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1. Introduction

Let A be the class of the functions of the form

f pzq “ z`
8
ÿ

k“2

akzk, (1)

which are analytic in the open unit disc ∆ “ tz : |z| ă 1u. Further, by S we shall denote the class of all
functions in A that are univalent in ∆.

Let P denote the family of functions p pzq, which are analytic in ∆ such that p p0q “ 1, and
<p pzq ą 0 pz P ∆q of the form

P pzq “ 1`
8
ÿ

n“1

cnzn. (2)

For two functions f and g, analytic in ∆, we say that the function f is subordinate to g in ∆,
and we write it as f pzq ă g pzq if there exists a Schwarz function ω, which is analytic in ∆ with
ω p0q “ 0, |ω pzq | ă 1 pz P ∆q such that

f pzq “ g pω pzqq . (3)

Indeed, it is known that

f pzq ă g pzq ñ f p0q “ g p0q and f p∆q Ă g p∆q . (4)

Every function f P S has an inverse f´1, which is defined by f´1 p f pzqq “ z, pz P ∆q

and f
´

f´1 pwq
¯

“ w ,
ˆ

|w| ă r0 p f q ; r0 p f q ě
1
4

˙

. (5)
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In fact, the inverse function is given by

f´1 pwq “ w´ a2w2 `
´

2a2
2 ´ a3

¯

w3 ´
´

5a3
2 ´ 5a2a3 ` a4

¯

w4 ` ....

A function f P A is said to be bi-univalent in ∆ if both f and f´1 are univalent in ∆.
Let

ř

denote the class of bi-univalent functions defined in the unit disc ∆.
We notice that

ř

is non empty .One of the best examples of bi-univalent functions is

f pzq “ log
ˆ

1` z
1´ z

˙

, which maps the unit disc univalently onto a strip |Imw| ă
π

2
, which in turn

contains the unit disc. Other examples are z,
z

1´ z
, ´log p1´ zq .

However, the Koebe function is not a member of
ř

because it maps unit disc univalent onto the

entire complex plane minus a slit along ´
1
4

to ´8. Hence, the image domain does not contain the
unit disc.

Other examples of univalent function that are not in the class
ř

are z´
z2

2
,

z
1´ z2 .

In 1967, Lewin [1] first introduced class
ř

of bi-univalent function and showed that |a2| ď 1.51
for every f P

ř

. Subsequently, in 1967, Branan and Clunie [2] conjectured that |a2| ď
?

2 for bi-star
like functions and |a2| ď 1 for bi-convex functions. Only the last estimate is sharp; equality occurs

only for f pzq “
z

1´ z
or its rotation.

Later, Netanyahu [3] proved that max fP
ř |a2| “

4
3

. In 1985, Kedzierawski [4] proved Brannan

and Clunie’s conjecture for bi-starlike functions. In 1985, Tan [5] obtained that |a2| ă 1.485, which is
the best known estimate for bi-univalent functions. Since then, various subclasses of the bi-univalent
function classes

ř

were introduced, and non-sharp estimates on the first two coefficients |a2| and
|a3| in the Taylor Maclaurin’s series expansion were found in several investigations. The coefficient
estimate problem for each of |an| pn P N t2, 3uq is still an open problem.

In 1976, Noonan and Thomas [6] defined qthHankel determinant of f for q ě 1 and n ě 1, which
is stated by

Hq pnq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

an an`1 ¨ ¨ ¨ an`q´1

an`1 an`2 ¨ ¨ ¨ an`q
...

...
...

...
an`q´1 an`q ¨ ¨ ¨ an`2q´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

These determinants are useful, for example, in showing that a function of bounded characteristic
in ∆, i.e., a function that is a ratio of two bounded analytic functions with its Laurent series around the
origin having integral coefficient is rational.

The Hankel determinant plays an important role in the study of singularities (for instance,
see [7] Denies, p.329 and Edrei [8]).A Hankel determinant plays an important role in the study
of power series with integral coefficients. In 1966, Pommerenke [9] investigated the Hankel
determinants of areally mean p-valent functions, univalent functions as well as of starlike
functions, and, in 1967 [10], he proved that the Hankel determinants of univalent functions

satisfy Hq pnq ă Kn
´p

1
2
`βqq`

3
2 pn “ 1, 2, ..., q “ 2, 3, ...q where β ą

1
4000

and K depend only on q.

Later, Hayman [11] proved that H2 pnq ă An
1
2 pn “ 1, 2, ...; A an absolute constantq for areally mean

univalent functions. The estimates for the Hankel determinant of areally mean p-valent functions
have been investigated [12–14]. Elhosh [15,16] obtained bounds for Hankel determinants of univalent
functions with a positive Hayman index α and k-fold symmetric and close to convex functions. Noor [9]
determined the rate of growth of Hq pnq as n Ñ8 for the functions in S with bounded boundary.
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Ehrenborg [17] studied the Hankel determinant of exponential polynomials. The Hankel transform of
an integer sequence and some of its properties were discussed by Layman [18].

One can easily observe that the Fekete-Szego functional
ˇ

ˇa3 ´ a2
2

ˇ

ˇ “ H2 p1q. This function was
further generalized with µ real as well as complex. Fekete-Szego gave a sharp estimate of

ˇ

ˇa3 ´ µa2
2

ˇ

ˇ

for µ real. The well-known results due to them is

ˇ

ˇ

ˇ
a3 ´ µa2

2

ˇ

ˇ

ˇ
ď

$

’

’

&

’

’

%

4µ´ 3 µ ď 1

1` 2exp
ˆ

´2µ

1´ µ

˙

0 ď µ ď 1

3´ 4µ µ ě 0

.

On the other hand, Zaprawa [19,20] extended the study on Fekete-Szego problem to some classes
of bi-univalent functions. Ali [21] found sharp bounds on the first four coefficients and a sharp
estimate for the Fekete-Szego functional

ˇ

ˇγ3 ´ tγ2
2

ˇ

ˇ, where t is real, for the inverse function of f defined

as f´1 pwq “ w`
8
ř

k“2
γkwk to the class of strongly starlike functions of order α p0 ă α ď 1q .

Recently S.K. Lee et al. [22] obtained the second Hankel determinant H2 p2q “ a2a4 ´ a2
3 for

functions belonging to subclasses of Ma-Minda starlike and convex functions. T. Ram Reddy [23]
obtained the Hankel determinants for starlike and convex functions with respect to symmetric points.
T. Ram Reddy et al. [24,25] also obtained the second Hankel determinant for subclasses of p-valent
functions and p-valent starlike and convex function of order α.

Janteng [26] has obtained sharp estimates for the second Hankel determinant for functions whose
derivative has a positive real part.Afaf Abubaker [27] studied sharp upper bound of the second Hankel
determinant of subclasses of analytic functions involving a generalized linear differential operator.
In 2015, the second Hankel determinant for bi-starlike and bi-convex function of order β was obtained
by Erhan Deniz [28].

2. Preliminaries

Motivated by above work, in this paper, we introduce certain subclasses of bi-univalent functions
and obtained an upper bound to the coefficient functional a2a4 ´ a2

3 for the function f in these classes
defined as follows:

Definition 2.1.: A function f P A is said to be in the class S˚ pθ, βq if it satisfies the following
conditions:

<
"

eiθ
"

z f 1 pzq
f pzq

**

ą βcosθ p@z P ∆q (6)

<
"

eiθ
"

wg1 pwq
g pwq

**

ą βcosθ p@w P ∆q (7)

where g is an extension of f´1 to ∆.
Note: 1. For θ “ 0, the class S˚ pθ, βq reduces to the class S˚σ pβq, and, for this class, coefficient

inequalities of the second Hankel determinant were studied by Deniz et al [28].
2. For θ “ 0 and β “ 0, the class S˚ pθ, βq reduces to the class S˚σ , and, for this class, coefficient

inequalities of the second Hankel determinant were studied by Deniz et al [28].
Definition 2.2.: A function f P A is said to be in the class K˚ pθ, βq if it satisfies the following

conditions:

<
"

eiθ
"

1`
z f 2 pzq
f 1 pzq

**

ą βcosθ p@z P ∆q (8)

<
"

eiθ
"

1`
wg2 pwq

g1 pwq

**

ą βcosθ p@w P ∆q (9)

where g is an extension of f´1 in ∆.
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Note: 1. For θ “ 0, the class K˚ pθ, βq reduces to the class K˚σ pβq, and, for this class, coefficient
inequalities ofthe second Hankel determinantwere studied by Deniz et al [28].

2. For θ “ 0 and β “ 0 the class K˚ pθ, βq reduces to the class K˚σ , and, for this class, coefficient
inequalities ofthe second Hankel determinantwere studied by Deniz et al [28].

To prove our results, we require the following Lemmas:
Lemma 2.1. [14] Let the function p P P be given by the following series:

p pzq “ 1` c1z` c2z2 ` c3z3 ` .... pz P ∆q . (10)

Then the sharp estimate is given by .
Lemma 2.2. [29] The power series for the function p P P is given (10) converges in the unit disc ∆

to a function in P if and only if Toeplitz determinants

Dn “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 c1 c2 é cn

c´1 2 c1 é cn´1
...

...
...

...
...

c´n c´n`1 c´n`2 é 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, n P N

and c´k “ ck are all non-negative. These are strictly positive except for p pzq “
řm

k“1 ρkP0
`

eitk z
˘

,

ρk ą 0, tk real and tk ‰ tj for k ‰ j, where P0 pzq “
ˆ

1` z
1´ z

˙

; in this case, Dn ą 0 for n ă pm´ 1q and

Dn “ 0 for n ě m.
This necessary and sufficient condition found in the literature [29] is due to Caratheodary and

Toeplitz. We may assume without any restriction that c1 ą 0. On using Lemma (2.2) for n “ 2 and
n “ 3 respectively, we get

D2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 c1 c2

c1 2 c1

c2 c1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

”

8` 2Re
!

c2
1c2

)

´ 2 |c2|
2
´ 4c2

1

ı

ě 0.

It is equivalent to
2c2 “

!

c2
1 ` x

´

4´ c2
1

¯)

, for some x, |x| ď 1 (11)

D3 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 c1 c2 c3

c1 2 c1 c2

c2 c1 2 c1

c3 c2 c1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě 0.

Then D3 ě 0 is equivalent to
ˇ

ˇ

ˇ

ˇ

´

4c3 ´ 4c1c2 ` c3
1

¯´

4´ c2
1

¯

` c1

´

2c2 ´ c2
1

¯2
ˇ

ˇ

ˇ

ˇ

ď 2
´

4´ c2
1

¯2
´ 2

ˇ

ˇ

ˇ

´

2c2 ´ c2
1

¯
ˇ

ˇ

ˇ

2
. (12)

From the relations (2.6) and (2.7), after simplifying, we get

4c3 “ c3
1 ` 2

´

4´ c2
1

¯

c1x´ c1

´

4´ c2
1

¯

x2 ` 2
´

4´ c2
1

¯´

1´ |x|2
¯

z,

for some x, z with
|x| ď 1and |z| ď 1. (13)

3. Main Results

We now prove our main result for the function f in the class S˚ pθ, βq.
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Theorem 3.1. Let the function f given by (1.1) be in the class S˚ pθ, βq. Then

ˇ

ˇ

ˇ
a2a4 ´ a2

3

ˇ

ˇ

ˇ
ď

$

’

’

’

’

&

’

’

’

’

%

16 p1´ βq4 cos4θ

3
`

4
3
p1´ βq2 cos2θ, β P

„

0, 1´
1

2
?

2cosθ



3 p1´ βq2 cos2θ

2
”

1´ 2 p1´ βq2 cos2θ
ı , β P

ˆ

1´
1

2
?

2cosθ
, 1

˙ .

Proof: Let f P S pθ, β; hq and g “ f´ 1. From (6) and (7) it follows that

eiθ
"

z f 1 pzq
f pzq

*

“ rp1´ βq p pzq ` βsscosθ ` isinθ (14)

eiθ
"

wg1 pwq
g pwq

*

“ rp1´ βq q pwq ` βsscosθ ` isinθ (15)

where p pzq “ 1 ` c1z ` c2z2 ` c3z3 ` .... P P, pz P ∆q and q pwq “ 1 ` d1w ` d2w2 ` d3w3 `

.... P P, pw P ∆q. Now, equating the coefficients in (14) and (15), we have

eiθa2 “ c1 p1´ βq cosθ (16)

eiθ
´

2a3 ´ a2
2

¯

“ c2 p1´ βq cosθ (17)

eiθ
´

3a4 ´ 3a2a3 ` a3
2

¯

“ c3 p1´ βq cosθ (18)

and
´ eiθa2 “ d1 p1´ βq cosθ (19)

eiθ
´

3a2
2 ´ 2a3

¯

“ d2 p1´ βq cosθ (20)

eiθ
´

´3a4 ` 12a2a3 ´ 10a3
2

¯

“ d3 p1´ βq cosθ (21)

Now from (16) and (19) we get
c1 “ ´d1 (22)

and
c2 “ e´iθ p1 p1´ βq cosθ. (23)

Now, from (17) and (20), we get

a3 “ e´2iθc2
1 p1´ βq2 cos2θ `

e´iθ p1´ βq cosθ pc2 ´ d2q

4
. (24)

Additionally, from (18) and (21), we get

a4 “
2
3

e´3iθc3
1 p1´ βq3 cos3θ `

5
8

e´2iθc1 pc2 ´ d2q p1´ βq2 cos2θ `
1
6

e´iθ pc3 ´ d3q p1´ βq cosθ. (25)

Thus, we can easily obtain

ˇ

ˇa2a4 ´ a2
3

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

´1
3

e´4iθc4
1 p1´ βq4 cos4θ `

1
8

e´3iθc2
1 pc2 ´ d2q p1´ βq3 cos3θ`

1
6

e´2iθc1 pc3 ´ d3q p1´ βq2 cos2θ ´
1

16
e´2iθ pc2 ´ d2q

2
p1´ βq2 cos2θ

ˇ

ˇ

ˇ

ˇ

.
(26)
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According to Lemma (2.2) and Equation (22), we get

2c2 “ c2
1 ` x

`

4´ c2
1
˘

2d2 “ d2
1 ` x

`

4´ d2
1
˘

+

ñ c2 ´ d2 “ 0 (27)

and

c3 ´ d3 “
c3

1
2
´ c1

´

4´ c2
1

¯

x´
c1
`

4´ c2
1
˘

x2

2
(28)

ˇ

ˇa2a4 ´ a2
3

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

´
1
3

e´4iθc4
1 p1´ βq4 cos4θ `

1
12

e´2iθc4
1 p1´ βq2 cos2θ´

1
6

e´2iθc2
1
`

4´ c2
1
˘

x p1´ βq2 cos2θ ´
1

12
e´2iθc2

1
`

4´ c2
1
˘

x2 p1´ βq2 cos2θ

ˇ

ˇ

ˇ

ˇ

. (29)

Since p P P, so |c1| ď 2. Letting c1 “ c, we may assume without any restriction that c P r0, 2s.
Thus, applying the triangle inequality on the right-hand side of Equation (29), with µ “ |x| ď 1,
we obtain

ˇ

ˇa2a4 ´ a2
3

ˇ

ˇ ď
1
3

c4 p1´ βq4 cos4θ `
1

12
c4 p1´ βq2 cos2θ `

1
6

c2 `4´ c2˘ µ p1´ βq2 cos2θ

`
1
12

c2 `4´ c2˘ µ2 p1´ βq2 cos2θ “ F pµq .
(30)

Differentiating F pµq, we get

F1 pµq “
c2 `4´ c2˘ p1´ βq2 cos2θ ` c2 `4´ c2˘ µ p1´ βq2 cos2θ

6
. (31)

Using elementary calculus, one can show that F1 pµq ą 0 for µ ą 0. This implies that F is an
increasing function, and it therefore cannot have a maximum value at any point in the interior of the
closed region r0, 2s ˆ r0, 1s. Further, the upper bound for F pµq corresponds to µ “ 1, in which case
F pµq ď F p1q

1
3

c4 p1´ βq4 cos4θ `
1

12
c4 p1´ βq2 cos2θ `

1
4

c2
´

4´ c2
¯

p1´ βq2 cos2θ “ G pcq .

Then
G1 pcq “

2
3

c p1´ βq2 cos2θ
”´

2 p1´ βq2 cos2θ ´ 1
¯

c2 ` 1
ı

. (32)

Setting G1 pcq “ 0, the real critical points are c01 “ 0, c02 “

d

3

1´ 2 p1´ βq2 cos2θ
.

After some calculations we obtain the following cases:

Case 1: When β P

„

0, 1´
1

2
?

2cosθ



, we observe that c02 ě 2, that is c02, is out of the interval

p0, 2q. Therefore, the maximum value of G pcq occurs at c01 “ 0 or c “ c02, which contradicts our
assumption of having a maximum value at the interior point of c P r0, 2s. Since G is an increasing
function, the maximum point of G must be on the boundary of c P r0, 2s, that is c “ 2. Thus, we have

max
0ďcď2

G pcq “ G p2q “
16 p1´ βq4 cos4θ

3
`

4
3
p1´ βq2 cos2θ.
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Case 2: When β P

ˆ

1´
1

2
?

2cosθ
, 1

˙

, we observe that c02 ă 2, that is c02, is interior of the interval

r0, 2s. Since G2 pc02q ă 0, the maximum value of G pcq occurs at c “ c02. Thus, we have

max
0ďcď2

G pcq “ G pc02q “ G

¨

˚

˝

g

f

f

e

1
1
3
´

2
3
p1´ βq2 cos2θ

˛

‹

‚

“
3 p1´ βq2 cos2θ

2
”

1´ 2 p1´ βq2 cos2θ
ı .

This completes the proof of the theorem.
Corollary 1: Let f given by (1.1) be in the class S˚σ pβq. Then

ˇ

ˇ

ˇ
a2a4 ´ a2

3

ˇ

ˇ

ˇ
ď

$

’

’

’

’

&

’

’

’

’

%

16 p1´ βq4

3
`

4
3
p1´ βq2 , β P

„

0,
ˆ

1´
1

2
?

2

˙

3 p1´ βq2

2
”

1´ 2 p1´ βq2
ı , β P

ˆ

1´
1

2
?

2
, 1

˙ .

Corollary 2: Let f given by (1.1) be in the class S˚σ . Then

ˇ

ˇ

ˇ
a2a4 ´ a2

3

ˇ

ˇ

ˇ
ď

20
3

.

These two corollaries coincide with the results of Deniz et al. [28].
Remark 3.1: It is observed that for θ “ 0, we get the Hankel determinant

ˇ

ˇa2a4 ´ a2
3

ˇ

ˇ for the class
S˚σ pβq and the Hankel determinant of this class was studied by Deniz et al. [28].

4. Hankel Determinants for the Class of Functions K pθ, β; hq

We now estimate an upper bound a2a4 ´ a2
3 for the function f pzq in the class K pθ, β; hq.

Theorem 4.1. Let the f pzq given by (1.1) be in the class K pθ, β; hq. Then

ˇ

ˇ

ˇ
a2a4 ´ a2

3

ˇ

ˇ

ˇ
ď

$

’

’

’

&

’

’

’

%

1
6
p1´ βq4 cos4θ `

1
6
p1´ βq2 cos2θ, β P

„

0, 1´
1

?
2cosθ



3 p1´ βq2 cos2θ

8
”

2´ p1´ βq2 cos2θ
ı , β P

ˆ

1´
1

?
2cosθ

, 1
˙ .

Proof: Let f P K pθ, β; hq and g “ f´ 1. From (8) and (9) we have

eiθ
"

1`
z f 2 pzq
f 1 pzq

*

“ rp1´ βq p pzq ` βsscosθ ` isinθ (33)

eiθ
"

1`
wg2 pwq

g1 pwq

*

“ rp1´ βq p pwq ` βsscosθ ` isinθ (34)

where p pzq “ 1 ` c1z ` c2z2 ` c3z3 ` .... , pz P ∆q and q pwq “ 1 ` d1w ` d2w2 ` d3w3 `

.... , pw P ∆q.
Now, equating the coefficients in (33) and (34), we have

2eiθa2 “ c1 p1´ βq cosθ (35)

eiθ
´

6a3 ´ 4a2
2

¯

“ c2 p1´ βq cosθ (36)

eiθ
´

12a4 ´ 18a2a3 ` 8a3
2

¯

“ c3 p1´ βq cosθ (37)

and
´ 2eiθa2 “ d1 p1´ βq cosθ (38)
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eiθ
´

8a2
2 ´ 6a3

¯

“ d2 p1´ βq cosθ (39)

eiθ
´

´32a3
2 ` 42a2a3 ´ 12a4

¯

“ d3 p1´ βq cosθ. (40)

Now from (35) and (38), we get
c1 “ ´d1 (41)

and

a2 “
e´iθc1 p1´ βq cosθ

2
. (42)

Now, from (36) and (39), we get

a3 “
e´2iθc2

1 p1´ ρq2 cos2θ

4
`

e´iθ pc2 ´ d2q p1´ ρq cosθ

12
. (43)

Additionally, from (37) and (40), we get

a4 “
5

48
e´3iθc3

1 p1´ βq3 cos3θ `
5
48

e´2iθc1 pc2 ´ d2q p1´ βq2 cos2θ `
1

24
e´iθ pc3 ´ d3q p1´ βq cosθ. (44)

Thus, we can easily obtain

ˇ

ˇa2a4 ´ a2
3

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

´
c4

1
96

e´4iθ p1´ βq4 cos4θ `
c2

1
96

e´3iθ pc2 ´ d2q p1´ βq3 cos3θ`

c1

48
e´2iθ pc3 ´ d3q p1´ βq3 cos3θ ´

e´2iθ pc2 ´ d2q
2
p1´ βq2 cos2θ

144

ˇ

ˇ

ˇ

ˇ

ˇ

. (45)

According to Lemma (2.2), and from Equation (41), we get

2c2 “ c2
1 ` x

`

4´ c2
1
˘

2d2 “ d2
1 ` x

`

4´ d2
1
˘

+

ñ c2 ´ d2 “ 0 (46)

and

c3 ´ d3 “
c3

1
2
´ c1

´

4´ c2
1

¯

x´
c1
`

4´ c2
1
˘

x2

2
(47)

ˇ

ˇa2a4 ´ a2
3

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

´
c4

1
96

e´4iθ p1´ βq4 cos4θ `
c4

1
96

e´2iθ p1´ βq2 cos2θ ´

e´2iθc2
1
`

4´ c2
1
˘

x p1´ βq2 cos2θ

48
´

e´2iθc2
1
`

4´ c2
1
˘

x2 p1´ βq2 cos2θ

96

ˇ

ˇ

ˇ

ˇ

ˇ

. (48)

Since p P P, |c1| ď 2. Letting c1 “ c, we may assume without any restriction that c P r0, 2s.
Thus, applying the triangle inequality on the right-hand side of Equation (4.16), with µ “ |x| ď 1,
we obtain

ˇ

ˇa2a4 ´ a2
3

ˇ

ˇ ď
c4

96
e´4iθ p1´ βq4 cos4θ `

c4

96
e´2iθ p1´ βq2 cos2θ

e´2iθc2 `4´ c2˘ µ p1´ βq2 cos2θ

48
`

e´2iθc2 `4´ c2˘ µ2 p1´ βq2 cos2θ

96
“ F pµq .

(49)

Differentiating F pµq, we get

F1 pµq “
e´2iθc2 `4´ c2˘ p1´ βq2 cos2θ

48
`

e´2iθc2 `4´ c2˘ µ p1´ βq2 cos2θ

48
. (50)
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Using elementary calculus, one can show that F1 pµq ą 0 for µ ą 0. It implies that F is an
increasing function and it hence cannot have a maximum value at any point in the interior of the
closed region r0, 2s ˆ r0, 1s. Further, the upper bound for F pµq corresponds to µ “ 1, in which case

F pµq ď F p1q
ď

c4

96
p1´ βq4 cos4θ `

c4

96
p1´ βq2 cos2θ `

c2 `4´ c2˘ p1´ βq2 cos2θ

48

`
c2 `4´ c2˘ p1´ βq2 cos2θ

96
“ G pcq psayq

.

Then

G1 pcq “
c3

24
p1´ βq4 cos4θ `

c3

24
p1´ βq2 cos2θ `

“

8c´ 4c3‰ p1´ βq2 cos2θ

32
. (51)

Setting G1 pcq “ 0, the real critical points are c01 “ 0, c02 “

g

f

f

e

6
”

2´ p1´ βq2 cos2θ
ı .

After some calculations we obtain the following cases:

Case 1: When β P

„

0, 1´
1

?
2cosθ



, we observe that c02 ě 2, that is c02, is out of the interval

p0, 2q. Therefore, the maximum value of G pcq occurs at c01 “ 0 or c “ c02, which contradicts our
assumption of having the maximum value at the interior point of c P r0, 2s. Since G is an increasing
function, the maximum point of G must be on the boundary of c P r0, 2s, that is c “ 2. Thus, we have

max
0ďcď2

G pcq “ G p2q “
1
6
p1´ βq4 cos4θ `

1
6
p1´ βq2 cos2θ.

Case 2: When β P

ˆ

1´
1

?
2cosθ

, 1
˙

, we observe that c02 ă 2, that is c02, is interior of the interval

r0, 2s. Since G2 pc02q ă 0, the maximum value of G pcq occurs at c “ c02. Thus, we have

max
0ďcď2

G pcq “ G pc02q “ G

¨

˚

˝

g

f

f

e

6
”

2´ p1´ βq2 cos2θ
ı

˛

‹

‚

“
3 p1´ βq2 cos2θ

8
”

2´ p1´ βq2 cos2θ
ı

.

This completes the proof of the theorem.
Corollary 1: Let f given by (1) be in the class K˚σ pβq. Then

ˇ

ˇ

ˇ
a2a4 ´ a2

3

ˇ

ˇ

ˇ
ď

$

’

’

’

’

&

’

’

’

’

%

p1´ βq4

6
`
p1´ βq2

6
, β P

„

0,
ˆ

1´
1
?

2

˙

3 p1´ βq2

8
”

2´ p1´ βq2
ı , β P

ˆ

1´
1
?

2
, 1

˙ .

Corollary 2: Let f given by (1) be in the class K˚σ . Then

ˇ

ˇ

ˇ
a2a4 ´ a2

3

ˇ

ˇ

ˇ
ď

1
3

.

These two corollaries coincide with the results of Deniz et al. [28].
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5. Conclusion

For specific values of α and β, the results obtained in this paper will generalize and unify the
results of the earlier researchers in this direction.

Interested researchers can work upon finding an upper bound for
ˇ

ˇa2a4 ´ µa2
3

ˇ

ˇ and |an| for a real
or complex µ.
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