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Abstract: In Farouki et al, 2003, Legendre-weighted orthogonal polynomials Pn,r(u, v, w), r =

0, 1, . . . , n, n ≥ 0 on the triangular domain T = {(u, v, w) : u, v, w ≥ 0, u+ v+w = 1} are constructed,
where u, v, w are the barycentric coordinates. Unfortunately, evaluating the explicit formulas requires
many operations and is not very practical from an algorithmic point of view. Hence, there is a need
for a more efficient alternative. A very convenient method for computing orthogonal polynomials is
based on recurrence relations. Such recurrence relations are described in this paper for the triangular
orthogonal polynomials, providing a simple and fast algorithm for their evaluation.
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1. Introduction

Orthogonal polynomials are very strong tools in approximation theory and play a fundamental
role in finding the least-squares approximation in explicit form. They are well-studied, and a lot
of research has been done for the univariate case, see [1]. Orthogonal polynomials over a square
region can be constructed using the tensor product of univariate orthogonal polynomials, see [2,3].
Orthogonal polynomials over triangular domains have to be determined in a different way, see [4].
A scheme for orthogonal bivariate polynomials on triangular regions is constructed in [5]. The Legendre
weight function W(u, v, w) = 1 is used; these Legendre-weighted orthogonal polynomials are given in
the Bernstein basis form, in order to take full advantage of the numerical stability property of the later
basis. In [5], to find these bivariate orthogonal polynomials on triangular domains, the sums have to
be expanded, and many multiplications have to be performed. This leads to a time-consuming and
costly method of construction. There is an essential need for an easy method to find these orthogonal
polynomials. It is known that the most convenient method to compute orthogonal polynomials is
using a recurrence relation. For the case under consideration, such an algorithm is described in this
paper in Section 6.

Connections between bivariate Bernstein and Jacobi bases are considered in [6] without
considering the recurrence relations for these polynomials. Orthogonal polynomials on the interior
of the triangle based on second-order linear partial differential equations is considered in [7].
The approach is different when considering the boundary of the triangle which needs applying
the directional derivatives.

This paper is organized as follows. The univariate Legendre and Bernstein polynomials are
introduced in Section 2. In Sections 3 and 4, bivariate polynomials and bivariate polynomials on
triangular domains are introduced. Legendre-weighted orthogonal polynomials are given in Section 5,
and their recurrence relations are given in Section 6. We end this paper with conclusions in Section 7.

Mathematics 2016, 4, 25; doi:10.3390/math4020025 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/journal/mathematics


Mathematics 2016, 4, 25 2 of 7

2. Univariate Legendre and Bernstein Polynomials

The univariate Legendre polynomials, Ln(x), of degree n are orthogonal on the interval [−1, 1]
with respect to the weight function W(x) = 1. They are traditionally defined over [−1, 1] to highlight
their symmetry, while the Bernstein polynomials, Bn

i (u), are defined over [0, 1] to highlight their
geometric behaviour. Since the final results will be given in Bernstein form, the suitable interval for
both polynomials is [0, 1]. In this case, the shifted Legendre polynomials Ln(

x+1
2 ) =: Ln(u), u ∈ [0, 1]

are used.
For u ∈ [0, 1], the Bernstein polynomial basis is defined as, see [8],

bn
i (u) =

(
n
i

)
ui(1− u)n−i, where

(
n
i

)
=

n!
i!(n− i)!

, i = 0, 1, . . . , n. (1)

For u ∈ [0, 1], the univariate Legendre polynomials satisfy the following three term recurrence
relation, see [1]:

Ln(u) =
2n− 1

n
(2u− 1) Ln−1(u)−

n− 1
n

Ln−2(u), L0(u) = 1, L1(u) = 2u− 1, n ≥ 2. (2)

The polynomials Ln satisfy the following orthogonality conditions:

∫ 1

0
Ln(u) Lm(u) du =

{
1

2n+1 , if m = n
0, if m 6= n

. (3)

3. Bivariate Orthogonal Polynomials

Let G ⊆ R2 be a finite simply connected domain bounded by a curve Γ. A function W(x, y) ≥ 0

is called a weight function over G if
∫∫
G

W(x, y)dxdy exists and is positive. The weight function W

induces a function space L2(W, G) with the inner product:

〈 f , g〉 =
∫∫
G

W(x, y) f (x, y)g(x, y)dxdy.

The integrals

Wn,i =
∫∫
G

W(x, y)xn−iyidxdy

are finite and called moments of W. Similar to the univariate case, weight functions are used to define
bivariate orthogonal polynomials. A system of polynomials Pn,i(x, y), n ≥ 0, i = 0, 1, . . . n is called
orthogonal over G with respect to the weight function W(x, y) if all the leading coefficients cn,i of
Pn,i(x, y) are positive and ∫∫

G

W(x, y)Pn,i(x, y)Pm,j(x, y) dxdy = δn,m δi,j,

where δ is the Kronecker delta, see [9,10]. Like the univariate case, for any weight function W over
a domain G there exists a system of orthogonal polynomials. Up to this normalization, the system of
orthogonal polynomials is unique. For n ≥ 1, we define the space Ln of polynomials of degree n that
are orthogonal to all polynomials of degree < n over the domain G, i.e.,

Ln = {P ∈ Πn : P ⊥ Πn−1},
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and Πn−1 to be the space of all polynomials of degree n− 1 over the domain G. These polynomials are
usually represented in a triangular table:

P0,0(x, y)
P1,0(x, y), P1,1(x, y)
P2,0(x, y), P2,1(x, y), P2,2(x, y)

. . .

Pn,0(x, y), Pn,1(x, y), Pn,2(x, y), . . . , Pn,n(x, y)

. . .

The kth row of this triangular table contains k + 1 bivariate orthogonal polynomials. Thus, for
total degree n, there is a total of (n + 1)(n + 2)/2 bivariate orthogonal polynomials, see [11–13].

4. Bivariate Polynomials on Triangular Domains

The bivariate polynomials on triangular domains are used in design and modelling in Computer
Aided Geometric Design; they are defined using the barycentric coordinates. Let pk = (xk, yk),
k = 1, 2, 3 be the vertices (non-collinear) of a triangle T and p be a point, all in the plane. It is always
possible to express p as a barycentric combination of pk, k = 1, 2, 3 in the form p=up1 + vp2 + wp3,
where u, v, w ≥ 0, u + v + w = 1, see [14] and the references therein. Using Cramer’s rule, the
barycentric coordinates are given as the ratio of areas of subtriangles of the base triangle in explicit form:

u =
area(p, p2, p3)

area(p1, p2, p3)
, v =

area(p1, p, p3)

area(p1, p2, p3)
, w =

area(p1, p2, p)
area(p1, p2, p3)

. (4)

Consider the triangular region T that is given by the barycentric coordinates as follows

T = {(u, v, w) : u, v, w ≥ 0, u + v + w = 1}

and the triples α = (i, j, k) of non-negative integers with |α| = i + j + k. A system of polynomials
{Pn,r(u, v, w), r = 0, 1, . . . n}∞

n=0 is orthogonal over T with respect to the weight function W(u, v, w) = 1
if all the leading coefficients are positive and∫∫

T

W(u, v, w)Pn,r(u, v, w)Pm,s(u, v, w)dA = δn,m δr,s.

In the following section, the Legendre weight function W(u, v, w) = 1 is considered.

5. Legendre-Weighted Orthogonal Polynomials

Farouki, Goodman, and Sauer determined in [5] closed-form representation of degree-ordered
system of Legendre-weighted orthogonal polynomials Pn,r(u, v, w), r = 0, 1, . . . , n, n ≥ 0 on the
triangular domain T = {(u, v, w : u, v, w ≥ 0, u + v + w = 1}. These orthogonal polynomials are
orthogonal with respect to the weight function W(u, v, w) = 1. Since the Bernstein polynomials are
stable, it is convenient to write these polynomials in Bernstein form. These polynomials Pn,r(u, v, w)

are orthogonal to each polynomial of degree ≤ n − 1 and also orthogonal to each polynomial
Pn,s(u, v, w), r 6= s. They are given explicitly by:

Pn,r(u, v, w) =
r

∑
i=0

(−1)r+i

(
r
i

)2

uivr−i
n−r

∑
j=0

(−1)j

(
n + r + 1

j

)
bn−r

j (w). (5)



Mathematics 2016, 4, 25 4 of 7

This formula is further simplified in [5] to:

Pn,r(u, v, w) = Lr(
u

1− w
)(1− w)rqn,r(w), r = 0, ..., n, (6)

where Lr, r = 0, 1, . . . , n are the Legendre polynomials of degree r and

qn,r(w) =
n−r

∑
j=0

(−1)j

(
n + r + 1

j

)
bn−r

j (w), n ≥ 0, r = 0, 1, . . . , n. (7)

Traditionally, univariate Legendre polynomials are computed using different methods. The most
convenient method is the recurrence relation in Equation (2). The method of construction in [5] is
complicated and time-consuming, since many computations are required. Hence, there is a need for
a simple evaluation method, which we present in the next section.

6. Recurrence Relation

Any three consecutive univariate orthogonal polynomials are related by a recurrence relation.
In this section, it is shown that the bivariate orthogonal polynomials in Equation (5) also possess
a recurrence relation. Any bivariate orthogonal polynomial from the kth row is related by a recurrence
relation to two orthogonal polynomials from the preceding two rows for all r 6= n− 1. If r = n− 1,
then Pn,n−1(u, v, w) is related by a recurrence relation to two orthogonal polynomials from the k− 2nd
and k− 3rd rows. The exact formulas are given in the following theorem.

Theorem 1. The bivariate orthogonal polynomials Pn,r(u, v, w), r = 0, 1, . . . , n given by Equation (5) are
computed using the following recurrence relations:

Pn,r(u, v, w) =
2n−1

n (2u + w− 1) Pn−1,n−1(u, v, w)− n−1
n (1− w)2 Pn−2,n−2(u, v, w), r = n(

2n−3
n−1 (2u + w− 1) Pn−2,n−2(u, v, w)− n−2

n−1 (1− w)2Pn−3,n−3(u, v, w)
)
(1− (2n + 1)w) , r = n− 1

(αn,r(1− 2w)− βn,r)Pn−1,r(u, v, w)− γn,rPn−2,r(u, v, w), r ≤ n− 2

where

αn,r =
n(2n + 1)

(n− r)(n + r + 1)
, βn,r =

n(2r + 1)2

(n− r)(n + r + 1)(2n− 1)
, γn,r =

(n− r− 1)(n + r)(2n + 1)
(n− r)(n + r + 1)(2n− 1)

.

and
P0,0(u, v, w) = 1
P1,0(u, v, w) = 1− 3w, P1,1(u, v, w) = u− v.

Proof. The construction of Pn,r(u, v, w) suggests that the recurrence relation depends on the values of
r. Therefore, we have to distinguish between the three cases r = n, r = n− 1, 0 ≤ r ≤ n− 2. In all
cases, we begin with Equation (6) and do the proper arrangements and implications to get the required
recurrence relations as follows:

The case r = n:
We begin by substituting r = n in Equation (6) to get

Pn,n(u, v, w) = Ln(
u

1− w
)(1− w)nqn,n(w).
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Using the Definition (7) of qn,r(w) gives qn,n(w) = 1, leading to

Pn,n(u, v, w) = Ln(
u

1− w
)(1− w)n. (8)

Substituting the recurrence Relation (2) of the Legendre polynomials in the last equation gives

Pn,n(u, v, w) =

(
2n− 1

n

(
2u

1− w
− 1
)

Ln−1(
u

1− w
)− n− 1

n
Ln−2(

u
1− w

)

)
(1− w)n.

The last equation can be written in the form:

Pn,n(u, v, w) =
2n− 1

n
(2u + w− 1) Ln−1(

u
1− w

) (1− w)n−1 − n− 1
n

(1− w)2Ln−2(
u

1− w
)(1− w)n−2.

Applying Equation (8) twice gives the required result.

The case r = n− 1:
We begin by substituting r = n− 1 in Equation (6) to get

Pn,n−1(u, v, w) = Ln−1(
u

1− w
)(1− w)n−1qn,n−1(w). (9)

Using the Definition (7) of qn,n−1(w) gives qn,n−1(w) = 1− (2n + 1)w. Substituting this equality
and the recurrence Relation (2) for Ln−1(

u
1−w ) in Equation (9) leads to:

Pn,n−1(u, v, w) =

(
2n− 3
n− 1

(
2u

1− w
− 1
)

Ln−2(
u

1− w
)− n− 2

n− 1
Ln−3(

u
1− w

)

)
(1− w)n−1(1− (2n + 1)w).

This is further simplified to:

Pn,n−1(u, v, w) =

(
2n− 3
n− 1

(2u + w− 1) Ln−2(
u

1− w
) (1− w)n−2 − n− 2

n− 1
(1− w)2Ln−3(

u
1− w

)(1− w)n−3
)

(1− (2n + 1)w),

Applying Equation (8) twice we get the required result. If either of the subscripts of Pk,l(u, v, w)

is negative then the term Pk,l(u, v, w) is set to zero.

The case 0 ≤ r ≤ n− 2:
We need to introduce the shifted univariate Jacobi polynomials P(α,β)

n (u) of degree n which are
orthogonal on the interval [0, 1] with respect to the weight function W(u) = uα(1− u)β, α, β > −1,
see [1]. The following recurrence relation is the convenient method to compute the univariate Jacobi
polynomials P(α,β)

n (u):

P(α,β)
n (u) = (An(2u− 1) + Bn)P(α,β)

n−1 (u)− CnP(α,β)
n−2 (u), (10)

where

An =
(2n + α + β− 1)(2n + α + β)

2n(n + α + β)
,

Bn =
(α2 − β2)(2n + α + β− 1)

2n(n + α + β)(2n + α + β− 2)
,

Cn =
(n + α− 1)(n + β− 1)(2n + α + β)

n(n + α + β)(2n + α + β− 2)
.
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Using Equation (4.3.2) in [1], we get the univariate Jacobi polynomials in terms of the Bernstein
polynomials in the following form:

P(α,β)
n (w) =

n

∑
i=0

(−1)i

(
n + α

n− i

)(
n + β

i

)
(

n
n− i

) bn
n−i (w) , n ≥ 0, w ∈ [0, 1]. (11)

Since bn
n−i (w) = bn

i (1− w) and substituting α = 0, β = 2r + 1, n = n− r, we get

qn,r(w) = P(0,2r+1)
n−r (1− w),

and thus qn,r(w) satisfies the following recurrence relation:

qn,r(w) =

(
n(2n + 1)

(n− r)(n + r + 1)
(1− 2w)− n(2r + 1)2

(n− r)(n + r + 1)(2n− 1)

)
P(0,2r+1)

n−r−1 (1− w)

− (n− r− 1)(n + r)(2n + 1)
(n− r)(n + r + 1)(2n− 1)

P(0,2r+1)
n−r−2 (1− w).

Substituting the last relation in Equation (6) gives:

Pn,r(u, v, w) = Lr(
u

1− w
)(1− w)r

((
n(2n + 1)(1− 2w)

(n− r)(n + r + 1)
− n(2r + 1)2

(n− r)(n + r + 1)(2n− 1)

)
P(0,2r+1)

n−r−1 (1− w)

− (n− r− 1)(n + r)(2n + 1)
(n− r)(n− r + 1)(2n− 1)

P(0,2r+1)
n−r−2 (1− w)

)
.

This is further simplified to:

Pn,r(u, v, w) = Lr(
u

1− w
)(1− w)r

(
n(2n + 1)(1− 2w)

(n− r)(n + r + 1)
− n(2r + 1)2

(n− r)(n + r + 1)(2n− 1)

)
P(0,2r+1)

n−r−1 (1− w)

− Lr(
u

1− w
)(1− w)r (n− r− 1)(n + r)(2n + 1)

(n− r)(n + r + 1)(2n− 1)
P(0,2r+1)

n−r−2 (1− w).

Substituting α = 0, β = 2r + 1, n = n− r− 1 in Equation (11), we get the following two equations:

qn−1,r(w) = P(0,2r+1)
n−r−1 (1− w), qn−2,r(w) = P(0,2r+1)

n−r−2 (1− w).

Thus the last equation for Pn,r(u, v, w) is simplified to

Pn,r(u, v, w) = Lr(
u

1− w
)(1− w)r

(
n(2n + 1)(1− 2w)

(n− r)(n + r + 1)
− n(2r + 1)2

(n− r)(n + r + 1)(2n− 1)

)
qn−1,r(w)

− Lr(
u

1− w
)(1− w)r (n− r− 1)(n + r)(2n + 1)

(n− r)(n + r + 1)(2n− 1)
qn−2,r(w).

Applying Equation (8) twice, we get the required result. This completes the proof of the Theorem.

7. Conclusions

In this paper, recurrence relations for the Legendre-weighted orthogonal polynomials
Pn,r(u, v, w), r = 0, 1, . . . , n, n ≥ 0 on the triangular domain T = {(u, v, w) : u, v, w ≥ 0, u+ v+w = 1}
are presented. Unlike the method of construction in [5], our recursive algorithm enables us to compute
these polynomials efficiently in a very simple fashion.
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