [image: there is no content] is a line graph [image: there is no content], and the transitive closure is [image: there is no content]. Since V is a size-4 toric chain, it is totally cyclically ordered in every [image: there is no content], and the dashed edges are additionally implied by toric transitivity. Thus,


L4=G^Hasse(P(G,ω))⊊G^torHasse(P(G,[ω]))=C4,G¯(P(G,ω))=G¯tor(P(G,[ω]))=K4










Figure 4. The four torically equivalent orientations to [image: there is no content], shown at left. The edges implied by toric transitivity are dashed.



[image: Mathematics 04 00039 g004 1024]








The 4 torically equivalent orientations are shown in Figure 4. The only total toric extension of [image: there is no content] is


[(1,2,3,4)]={(1,2,3,4),(2,3,4,1),(3,4,1,2),(4,1,2,3)]








and this is shown at right in Figure 5. The toric filters are all subsets of V that appear as an initial segment in one of these four total orders. The poset [image: there is no content] is shown at left in Figure 5. Note that unlike the ordinary poset case, it is not a lattice.


Figure 5. The toric filters of the toric poset [image: there is no content] form a poset that is not a lattice. The vertices should be thought of as subsets of [image: there is no content]; order does not matter. That is, 134 represents [image: there is no content].



[image: Mathematics 04 00039 g005 1024]






Example 7.8. 

Let [image: there is no content], as in Example 7.7, but now let [image: there is no content] be the orientation shown at left in Figure 6. The only nonempty toric chains are the four vertices (size 1) and the four edges (size 2). Since [image: there is no content] has no toric chains of size greater than 2, the Hasse diagram and the transitive closure of the toric poset [image: there is no content] are both [image: there is no content]. Note that the transitive closure of the (ordinary) poset [image: there is no content] contains the edge [image: there is no content], and so as graphs, [image: there is no content]. The 6 torically equivalent orientations of [image: there is no content] are shown in Figure 6. There are four total toric extensions of [image: there is no content] which are shown on the right in Figure 7, as cyclic words. The toric filters are all subsets of V that appear as a consecutive segment in one of these four total orders. The poset [image: there is no content] of toric filters is shown at left in Figure 7. In this particular case, the poset of toric filters is a lattice. In fact, it is isomorphic to a Boolean lattice, because every subset of [image: there is no content] appears consecutively (ignoring relative order) in one of the four cyclic words in Figure 7.


Figure 6. The six torically equivalent orientations to [image: there is no content], shown at left.



[image: Mathematics 04 00039 g006 1024]





Figure 7. The toric filters of the toric poset [image: there is no content] form a poset that happens to be a lattice. Each toric filter appears as a consecutive sequence in one of the total toric extensions, shown at right.



[image: Mathematics 04 00039 g007 1024]









8. Application to Coxeter Groups


A Coxeter system is a pair [image: there is no content] consisting of a Coxeter groupW generated by a finite set of involutions [image: there is no content] with presentation


W=⟨S∣si2=1,(sisj)mi,j=1⟩








where [image: there is no content] for [image: there is no content]. The corresponding Coxeter graph Γ has vertex set [image: there is no content] and edges [image: there is no content] for each [image: there is no content] labeled with [image: there is no content] (label usually omitted if [image: there is no content]). A Coxeter element is the product of the generators in some order, and every Coxeter element [image: there is no content] defines a partial ordering on S via an acyclic orientation [image: there is no content]: Orient [image: there is no content] iff [image: there is no content] precedes [image: there is no content] in some (equivalently, every) reduced expression for c. Conjugating a Coxeter element by an initial generator (note that [image: there is no content]) cyclically shifts it:


sx1(sx1sx2⋯sxn)sx1=sx2⋯sxnsx1








and the corresponding acyclic orientation differs by reversing the orientations of all edges incident to [image: there is no content], thereby converting it from a source to a sink vertex. In 2009, H. and K. Eriksson showed [2] that two Coxeter elements c and [image: there is no content] are conjugate if and only if [image: there is no content]. Thus, there are bijections between the set [image: there is no content] of Coxeter elements and [image: there is no content], as well as between the corresponding conjugacy classes and the toric equivalence classes:


C(W)⟶Acyc(Γ)Conj(C(W))⟶Acyc(Γ)/≡c⟼ω(c)clW(c)⟼[ω(c)]











As an example, suppose [image: there is no content], the affine Coxeter group of type A, and let [image: there is no content] (using [image: there is no content] instead of the usual [image: there is no content]), as shown below:


 [image: Mathematics 04 00039 i012]











The conjugate Coxeter elements to [image: there is no content] are thus [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. The toric filters of [image: there is no content] describe which subwords can appear in an initial segment of some reduced expression of one of these conjugate Coxeter elements. The poset of these toric filters was shown in Figure 5 (replace k with [image: there is no content]).



Now, consider the element [image: there is no content] in [image: there is no content], as shown below:


 [image: Mathematics 04 00039 i013]











The toric equivalence class containing [image: there is no content] has six orientations, which were shown in Figure 6. Each of these describes a unique conjugate Coxeter element:


s1s2s4s3s2s4s1s3s4s1s3s2s2s1s3s4s1s3s2s4s3s2s4s1=s1s4s2s3=s2s4s3s1=s4s3s1s2=s2s3s1s4=s1s3s4s2=s3s4s2s1=s4s2s3s1=s3s1s4s2=s4s2s1s3=s3s1s2s4











These are listed above so that the Coxeter element in the [image: there is no content] column corresponds to the [image: there is no content] orientation in Figure 6. The linear extensions of each orientation describe the reduced expressions of the corresponding Coxeter element, which are listed in the same column above.



The toric poset [image: there is no content] has four total toric extensions, and these were shown on the right in Figure 7 (replace k with [image: there is no content]). The toric filters of [image: there is no content] correspond to the subsets that appear consecutively in one of these cyclic words. The poset [image: there is no content] of toric filter appears on the left in Figure 7.




9. Concluding Remarks


In this paper, we further developed the theory of toric posets by formalizing the notion of toric intervals, morphisms, and order ideals. In some regards, much of the theory is fairly analogous to that of ordinary posets, though there are some noticeable differences. Generally speaking, the one recurring theme was the characterization of the toric analogue of a feature in [image: there is no content] by the characterization of the ordinary version of that feature in [image: there is no content] either for some [image: there is no content], or for all [image: there is no content].



One question that arises immediately is whether there is a toric order complex. While there may exist such an object, there are some difficulties unique to the toric case. For example, a poset is completely determined by its chains, in that if one specifies which subsets of V are the chains of P, and then the toric order of the elements within each chain, the entire poset can be reconstructed. This is not the case for toric posets, as shown in Figure 8. Here, two torically non-equivalent orientations of [image: there is no content] are given, but the toric posets [image: there is no content] and [image: there is no content] have the same sets of toric chains: the 5 vertices and the 5 edges.


Figure 8. Two non-torically equivalent orientations [image: there is no content] in [image: there is no content] for which [image: there is no content] and [image: there is no content] have the same set of toric chains.



[image: Mathematics 04 00039 g008 1024]






The fact that an ordinary poset is determined by its chains just means that once one specifies the total order between every chain of size [image: there is no content], then the entire partial order is determined. The problem for toric posets, which we encountered in this paper, is that every size-2 subset is trivially cyclically ordered, whether it lies on a toric chain or not. In other words, a total order can be defined on two elements, but a cyclic order needs three. The analogous statement for toric posets would be that specifying the total cyclic order between every toric chain of size [image: there is no content] specifies the entire toric order. Such a statement would establish the intuitive idea that knowing all total cyclic orders should determine the toric partial order “modulo the size-2 toric chains.” Current works suggests that there is an analogue of the aforementioned properties for toric posets, but it requires a new generalization of the concept of a chain. The details are too preliminary and complicated to describe here, and it is not clear whether it will lead to a combinatorial object such as a toric order complex. Without this, there might not be a natural way to study toric posets topologically.



Another important feature of ordinary posets that does not seem to have any obvious toric analogue are Möbius functions, and this is vital to much of the theory of ordinary posets. Recall the analogy from the Introduction about how topology is like “analysis without the metric.” Similarly, many of the basic features of ordinary posets have toric analogues, despite the fact that toric posets have no binary relation. However, much of the more advanced theory is likely to fail because one also seems to lose valuable tools such as an order complex and a Möbius function. Even the theory that does carry over has its shortcomings. For example, morphisms have a simple combinatorial characterization using the binary relation: [image: there is no content] implies [image: there is no content]. The geometric definition requires a patchwork of quotients, extensions, and inclusions. It would be desirable to have a more “holistic” characterization of toric poset morphisms, though it is not clear that that such a description should exist.



Finally, the connection of toric posets to Coxeter groups is the subject of a paper nearing completion on cyclic reducibility and conjugacy in Coxeter groups. Loosely speaking, reduced expressions can be formalized as labeled posets called heaps. This was formalized by Stembridge [23,24] in the 1990s. The fully commutative (FC) elements are those such that “long braid relations” (e.g., [image: there is no content]) do not arise. Equivalently, they have a unique heap. The cyclic version of the FC elements are the cyclically fully commutative CFC elements, introduced by the author and collaborators in [25]. In 2013, T. Marquis showed that two CFC elements are conjugate if and only if their heaps are torically equivalent [26]. These elements were further studied by M. Pétréolle [27]. In our forthcoming paper, we will formalize the notion of a toric heap, which will essentially be a labeled toric poset. This allows us to formalize objects such as cyclic words, cyclic commutativity classes, and develop a theory of cyclic reducibility in Coxeter groups using the toric heap framework.
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