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Abstract:



We perform a classification of the Lie point symmetries for the Black-Scholes-Merton Model for European options with stochastic volatility, σ, in which the last is defined by a stochastic differential equation with an Orstein-Uhlenbeck term. In this model, the value of the option is given by a linear (1 + 2) evolution partial differential equation in which the price of the option depends upon two independent variables, the value of the underlying asset, S, and a new variable, y. We find that for arbitrary functional form of the volatility, [image: there is no content], the (1 + 2) evolution equation always admits two Lie point symmetries in addition to the automatic linear symmetry and the infinite number of solution symmetries. However, when [image: there is no content] and as the price of the option depends upon the second Brownian motion in which the volatility is defined, the (1 + 2) evolution is not reduced to the Black-Scholes-Merton Equation, the model admits five Lie point symmetries in addition to the linear symmetry and the infinite number of solution symmetries. We apply the zeroth-order invariants of the Lie symmetries and we reduce the (1 + 2) evolution equation to a linear second-order ordinary differential equation. Finally, we study two models of special interest, the Heston model and the Stein-Stein model.
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1. Introduction


The Black-Scholes-Merton Model for European options is based upon some Ansatz for the stock price. Specifically, the process for the stock price is characterized by continuity, and it has the ability to hedge continuously with transaction costs and has constant volatility [1,2,3].



In the Black-Scholes-Merton Model, the price of a financial asset is given by the soluton of the stochastic differential equation


[image: there is no content]



(1)




where [image: there is no content] is a Brownian motion, and the value [image: there is no content] of the option is given by the solution of the [image: there is no content] evolution equation,


[image: there is no content]



(2)




in which t is time, S is the current value of the underlying asset, for example a stock price, and r is the rate of return on a safe investment. The value of the option is subject to the satisfaction of the terminal condition, [image: there is no content], when [image: there is no content]. Finally, σ is the volatility of the model.



The Black-Scholes-Merton Model assumes constant volatility σ. However, in real problems, σ is not a constant. One possible generalisation of the model, Equation (2), is to consider that the volatility depends upon the time, t, and on the value of the stock, S, i.e., [image: there is no content]. It has been proposed that σ is a function of a mean Orstein–Uhlenbeck process [4].



Consider that [image: there is no content], where y is given by the stochastic differential equation with the Orstein–Uhlenbeck term [5,6,7]:


[image: there is no content]



(3)







The new Brownian motion [image: there is no content] can be correlated with [image: there is no content] and be expressed as follows:


[image: there is no content]



(4)




in which [image: there is no content] describes a Brownian motion independent of [image: there is no content] and ρ is the correlation factor with values [image: there is no content].



Hence, the Black-Scholes Equation (2) in the case of stochastic volatility is modified and the value u of the option is given by the [image: there is no content] evolution equation


[image: there is no content]



(5)




where the operators, [image: there is no content]M^2,M^3,M^4, are defined as follows:


[image: there is no content]



(6)






M^2=ρβSfy∂2∂S∂y,M^3=-βΛt,S,y∂∂y,and



(7)






[image: there is no content]



(8)







The function [image: there is no content] is


[image: there is no content]



(9)




and [image: there is no content] satisfies the terminal condition [image: there is no content] at time [image: there is no content].



The operator [image: there is no content] gives the Black-Scholes-Merton Equation (2) with volatility [image: there is no content], [image: there is no content] expresses the correlation term between the two Brownian motions, [image: there is no content] and [image: there is no content], of the European option and of the volatility, respectively, and [image: there is no content] is the Orstein-Uhlenbeck process term. Finally. the term M^3, the so called premium term, expresses the market price of the volatility risk [6]. The function [image: there is no content] in Equation (9) is the risk-premium factor which drives the volatility and follows from the second Brownian motion, [image: there is no content], where in the case of absolute correlation, i.e., [image: there is no content], [image: there is no content] does not play any role in the model. The first term of the rhs side of Equation (9) is called the excess return-to-risk ratio [6]. The statistical importance of stochastic volatility has been confirmed in [8].



The purpose of this work is the study of the Black-Scholes-Merton Model with stochastic volatility, Equation (5), by using the method of group invariant transformations, specifically the Lie (point) symmetries of the equation. The importance of Lie symmetries is that they provide a systematic method to facilitate the solution of differential equations because they provide first-order invariants which can be used to reduce the differential equations. Moreover, Lie symmetries can be used for the classification of differential equations. Furthermore, we can extract important information for the differential equation, consequently for the model, from the group of invariant transformations admitted.



The first application of the Lie symmetries in financial modeling was performed by Gazizov & Ibragimov in [9]. They studied the admitted group of invariant transformations for the Black-Scholes-Merton Equation (2), with constant volatility and they proved that Equation (2) admits as Lie symmetries the elements of Lie algebra, [image: there is no content] ( In the Mubarakzyanov Classification Scheme [10,11,12,13]). This means that Equation (2) is maximally symmetric and according to the Theorem of Sophus Lie [14] there exists a transformation on the space of variables [image: there is no content] in which Equation (2) can be written in the form of the heat equation. The last was an important result because the mathematical methods from physical science can be used for the study of differential equations in financial mathematics. A similar result has been found for the one-factor model of commodities [15], which means that the three different equations, the heat equation, the Black-Scholes-Merton equation and the one-factor model of commodities equation, are equivalent at the mathematical level even if they describe different subjects.



In recent years, Lie symmetries have covered a big range of applications in financial mathematics. For instance, the group invariants of the Cox-Ingersoll-Ross Pricing Equation have been studied in [16] and the nonlinear Merton model in [17]. As far as concerns the Asian option, a Lie symmetry classification has been performed in [18]. As for generalisations of the Black-Scholes-Merton Model, the Lie symmetries and the reduction process of the nonautonomous model can be found in [19,20], while another generalisation of Equation (2) with a “source” was studied in [21].



Furthermore, in [22,23], the symmetry analysis of the space- and time-dependent one-factor model of commodities and of the nonautonomous two-dimensional Black-Scholes-Merton Equations were performed. For other applications of Lie symmetries in financial mathematics, see, for instance, [24,25,26], and references therein.



The stochastic volatility model, Equation (5), is a [image: there is no content] evolution equation. Below, we perform a symmetry analysis and we determine the group invariant solutions. In particular, we restrict our analysis to the model in which the risk premium factor vanishes without necessarily [image: there is no content] and from Equation (9), only the term which expresses the return-to-risk ratio survives. Moreover, we study two models for European options with stochastic volatility, the Heston model [27] and the Stein–Stein model [28]. The latter is a model without correlation between the two Brownian motions, [image: there is no content] and Z^t,i.e., [image: there is no content] in Equation (4). The plan of the paper is as follows.



In Section 2, we give the basic properties and definitions for the Lie point symmetries of differential equations and we perform the symmetry classification for our model. We find that Equation (5) without the risk premium factor is always invariant under the [image: there is no content] Lie algebra. However, when [image: there is no content] is constant, Equation (5) is invariant under a larger Lie algebra. The application of the Lie symmetries to Equation (5) can be found in Section 3, in which we reduce the [image: there is no content] evolution equation by using the zeroth-order invariants provided by the Lie symmetries and we derive invariant solutions. In Section 4 and Section 5 we study two models of stochastic volatility for European options, the Heston model and the Stein-Stein model, respectively. For these two models, we find that both are invariant under the Lie algebra [image: there is no content], and we apply the Lie symmetries to solve the equations of the two models. For the Heston model, the closed-form solution is expressed in terms of Kummer Functions, whereas for the Stein–Stein model, the closed-form solution is expressed in terms of Hypergeometric Functions. Furthermore, we give some numerical solutions for the two models. Finally, in Section 6, we discuss our results and draw our conclusions




2. Lie Symmetry Analysis


We consider the Black-Scholes-Merton Equation with stochastic volatility governed by the evolution Equation (5) for which the premium term depends only upon the return-to-risk ratio. For a time-independent rate-of-return, Equation (5) becomes


H:0=12f2yS2u,SS+ρβSfyu,Sy+12β2u,yy+rSu,S+αm-y-βρμ-rfyu,y-ru+u,t



(10)







Let Φ be the map of an one-parameter point transformation such as


[image: there is no content]



(11)




with infinitesimal transformation (ε is the parameter of smallness.)


[image: there is no content]



(12)






[image: there is no content]



(13)






[image: there is no content]



(14)






[image: there is no content]



(15)




and generator


[image: there is no content]



(16)







Consider now that [image: there is no content] is a solution of Equation (10) and under the map Φ, Equation (11), [image: there is no content] is also a solution of Equation (10). Then, we say that the generator [image: there is no content] of the infinitessimal transformation of the one-parameter point transformation, Φ, is a Lie (point) symmetry of (Equation 10) and Equation (10) is invariant under the action of the map Φ. That means that there exists a function ψ such that the following condition holds [29]


X2H=ψH,modH=0



(17)




or, equivalently,


[image: there is no content]



(18)




where [image: there is no content] is the second prologation/extension of X in the space of variables [image: there is no content]. Specifically [image: there is no content] is defined from the following formula


[image: there is no content]



(19)




where ηiA,ηijA are given by the relations


ηiA=η,iA+u,iBη,BA-ξ,iju,jA-u,iAu,jBξ,Bj



(20)




and


ηijA=η,ijA+2η,B(iAu,j)B-ξ,ijku,kA+η,BCAu,iBu,jC-2ξ,(i|B|kuj)Bu,kA-ξ,BCku,iBu,jCu,kA+η,BAu,ijB-2ξ,(jku,i)kA-ξ,Bku,kAu,ijB+2u(,jBu,i)kA



(21)







The importance of the existence of a Lie symmetry for a partial differential equation is that from the associated Lagrange’s system,


[image: there is no content]



(22)




Zeroth-order invariants, [image: there is no content], can be determined which can be used to reduce the number of the independent variables of the differential equation.



In the following, we perform a classification of the Lie symmetries of Equation (10). Function [image: there is no content] is defined by the requirement that Equation (10) admit Lie symmetries. The latter requirement can be seen as a geometric selection rule as the Lie symmetries are generated from the elements of the Homothetic Algebra [30] of the (pseudo)Riemannian space, which defines the Laplace operator in the [image: there is no content] evolution Equation (10). In our case, the (pseudo)Riemannian manifold is defined by the Brownian motions, Wt,Z^t, of the stock price, S, and of the volatility, σ, respectively.



Before we proceed with the symmetry analysis, we remark that Equation (10) is a linear equation which means that it always admits the linear symmetry, [image: there is no content] and the infinite-dinensional abelian subalgebra of solutions, [image: there is no content], where function [image: there is no content] is a solution of the original Equation (10) [31].



2.1. Classification


From the symmetry condition Equation (17), we get a system of thirty-one equations ( for the derivation of the system, we used the symbolic package SYM of Mathematica [32,33]) in which the solution of the system gives the form of the generator Equation (16) of the transformation Equation (11), that transforms solutions into solutions. From the latter system, we have the following results.



For arbitrary function, [image: there is no content], Equation (10) admits the Lie symmetries


X1=∂t,X2=S∂S



(23)




plus the vector fields Xu,Xb. The algebra in which the Lie symmetries form is the [image: there is no content].



When [image: there is no content], Equation (10) admits the Lie symmetries


X¯1=∂t,X¯2=S∂S,X¯3=e-αt∂y



(24)






[image: there is no content]



(25)






[image: there is no content]



(26)




plus the vector fields Xu,Xb. The Lie Brackets of the Lie algebra are given in Table 1.



Table 1. Lie brackets of the Lie symmetries of Equation (10) for [image: there is no content].
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We remark that the two-factor model of commodities is invariant under the same algebra of point transformations [15,23]. That is an expected result because the two-factor model of commodities follows from the one-factor model in which the second factor, product, follows an Orstein-Uhlenbeck process. Moreover, as we discussed in the Introduction, the one-factor model is maximally symmetric just like the Black-Scholes-Merton Equation.



On the other hand [image: there is no content] means that the volatility σ is constant. However, the second Brownian motion, [image: there is no content] in the space wherein σ is defined, interacts with the Brownian motion [image: there is no content] and modifies the Black-Scholes-Merton Model. However, in the case for which the correlation ρ vanishes, i.e., [image: there is no content], Equation (10) is not reduced to Equation (2) but only when the Orstein-Uhlenbeck process is identically zero, that is, β=0,α=0. Otherwise, the price u depends upon the Orstein-Uhlenbeck process.



We continue with the reduction of Equation (10) by applying the zeroth-order Lie invariants. Furthermore for every reduced equation we study the Lie symmetries.





3. Group Invariant Solutions


In this section, we apply the Lie symmetries in order to reduce Equation (10). We study the two cases, [image: there is no content] and [image: there is no content] to be an arbitrary function. In order to perform the reduction and the later equation to give a solution of the original problem, there should be a constraint between the Lie symmetry vector and the terminal condition. However, we perform the reduction without considering the terminal condition at the moment because the initial conditions can be modified from different options. As far as the invariant solutions of the Black-Scholes-Merton Equation (2) are concerned, see [34].



3.1. Arbitrary Function [image: there is no content]


For an arbitrary functional form of [image: there is no content], as we saw above, Equation (10) admits three Lie point symmetries in addition to the infinite number of solution symmetries. The last cannot be used for the reduction. Hence, we do not consider them. Moreover, a solution in which u does not depend upon one of the independent variables is not an acceptable solution, that is, the static solution is of no interest. Therefore, we perform reductions with the symmetry vectors [image: there is no content],Y2=X1+κ2Xu and [image: there is no content].



Reduction with respect to the Lie invariants of the symmetry vector [image: there is no content] gives


[image: there is no content]



(27)




where [image: there is no content] satisfies the equation


0=12f2yS2v,SS+ρβSfyv,Sy+12β2v,yy+rSv,S+αm-y-βρμ-rfyv,y-r-κ1v



(28)







For this equation, we have that except the linear symmetry and the infinite number of solution symmetries (we call them trivial symmetries) the equation admits the vector field [image: there is no content], which is a reduced symmetry. Therefore, the application of [image: there is no content] to Equation (28) gives the second-order ordinary differential equation


[image: there is no content]



(29)




where [image: there is no content] and


[image: there is no content]



(30)







Equation (29) is a linear second-order differential equation, and it is well known that it is maximally symmetric and is invariant under the special linear (sl) algebra [image: there is no content] Lie algebra.



Similarly, if we perform a reduction with [image: there is no content], the reduced equation admits the Lie Symmetries [image: there is no content], Xv,Xb, and finally the solution is again given by Equation (30) with the constraint Equation (29).



Consider the application of the Lie symmetry vector [image: there is no content] to Equation (29). We have that


ut,S,y=expk3tvz,y,z=Sexp[-ct]



(31)




where


0=z2fyv,zz+2ρβfyv,zy+β2v,yy+2r-czv,z+2αm-y-βρμ-rfyv,y-r-κ3v



(32)







One can easily find that this equation only admits the Lie symmetry, [image: there is no content], except the trivial symmetries, which is a reduced symmetry. Therefore, the application of the zeroth-order invariants of the symmetry vector [image: there is no content] in Equation (32) gives solution of the form Equation (30) with the constraint Equation (29).



We continue with the determination of the group invariant solutions for constant [image: there is no content].




3.2. Constant Volatility


For [image: there is no content], Equation (10) admits six Lie point symmetries, plus the infinite number of solution symmetries. Moreover, Equation (10) is an [image: there is no content] evolution equation, and, in order to reduce it to an ordinary differential equation, we have to apply the zeroth-order invariants of two Lie symmetries. From Table 1, we select reducing Equation (10) by using the following two-dimensional subalgebras [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]



The reduction with the subalgebra [image: there is no content] we studied in the previous subsection and the solution is Equation (30), where now from Equation (29) we have


[image: there is no content]











We have that [image: there is no content] and [image: there is no content] are constants,


c1=2βf0ρκ2f02-μ+r,c2=κ2-1f02+2rκ2-r+κ1








and [image: there is no content] are Kummer Functions.



We continue with the application of the remaining subalgebras.



The application of [image: there is no content] gives


[image: there is no content]



(33)




where [image: there is no content] is given by the first-order ordinary differential equation


[image: there is no content]



(34)




with solution


[image: there is no content]



(35)







From the subalgebra [image: there is no content], we find the solution


[image: there is no content]



(36)




where [image: there is no content] is given by the expression


lnϕIItϕII0=-12f02κ2+2rκ2-1+2αt+-καβ2f02βr-μ+ρκ2f02+αmf0e-αt+κ24αf02β2e-2αt



(37)







For the subalgebra [image: there is no content], we have the invariant solution


[image: there is no content]








where


[image: there is no content]



(38)




and [image: there is no content] is given by the expression


lnϕIIItϕIII0=-12lnt+2ρ2-αtα2tβ2κ2e2αt-κ2αf0eαt2αmf+2βr-μ-2ρr+ρ2f02+2r+f0228f02t



(39)







Finally, from the subalgebra [image: there is no content], we find the invariant solution


[image: there is no content]



(40)




where


[image: there is no content]



(41)






[image: there is no content]



(42)




and function [image: there is no content] is given by the expression


lnϕIVtϕIV0=-f028α-4r-f02-4r28f02αt-2ρ2αt2-2ρ2t+f02-2r22f02ααt-2ρ2ρ4+2f02-2r2f0αm-βμ-rf02αβαt-2ρ2ρ3+4βr-μ+2f0αmβ2f0αt-2ρ2mρ2+2μ-r2f02ααt-2ρ2ρ2



(43)







In the following section, we study a special model for stochastic volatility which has been proposed by Heston [27].





4. Heston Model


In the Heston model for stochastic volatility the stock price, S, and the volatility, [image: there is no content], satisfy the stochastic differential equation given below


dSt=rStdt+StYtdWtand,



(44)






[image: there is no content]



(45)




where, in comparison with Equation (1) and Equation (3), we observe that [image: there is no content] and [image: there is no content]. The differential equation which corresponds to that model is


0=12YS2u,SS+ρδYSu,SY+12δ2Yu,YY+rSu,S+θm¯-Y-λYu,Y-ru+u,t



(46)







Before we proceed with the symmetry analysis of Equation (46), we perform the coordinate transformation [image: there is no content]. Then, Equation (46) becomes


0=12y2S2u,SS+βρySu,Sy+12β2u,yy+rSu,S+12c1y+c2yu,y-ru+u,t



(47)




in which we have made the replacements δ2→β,c1=θ-λ and [image: there is no content]. Equation (47) can be compared with Equation (5) for [image: there is no content]. However, the risk premium factor of Equation (9) is not zero and has absorbed the term of the Orstein–Uhlenbeck process.



From the Lie symmetry condition, Equation (17) for Equation (47) we find that this equation admits the Lie symmetries


X1=∂t,X2=S∂S



(48)




plus the Xu,Xb, that is, Equation (47) is invariant under the Lie algebra [image: there is no content].



We continue with the application of the Lie symmetries in order to reduce Equation (48). We follow the results of Section 3.1, that is, we apply the group invariants of the subalgebra [image: there is no content].



We find that the corresponding invariant solution of Equation (47) is


[image: there is no content]



(49)




where [image: there is no content] satisfies the linear second-order differential equation:


[image: there is no content]



(50)




the solution in closed form of which is expressed in terms of Kummer Functions.



In Figure 1 and Figure 2, we give numerical solutions of Equation (50). Figure 1 is for negative value of Δκ,whereas Figure 2 is for positive value of [image: there is no content], where [image: there is no content].


Figure 1. Evolution of the solution Equation (50) of the Heston model. For the numerical solutions, we select ρ=0.5,β=0.7,r=0.5,κ1=1and [image: there is no content]. The left figures are for negative c1,c2, while the right figures are for negative [image: there is no content] and positive [image: there is no content]. The solid lines are for c2=5c1,the dotted lines are for [image: there is no content] and the dash-dash lines are for [image: there is no content]. The top figures are for [image: there is no content], while the lower figures for [image: there is no content].



[image: Mathematics 04 00028 g001 1024]





Figure 2. Evolution of the solution Equation (50) of the Heston model. For the numerical solutions, we select ρ=0.5,β=0.7,r=0.5,κ1=1and [image: there is no content]. The left figures are for negative c1,c2, while the right figures are for negative [image: there is no content] and positive [image: there is no content]. The solid lines are for c2=32c1,the dotted lines are for [image: there is no content] and the dash-dash lines are for [image: there is no content]. The top figures are for [image: there is no content], while the lower figures for [image: there is no content].



[image: Mathematics 04 00028 g002 1024]







5. Stein-Stein Model


The model which has been proposed by Elias M. Stein and Jeremy C. Stein [28] describes an European option with stochastic volatility for which the correlation among the two Brownian motions vanishes, i.e., [image: there is no content], in Equation (4). Moreover, they considered that the risk premium factor is constant, i.e., [image: there is no content] and the volatility is [image: there is no content], while the stochastic differential equation is


dSt=rStdt+StYtdWtand



(51)






[image: there is no content]



(52)







Therefore, from Equation (5), we have that the [image: there is no content] evolution differential equation of the Stein-Stein model is


[image: there is no content]



(53)







From the Lie symmetry condition Equation (17), we find that Equation (53) admits the Lie symmetries


X1=∂t,X2=S∂S,Xu=u∂u,Xb=bt,S,y∂u



(54)




which form the Lie algebra [image: there is no content], and it is the admitted algebra of the Heston model and of Equation (10) for the arbitrary function [image: there is no content].



Following the steps of the previous sections, we find that the invariant solution of the Stein–Stein model with respect to the Lie algebra [image: there is no content] is


[image: there is no content]



(55)




where [image: there is no content] is given by the linear second-order differential equation


[image: there is no content]



(56)







The closed-form solution of this equation can be expressed in terms of the Hypergeometric Functions, where [image: there is no content]. In Figure 3 and Figure 4, we give the numerical evolution of [image: there is no content] for various values of the parameters, ωand α, for negative Δκand positive Δκ,respectively, where [image: there is no content].


Figure 3. Evolution of the solution Equation (56) of the Stein–Stein model. For the numerical solutions, we select β=0.5,r=0.5,κ1=1and [image: there is no content]. The figures are for ω=0,ω=0.5,ω=-0.5 and ω=α,respectively. The solid lines are for α=0.1,the dotted lines are for [image: there is no content] and the dash-dash lines are for [image: there is no content].



[image: Mathematics 04 00028 g003 1024]





Figure 4. Evolution of the solution Equation (56) of the Stein–Stein model. For the numerical solutions, we select β=0.5,r=0.5,κ1=1and [image: there is no content]. The figures are for ω=0,ω=0.5,ω=-0.5 and [image: there is no content], respectively. The solid lines are for α=1.1,the dotted lines are for [image: there is no content] and the dash-dash lines are for [image: there is no content].



[image: Mathematics 04 00028 g004 1024]







6. Conclusions


Volatility with a stochastic process has been shown to be essential for Financial Mathematics. In this work, we studied the algebraic properties, i.e., the Lie symmetries, of the modified Black-Scholes-Merton Equation for European options with a stochastic volatility. We have shown that the autonomous model without the risk premium factor is invariant under a group of point transformations which form the [image: there is no content] Lie Algebra for an arbitrary functional form of the volatility, σ. Moreover, when the volatility is constant but the price of the option depends on the second Brownian motion, in which the volatility is defined, the modified Black-Scholes-Merton Model is invariant under six, plus the infinity, Lie point symmetries and it is not maximally symmetric as theBlack-Scholes-Merton Equation with nonstochastic volatility is.



Furthermore, we showed that the Black-Scholes-Merton Model, in which the volatility is constant, but is defined by an Orstein-Uhlenbeck process, is invariant under the same group of point transformations as that of the two-factor model of commodities. The reason for that is that the two models have in common the terms which follow from the Orstein-Uhlenbeck process.



Moreover, we applied the zeroth-order invariants of the Lie symmetries, and we reduced the model to a linear second-order differential equation. As far as the case of constant volatility is concerned, we found the closed forms of the group invariant solutions.



Finally, we studied the algebraic properties and the invariant solutions of two models, the Heston model and the Stein-Stein model, with stochastic volatility of special interest. For each model, we found the invariant solution and we gave some figures for the evolution of the models. Of course because Equation (5) is a linear equation, the general solution is given by the linear combination of the invariant solutions that we have found, while the latter are constrained by the initial conditions and the boundary conditions of the model.



A general consideration of Equation (5), in which the risk premium factor plays a role is still in progress, and the results will be published elsewhere.
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