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Abstract: In this paper we study some geometric properties of the algebraic set associated to the
binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set
associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and
some of them are reducible. If every irreducible component of the algebraic set is smooth we call the
graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete
graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and
only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular.
In addition, it is proved that complete bipartite graphs are edge smooth.
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1. Introduction

There are several natural ways to associate an ideal to a graph. Let K be a field and G a graph
on the vertex set [n] = {1, 2, . . . , n}. The monomial edge ideal of G, IG, in K[x1, . . . , xn] is the ideal
generated by the monomials xixj, where {i, j} is an edge of G. These ideals were first introduced
by Villarreal in [1], where he studied the Cohen-Macaulay property of such graphs. Many authors
have studied the algebraic properties of these ideals in terms of the underlying graphs, especially
their Cohen-Macaulay property. In 2010, Binomial edge ideals were introduced by Herzog, Hibi,
Hreinsdóttir, Kahle and Rauh in [2]. They appear independently, and at about the same time, also in
the paper [3]. Let S = K[x1, . . . , xn, y1, . . . , yn] be the polynomial ring in 2n variables. For each edge
e = {i, j} of G we associate to e a binomial fe defined by fe = fij = xiyj − xjyi with i < j. The ideal
generated by the set of all fe with e ∈ E(G) is called binomial edge ideal.

Observe that a binomial edge ideal can be viewed as an ideal generated by a set of 2-minors of the
2× n-matrix of indeterminates x1, . . . , xn, y1, . . . , yn. Indeed, the ideal of 2-minors of the 2× n-matrix
may be interpreted as the binomial edge ideal of a complete graph on [n]. Algebraic properties of
those ideals in terms of properties of the underlying graphs have been studied by many authors,
and further studies are in progress. Related to binomial edge ideals are the ideals of adjacent minors
considered by Hoşten and Sullivant [4]. In the case of a line graph the binomial edge ideal may
be interpreted as an ideal of adjacent minors. This particular class of binomial edge ideals has
also been considered by Diaconis, Eisenbud and Sturmfels in [5] where they compute the primary
decomposition of this ideal.

It is said that a graph G on [n] is closed with respect to the given labeling of vertices, if G satisfies
condition (2) of the following theorem ([2], Theorem 1.1):

Theorem 1. Let G be a simple graph on the vertex set [n], and let < be the lexicographic order on
S = K[x1, . . . , xn, y1, . . . , yn] induced by x1 > x2 > · · · > xn > y1 > y2 > · · · > yn. Then the
following conditions are equivalent:
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1. The generators fij of JG form a quadratic Groebner basis;
2. For all edges {i, j} and {k, l} with i < j and k < l one has {j, l} ∈ E(G) if i = k, and {i, k} ∈ E(G) if

j = l.

Now let I be an ideal in K[x1, . . . , xn], where K is algebraically closed. By Z(I) we mean, the
algebraic set associated to I, the set of all points, a = (a1, . . . , an) in Kn such that for each f in I,
f (a1, . . . , an) = 0. When I is a monomial ideal we can see I as intersection of some pure monomial
ideals, i.e., the ideals generated by some of xαi

i ; i = 1, . . . , n and αi ∈ IN. The minimal associated
primes of I are of the form < xi1 , . . . , xir >, with {i1, . . . , ir} ⊂ [n] and Z(I) = Z(

√
I) =

⋃
P∈Min(I) Z(P)

where Min(I) is the set of the minimal prime ideals of I. From the geometric point of view,
Z(P) = Z(xi1 , . . . , xir) =

⋂r
j=1 Z(xij) is the intersection of some Euclidean hyperplanes,

{(a1, . . . , an) ∈ Kn; ai = 0 f or some i},

which have no complicated geometric structure. In contrast to monomial edge ideals, binomial edge
ideals have many interesting geometric properties.

The purpose of this paper is a initial study of geometric properties of binomial edge ideals and
the first geometric property of an algebraic set is the smoothness or the locus of singularity.

Let Y ⊂ Kn be an affine variety, and let f1, f2, . . . , ft ∈ A = K[x1, x2, . . . , xn] be a set of generators
for the ideal of Y. Y is nonsingular at a point p ∈ Y if the rank of the matrix ‖ ( ∂ fi

∂xj
)(p) ‖ is n− r,

where r is the dimension of Y. Y is nonsingular if it is nonsingular at every point. Otherwise,
Y is called singular. Let I be an ideal in A and Z(I) be the algebraic set associated to I. We have
Z(I) = Z(

√
I) =

⋃
P∈Min(I) Z(P) where each Z(P) is an affine variety. It is said y ∈ Kn is a singular

point of Z(I) when there exists P ∈ Min(I) such that y is a singular point of Z(P).
In this paper we prove that complete graphs are edge smooth and also introduce two conditions

such that G is edge singular if and only if G satisfies these conditions.

2. Edge Singularity

Let G be a simple graph on [n]. For each subset S ⊂ [n], a prime ideal, PS(G), is defined in [2].
Let T = [n]\S, and let G1, . . . , Gc(S) be the connected components of GT . Here GT is the restriction of
G to T whose edges are exactly those edges {i, j} of G for which i, j ∈ T. For each Gi we denote by G̃i
the complete graph on the vertex set V(Gi). Setting

PS(G) = (
⋃
i∈S
{xi, yi}, JG̃1

, . . . , JG̃c(S)
).

By corollary 3.9 [2] some of PS(G)’s construct the set of minimal prime ideals of JG. We define
the graph G is edge smooth if the affine variety of the binomial edge ideal of G is nonsingular at every
nonzero point. Otherwise G is called edge singular.

Theorem 2. Any complete graph G is edge smooth.

Proof. Let G be a simple complete graph on [n]. Put Y = V(JG). By corollary 2.2 [2], JG is a
radical ideal so JG = I(V(JG)). Since G is complete, by proposition 1.6 [2], S

JG
is Cohen-Macaulay

and hence by corollary 3.4 [2], we have dimY = dim S
JG

= n + 1. We must show that for all

0 6= p = (p1, . . . , pn, q1, . . . , qn) ∈ K2n, rank ‖ ( ∂ fi
∂tj

)(p) ‖= 2n− (n + 1) = n− 1, where 1 ≤ i ≤ n(n−1)
2 and

tj =

{
xj 1 ≤ j ≤ n
yj−n n + 1 ≤ j ≤ 2n
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It is enough to show that rank ‖ ( ∂fi
∂xj

)(p) ‖= n− 1, for all 0 6= p = (p1, . . . , pn) ∈ Kn. Without loss of

generality assume p1 6= 0. By setting suitable order on fij’s (that is f12, f13, . . . , f1n, f23, f24, . . . , fn−1n),
the first half of the Jacobian matrix is represented by the following matrix:

y2 −y1 0 · · · 0 0
y3 0 −y1 · · · 0 0
...
yn 0 0 · · · 0 −y1

0 y3 −y2 · · · 0 0
0 y4 0 · · · −y2 0
...
0 0 0 · · · yn −yn−1


Multiply the first row by y−1

1 y3 and add it to the n’th row, and multiply the first row by y−1
1 y4

then add it to the n+ 1’th row, and in the same way multiply the first row by y−1
1 yn and add the result

to the 2n− 3’th row. Continuing this pattern for the second row to the n− 1’th row. We observe that
all rows become zero except the first n− 1 rows, so rank ‖ ( ∂fi

∂xj
)(p) ‖= n− 1. Since p is arbitrary, G is

edge smooth.

Example 1. Let G = K4 and S = K[x1, . . . , x4, y1, . . . , y4]. We have:

JG =< f12, f13, f14, f23, f24, f34 >

and
dim

S
JG

= 5.

By the appropriate order on fij’s we have:

y2 −y1 0 0
y3 0 −y1 0
y4 0 0 −y1

0 y3 −y2 0
0 y4 0 −y2

0 0 y4 −y3


By using the same way explained in the proof of Theorem 2, the rank of this matrix is 3 at any nonzero point of
K4. So G is a edge smooth graph.

The following theorem characterizes all edge singular graphs. Two conditions introduced in
this theorem can be checked algorithmically. This theorem also shows that edge singularity is just a
combinatorial property and does not depend on K.

Theorem 3. Let G be a simple connected graph on the vertex set [n]. The graph G is edge singular if and only
if there exists S ⊂ [n] which satisfies the following conditions:

1. S 6= ∅ and for each i ∈ S one has c(S\{i}) < c(S).
2. c(S) < n− |S|.

Proof. Assume that there is some S ⊂ [n] that satisfies conditions 1 and 2. By corollary 3.9 [2] the first
condition implies that PS(G) ∈ MinJG. Let G1, . . . , Gc(S) be the connected components of GT . Put the
following labeling for the vertices of G;



Mathematics 2016, 4, 37 4 of 6

• v1, . . . , vs are the vertices corresponded to S,
• vs+1, . . . , vt1 are the vertices of G1,
• vt1+1, . . . , vt2 are the vertices of G2,
...

• vtc(S)−1+1, . . . , vn are the vertices of Gc(S).

Now the Jacobian matrix of PS(G) has the following form;

A1 0 0 · · · 0 0 0 0 . . . 0
0 0 0 . . . 0 A2 0 0 . . . 0
0 B1 0 . . . 0 0 D1 0 . . . 0
0 0 B2 . . . 0 0 0 D2 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . Bc(S) 0 0 0 . . . Dc(S)


where A1 and A2 are |S| × |S| identity matrices and (B1|D1), . . . , (Bc(S)|Dc(S)) are the Jacobian
matrices of JG̃1

, . . . , JG̃c(S)
respectively.

By choosing Q = (Q1, . . . , Q2n) ∈ K2n as the following

Qi =

{
1 i ∈ S
0 Otherwise

the rank of Jacobian matrix of PS(G) at Q is equal to 2|S|. On the other hand we know that;

2n− dimZ(PS(G)) = n + |S| − c(S).

Since
c(S) < |T| = n− |S|,

hence
2|S| < n + |S| − c(S).

So G is edge singular.
Now suppose that G is an edge singular graph. Then there is some S ⊂ [n] that PS(G) ∈ MinJG,

and there exists nonzero Q in K2n such that the rank of the Jacobian matrix of PS(G) at Q is less than
n + |S| − c(S). If c(S) = n− |S|, then this rank is less than 2|S|, but this is a contradiction since the
rank of the Jacobian matrix of PS(G) is greater than or equal to 2|S|. Hence we have c(S) < n− |S|.
Moreover, note that S is not empty since if S is empty then PS(G) is equal to the binomial edge ideal
of the complete graph, but complete graphs are edge smooth by Theorem 2.

Example 2. Let G be the following graph:

•1 •2 •3

•4 •5 •6

We set S = {1, 6}. This S satisfies the mentioned conditions in Theorem 3, then G is edge singular.

The following example illustrates Theorem 2 is not two sided that is any edge smooth graph is
not necessarily complete. Also this shows any non complete graph is not necessarily edge singular.
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Example 3. Let G be the following graph:

•1 •2

•3 •4

There does not exist S ⊂ [n] that satisfies the conditions of Theorem 3. Hence G is edge smooth.

Corollary 4. For all n ≥ 5, G = Cn is a singular graph.

Proof. Put S = {1, 4}. G[n]\S separates into two connected components (in case C5, it separates into
an edge and an isolated vertex). Also S satisfies the first condition of Theorem 3, so a cycle with n
vertices, n ≥ 5, is a singular graph.

Corollary 5. A tree is a singular graph if the number of vertices which are not leaf, is at least 2.

Proof. Assume that the three of the non-leaf vertices are k, k + 1. Put S = {k}. One can check easily
that S satisfies the conditions of Theorem 3.

Example 4. Let G be the following graph:

•1 •6

•3 •4 •5

•2 •7

Put S = {4}. S satisfies the conditions of Theorem 3.

Corollary 6. For all n, m, Kn,m is a smooth graph.

Proof. Let S ⊂ [n + m]. G[n+m]\S is a connected graph unless either S contains n vertices of a part of
G or m vertices of the other part. If S just contains the whole vertices of one part of G, then S does not
satisfy the second condition of Theorem 3, and if S is the another subset of [n + m], S does not satisfy
the first condition of Theorem 3. So Kn,m is a smooth graph.

Remark 1. With the same argument it is concluded that all complete multipartite graphs are edge singular.

3. Conclusions

Smoothness is a geometric property which could be studied by algebraic tools. In this paper
smoothness of some varieties are studied by algebraic and combinatorial properties of corresponded
combinatorial objects.
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4. Hoşten, S.; Sullivant, S. Ideals of adjacent minors. J. Algebra 2004, 277, 615–642.
5. Diaconis, P.; Eisenbud, D.; Sturmfels, B. Lattice walks and primary decomposition. In Mathematical Essays

in Honor of Gian-Carlo Rota; Birkhuser: Boston, MA, USA, 1998; pp. 173–193.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Edge Singularity
	Conclusions

