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Abstract: In this research article, we present exact solutions with parameters for two nonlinear
model partial differential equations(PDEs) describing microtubules, by implementing the
expp´Φpξqq-Expansion Method. The considered models, describing highly nonlinear dynamics
of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE
describes the longitudinal model of nonlinear dynamics of microtubules, the second one describes the
nonlinear model of dynamics of radial dislocations in microtubules. The acquired solutions are then
graphically presented, and their distinct properties are enumerated in respect to the corresponding
dynamic behavior of the microtubules they model. Various patterns, including but not limited to
regular, singular kink-like, as well as periodicity exhibiting ones, are detected. Being the method
of choice herein, the expp´Φpξqq-Expansion Method not disappointing in the least, is found and
declared highly efficient.

Keywords: The exp(´Φ(ξ))-Expansion Method; models of microtubules; exact solutions; periodic
solutions; rational solutions; solitary solutions; trigonometric solutions

1. Introduction

Microtubules (MTs) are major cytoskeletal proteins. MTs are cytoskeletal biopolymers shaped
as nanotubes. They are hollow cylinders formed by Proto-Filaments (PFs) representing a series
of proteins known as tubulin dimers. Each dimer is an electric dipole. These dimers are in
a straight position within the PFs or placed in radial positions pointing out of the cylindrical surface.
MTs compriseaninteresting type of protein structure that may be a good candidate for designing and
manufacturing electronic nano-devices. MTs dynamical behavior is modeled by nonlinear partial
differential equations (NPDEs). These equations are mathematical models of physical circumstances
that emerge in various fields of engineering, plasma physics, solid state physics, optical fibers,
chemistry, hydrodynamics, biology, fluid mechanics and geochemistry. To date solving NPDEs
exactly or approximately, a plethora of methods have been in use. These include, but are not
limited to, (G1/G)-expansion [1–6], Frobenius decomposition [7], local fractional variation iteration [8],
local fractional series expansion [9], multiple exp-function algorithm [10,11], transformed rational
function [12], exp-function method [13,14], trigonometric series function [15], inverse scattering [16],
homogeneous balance [17,18], first integral [19–22], F-expansion [23–25], Jacobi function [26–29],
Sumudu transform [30–32], solitary wave ansatz [33–36], novel (G1/G) -expansion [37–42], modified
direct algebraic method [43,44], and last but not least, the expp´Φpξqq-Expansion Method [45–50].
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The objective of this paper is to apply the latter method, namely the expp´Φpξqq-Expansion
Method, to construct the exact solutions for the following two NPDEs modeling MT dynamics, [51–59].
In particular, in presenting the questions to be solved, for comparison purposes, we follow the initial
set up established by Zayed and Alurrfi [56], solving the extended Riccatti equations (see Equations (1)
and (2)). We then depart generically from their development by using an entirely distinct method,
albeit we compare our final results with theirs in [56], keeping in focus the developments in [57–59],
as well.

(i) The model of nonlinear dynamics of microtubules assuming a single longitudinal degree of
freedom per tubulin dimer is described by the nonlinear PDE (see [59]),

m
B2zpx, tq
Bt2 ´ kl2 B

2zpx, tq
Bx2 ´ qE´ Azpx , tq ` Bz3px, tq ` γ

Bzpx, tq
Bt

“ 0 (1)

where A, and B are positive parameters, m, is the mass of the dimer, zpx, tq, is the traveling wave, E is
the magnitude of intrinsic electric field, l, is the MT length, q ą 0, is the excess charge within the
dipole, γ, is the viscosity coefficient and, k, is a harmonic constant describing the nearest-neighbor
interaction between the dimers belonging to the same PFs. In [48], authors have used the Jacobi elliptic
function method to find the exact solutions of Equation (1), the physical details and derivations of
which were discussed there, although omitted here for obvious reasons.

(ii) The nonlinear PDE describing the nonlinear dynamics of radially dislocated MTs:

I
B2zpx, tq
Bt2 ´ kl2 B

2zpx, tq
Bx2 ` pEzpx , tq ´

pE
6

z3px, tq ` Γ
Bzpx, tq
Bt

“ 0 (2)

Here, zpx, tq, is the corresponding angular displacement when the whole dimer rotates and, l, is the
MT length, p is the magnitude of intrinsic electric field, k, stands for inter-dimer bonding interaction
within the same PFs, I, is the moment of inertia of the single dimer and Γ is the viscosity coefficient.
In [57], authors have used the simple equation method to find the exact solutions of Equation (2), after
relating physical aspects and equation derivation being omitted here.

This paper is organized as follows: In Section 2, we give the description of the expp´Φpξqq-
Expansion Method, while in Section 3, we apply the said method to solve the given NPDEs,
Equations (1) and (2). In Section 4, physical explanations are given, followed by the conclusion
in Section 5. The paper ends with relevant acknowledgments, and a rich list of references for
interested readers.

2. Description of the expp´Φpξqq-Expansion Method

Following th initial setup in [56], we consider the nonlinear evolution equation in the form,

Fpu, ut, ux, utt, uxt, uxx, ¨ ¨ ¨ ¨ ¨ ¨ q “ 0 (3)

where, F, is a polynomial in, upx, tq, and its partial derivatives, involving nonlinear terms and highest
order derivatives. The focal steps of the method are as follows:

Step 1. It is well known that, for a given wave equation, a travelling wave, upξq, is a solution which
depends upon, x, and, t, only through a unified variable, ξ, such that,

upx, tq “ upξq, ξ “ k1x`ωt (4)

where, k1 and ω, are constants. Based on this we have,

δ

δt
“ ω

δ

δξ
,

δ2

δt2 “ ω2 δ2

δξ2 ,
δ

δx
“ k1

δ

δξ
, and,

δ2

δx2 “ k1
2 δ2

δξ2 (5)

and so on, for other derivatives.
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We reduce Equation (3) to the following ODE:

Qpu, u1, u2 , ¨ ¨ ¨ ¨ ¨ ¨ q “ 0 (6)

Here, Q is a polynomial in, upξq, and its total derivatives, such that 1 “
d

dξ
.

Step 2. We assume that Equation (6) has the formal solution:

upξq “
N
ÿ

i“0

Aipexpp´Φpξqqq
i

(7)

where, the Ai’s are constants to be determined, such that AN ‰ 0 and Φ “ Φpξq satisfies the
following ODE:

Φ1pξq “ expp´Φpξqq ` µ exppΦpξqq ` λ (8)

Consequently, we get the following possibilities for Equation (8):

Cluster 1: When µ ‰ 0, λ2 ´ 4µ ą 0, we get,

Φpξq “ lnp
´
a

pλ2 ´ 4µqtanhp

a

pλ2 ´ 4µq

2
pξ ` Eqq ´ λ

2µ
q (9)

Cluster 2: When µ ‰ 0, λ2 ´ 4µ ă 0, we get,

Φpξq “ lnp

a

p4µ´ λ2qtanp

a

p4µ´ λ2q

2
pξ ` Eqq ´ λ

2µ
q (10)

Cluster 3: When µ “ 0, λ ‰ 0, and λ2 ´ 4µ ą 0, we obtain,

Φpξq “ ´lnp
λ

exppλpξ ` Eqq ´ 1
q (11)

Cluster 4: When µ ‰ 0, λ ‰ 0, and λ2 ´ 4µ “ 0, we obtain

Φpξq “ lnp´
2pλpξ ` Eq ` 2q

λ2pξ ` Eq
q (12)

Cluster 5: When µ “ 0, λ “ 0, and λ2 ´ 4µ “ 0, we then have,

Φpξq “ lnpξ ` Eq (13)

where AN , ¨ ¨ ¨ ¨ ¨ ¨ , V, λ, µ, are constants to be determined, such that AN ‰ 0. The positive integer, m,
can be determined by considering the homogeneous balance between nonlinear terms and the highest
order derivatives occurring in the ODE in Equation (6), after using Equation (7).

Step 3. We interchange Equation (7) into Equation (6) and then we expand the function expp´Φpξqq.
As a result of this interchange, we get a polynomial of expp´Φpξqq. We equate all the coefficients of
same power of expp´Φpξqq to zero. This procedure yields a system of algebraic equations which could
be solved to obtain the values of AN , ¨ ¨ ¨ ¨ ¨ ¨ , V, λ, µ which after substitution into Equation (7) along
with general solutions of Equation (8) completes the setup for getting the traveling wave solutions of
the NPDE in Equation (3).
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3. Applications

In this section, we will apply the expp´Φpξqq-Expansion Method described in Section 2 to find
the exact solutions of the NPDE Equations (1) and (2).

3.1. Exact Solutions of the NPDE Equation(1)

In this subsection, we find the exact wave solutions of Equation (1). To this end, we use the
transformation (4) to reduce Equation (1) into the nonlinear ordinary differential equation (NODE),

Pψ2 pξq ´Qψ1pξq ´ ψpξq ` ψ3pξq ´ R “ 0 (14)

where,

P “
mω2 ´ kl2k1

2

A
, Q “

γω

A
, R “

qE
A
a

A{B
(15)

and,

zpξq “

c

A
B

ψpξq (16)

Balancing, ψ2 pξq, with, ψ3pξq, in Equation (14), we get N “ 1. Consequently, we have,

ψpηq “ A0 ` A1pexpp´Φpξqqq (17)

where A0, A1 are constants to be determined such that AN ‰ 0, while λ, µ, are arbitrary.
Substituting Equation (17) into Equation (14) and equating the coefficients of expp´Φpξqq3,

expp´Φpξqq2, expp´Φpξqq1, expp´Φpξqq0, to zero, we respectively obtain,

expp´Φpξqq3 : 2PA1 ` A1
3 “ 0 (18)

expp´Φpξqq2 : 3A0 A1
2 `QA1 ` 3PA1λ “ 0 (19)

expp´Φpξqq1 : 2PA1µ` Pλ2 A1 ´ A1 `QA1λ` 3A0
2 A1 “ 0 (20)

and,
expp´Φpξqq0 : A0 ´ R` PA1µλ`QA1µ` A0

3 “ 0 (21)

Now, solving Equations (18)–(21) yields,

A0 “ A0, A1 “ α, λ “ ´
1

3P
p3A0α`Qq, and,

µ “
1

18P2 p3A0αQ` 2Q2 ` 9P´ 9A0
2Pq, R “

1
27P2 tQαp2Q2 ` 9Pqu

(22)

where, α “ ˘
?
´ 2P, and A0, P, and, Q, are arbitrary constants.

Substituting Equation (22) into Equation (17), we obtain

ψpξq “ A0 ` αpexpp´Φpξqqq (23)

Now, substituting Equations (9)–(13) into Equation (23) respectively, we get the following five
traveling wave solutions of the NPDE Equation (1).

When µ ‰ 0, λ2 ´ 4µ ą 0,

z1pξq “

c

A
B
tA0 ´ αp

2µ

a

λ2 ´ 4µtanhp

a

λ2 ´ 4µ

2
pξ ` Eqq ` λ

u (24)

where E is an arbitrary constant.
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When µ ‰ 0, λ2 ´ 4µ ă 0,

z2pξq “

c

A
B
tA0 ` αp

2µ

a

4µ´ λ2tanp

a

4µ´ λ2

2
pξ ` Eqq ´ λ

u (25)

where, E, is an arbitrary constant.
When µ “ 0, λ ‰ 0, and λ2 ´ 4µ ą 0,

z3pξq “

c

A
B
tA0 ` αp

λ

exppλpξ ` Eqq ´ 1
qu (26)

where, E, is an arbitrary constant.
When µ ‰ 0, λ ‰ 0, and λ2 ´ 4µ “ 0,

z4pξq “

c

A
B
tA0 ´ αp

λ2pξ ` Eq
2pλpξ ` Eqq ` 2q

qu (27)

where, E, is an arbitrary constant.
When µ “ 0, λ “ 0, and λ2 ´ 4µ “ 0,

z5pξq “

c

A
B
tA0 ` αp

1
ξ ` E

qu (28)

where, E, is an arbitrary constant.

3.2. Exact Solutions of the NPDE Equation (2)

In this subsection, we find the exact solutions of Equation (2). To this end, we use the
transformation Equation (4) to reduce Equation (2) into the following NODE,

Sψ2 pξq ´ Tψ1pξq ` ψpξq ´ ψ3pξq “ 0 (29)

where,

S “
Iω2 ´ kl2k1

2

pE
, T “

Γω

pE
(30)

and,
zpξq “

?
6ψpξq (31)

Balancing ψ2 pξqwith ψ3pξq in Equation (29), we get N “ 1. Consequently, we have the formal
solution of Equation (29), as follows:

ψpξq “ A0 ` A1pexpp´Φpξqqq (32)

where A0, A1 are constants to be determined such that AN ‰ 0, while λ, µ, are arbitrary. Substituting
Equation (32) into Equation (29) and equating the coefficients of expp´Φpξqq3, expp´Φpξqq2,
expp´Φpξqq1, expp´Φpξqq0 to zero, we respectively obtain

expp´Φpξqq3 : 2SA1 ´ A1
3 “ 0 (33)

expp´Φpξqq2 : 3SA1λ´ 3A0 A1
2 ` TA1 “ 0 (34)

expp´Φpξqq1 : A1 ` 2SA1µ` Sλ2 A1 ` TA1λ´ 3A0
2 A1 “ 0 (35)

and,
expp´Φpξqq0 : A0 ` SA1µλ` TA1µ´ A0

3 “ 0 (36)
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Solving the Equation (33)–(36) yields:

Cluster 1: We have,

A0 “ A0, A1 “
2
3

T, λ “
3

2T
p2A0 ´ 1q, µ “

9
4T2 pA0

2 ´ A0q, S “
2
9

T2 (37)

Of course, A0, T, are arbitrary constants.

Cluster 2 : We have,

A0 “ A0, A1 “ ´
2
3

T, λ “ ´
3

2T
p2A0 ` 1q, µ “

9
4T2 pA0

2 ` A0q, S “
2
9

T2 (38)

where A0, T are arbitrary constants.
For cluster 1, substituting Equation (37) into Equation (32), we obtain

upξq “ A0 `
2T
3
pexpp´Φpξqqq (39)

while, for cluster 2, substituting Equation (38) into Equation (32), we obtain

upξq “ A0 ´
2T
3
pexpp´Φpξqqq (40)

Now, substituting Equations (9)–(13) into Equation (39), respectively, we get the following five
traveling wave solutions of the NPDE Equation (2).

When, µ ‰ 0, λ2 ´ 4µ ą 0,

z1pξq “
?

6tA0 ´
2T
3
p

2µ

a

λ2 ´ 4µtanhp

a

λ2 ´ 4µ

2
pξ ` Eqq ` λ

u (41)

where E is an arbitrary constant.
When µ ‰ 0, λ2 ´ 4µ ă 0,

z2pξq “
?

6tA0 `
2T
3
p

2µ

a

4µ´ λ2tanp

a

4µ´ λ2

2
pξ ` Eqq ´ λ

qu (42)

where E is an arbitrary constant.
When, µ “ 0, λ ‰ 0, and λ2 ´ 4µ ą 0,

z3pξq “
?

6tA0 `
2T
3
p

λ

exppλpξ ` Eqq ´ 1
qu (43)

where E is an arbitrary constant.
When µ ‰ 0, λ ‰ 0, and λ2 ´ 4µ “ 0,

z4pξq “
?

6tA0 ´
2T
3
p

λ2pξ ` Eq
2pλpξ ` Eqq ` 2q

qu (44)

where E is an arbitrary constant.
When µ “ 0, λ “ 0, and λ2 ´ 4µ “ 0,

z5pξq “
?

6tA0 `
2T
3
p

1
ξ ` E

qu (45)

where E is an arbitrary constant.
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At this point, inserting Equations (9)–(13) into Equation (40), respectively, we get the following
other five traveling wave solutions of the NPDE Equation (2).

When, µ ‰ 0, λ2 ´ 4µ ą 0,

z6pξq “
?

6tA0 `
2T
3
p

2µ

a

λ2 ´ 4µtanhp

a

λ2 ´ 4µ

2
pξ ` Eqq ` λ

qu (46)

where, E, is an arbitrary constant.
When µ ‰ 0, λ2 ´ 4µ ă 0,

z7pξq “
?

6tA0 ´
2T
3
p

2µ

a

4µ´ λ2tanp

a

4µ´ λ2

2
pξ ` Eqq ´ λ

qu (47)

where, E, is an arbitrary constant.
When, µ “ 0, λ ‰ 0, and λ2 ´ 4µ ą 0,

z8pξq “
?

6tA0 ´
2T
3
p

λ

exppλpξ ` Eqq ´ 1
qu (48)

where, E, is an arbitrary constant.
When, µ ‰ 0, λ ‰ 0, and λ2 ´ 4µ “ 0,

z9pξq “
?

6tA0 `
2T
3
p

λ2pξ ` Eq
2pλpξ ` Eqq ` 2q

qu (49)

where, E, is an arbitrary constant.
When, µ “ 0, λ “ 0, and λ2 ´ 4µ “ 0,

z10pξq “
?

6tA0 ´
2T
3
p

1
ξ ` E

qu (50)

where, E, is an arbitrary constant.

4. Comparison

The papers [58,59] by Zdravkovic et al. are key to our present work. They collectively considered
solutions of the nonlinear PDE describing the nonlinear dynamics of radially dislocated MTs using
the simplest equation method. The solutions of the nonlinear PDE describing the nonlinear dynamics
of radially dislocated MTs obtained by the expp´Φpξqq-Expansion Method are different from those
of the simplest equation method. It is n oteworthy to point out that some of our solutions coincide
with already published results, if parameters taken particular values which authenticate our solutions.
Moreover, Zdravkovic et al. [58] investigated the nonlinear PDE describing the nonlinear dynamics of
radially dislocated MTs using the simplest equation method to obtain exact solutions via the simplest
equation method and achieved only two solutions (see Appendix). Furthermore, ten solutions of
the nonlinear PDE describing the nonlinear dynamics of radially dislocated MTs are constructed by
applying the expp´Φpξqq-Expansion Method. Zdravkovic et al. [58] (see also [59]) apply the simplest
equation method to the nonlinear PDE describing the nonlinear dynamics of radially dislocated MTs,
and they only solve kink type solutions, but we apply the expp´Φpξqq-Expansion Method to the
nonlinear PDE describing the nonlinear dynamics of radially dislocated MTs and solve kink type
solutions, singular kink type solutions and plane periodic type solutions. On the other hand, the
auxiliary equation used in this paper is different, so obtained solutions are also different. Similarly, for
any nonlinear evolution equation, it can be shown that the expp´Φpξqq-Expansion Method is much
more direct and user-friendly than other methods.
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5. Physical Interpretations of Some Obtained Solutions

In this section, attempting to shed lights on the corresponding physical behavior, we to discuss
nonlinear dynamics of MTs whether as nano-bioelectronics transmission lines like or radially dislocated
MTs, based on the obtained traveling wave solutions, from Equations (24)–(28), and (41)–(50),
respectively. We examine the nature of some obtained solutions of Equations (1) and (2) by selecting
particular values of the parameters and graphing the resulting exact solutions using mathematical
software Maple 13, represented in Figures 1–6.

From our obtained solutions, we observe that Equations (24)–(28), and (41)–(50), exude kink
type solitons, singular kink shape solitons, and periodic solutions. Equation (24) shows kink shaped
soliton profile for, A0 “ 1, m “ 1, ω “ ´1, k1 “ 1, k “ 2, l “ 2, A “ 2, B “ 3, µ “ 1, λ “ 3, E “ 1,
within the interval ´10 ď x, t ď 10 which is represented in Figures 1 and 2. Equation (25) provides
a periodic solution profile for, A0 “ 1, m “ 1, ω “ ´1, k1 “ 1, k “ 2, l “ 2, A “ 2, B “ 3, µ “ 3,
λ “ 1, E “ 5 within the interval ´1 ď x, t ď 1, which is represented in Figures 3 and 4. Equation (26)
provides a singular kink soliton profile for, A0 “ 1, m “ 1, ω “ ´1, k1 “ 1, k “ 2, l “ 2, A “ 2, B “ 3,
µ “ 0, λ “ 2, E “ 1, within the interval ´10 ď x, t ď 10, which is represented in Figures 5 and 6.
Equations (27) and (28) also represent singular kink type wave solutions which are similar to Figures 5

and 6. Equations (41) and (46) provide kink soliton profile, for A0 “ 2, T “
3
2

, ω “ ´1, k1 “ 1, µ “ 1,
λ “ 3, and E “ 1, within the interval, ´10 ď x, t ď 10, as in Figures 1 and 2. Equations (42) and (47)

provide periodic solutions for, A0 “ 2, T “
3
2

, ω “ ´1, k1 “ 1, µ “ 3, λ “ 1, E “ 5, within the interval,
´1 ď x, t ď 1, as in Figures 3 and 4. Equations (43) and (48), provide singular kink soliton profiles for,

A0 “ 2, T “
3
2

, ω “ ´1, k1 “ 1, µ “ 0, λ “ 2, and, E “ 1, within the interval ´10 ď x, t ď 10, as in
Figures 5 and 6. Equations (44) and (45), as well as Equations (49) and (50), also represent singular
Kink type wave solutions which are similar to Figures 5 and 6.
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Figure 1. The solitary wave 3D graphics of Equation (24) shows a kink shaped soliton profile for,
A0 “ 1, m “ 1, ω “ ´1, k1 “ 1, k “ 2, l “ 2, A “ 2, B “ 3, µ “ 1, λ “ 3, E “ 1 within the interval
´10 ď x, t ď 10.
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A0 “ 1, m “ 1, ω “ ´1, k1 “ 1, k “ 2, l “ 2, A “ 2, B “ 3, µ “ 1, λ “ 3, E “ 1, t “ 2.
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Figure 6. The solitary wave 2D graphics of Equation (26) provides a singular kink soliton profile for,
A0 “ 1, m “ 1, ω “ ´1, k1 “ 1, k “ 2, l “ 2, A “ 2, B “ 3, µ “ 0, λ “ 2, E “ 1, t “ 2.

6. Conclusions

The expp´Φpξqq-Expansion Method has been appliedto Equations (1) and (2), which describe the
nonlinear dynamics of microtubules assuming a single longitudinal degree of freedom per tubulin
dimer [59] and the dynamics of radial dislocations in MTs, respectively. The said method was
instrumental in the provision of new analytical solutions such as kink type solutions, singular kink
type solutions and plane periodic type solutions which are shown in Figures 1–3. On comparing our
results in this paper with the well-known results obtained in [50,58,59], we deduce that our results are
new and not published elsewhere. All analytical solutions obtained by The expp´Φpξqq-Expansion
Method in the paper have been controlled, whether they are verified to Equation (1) and Equation (2)
with the aid of commercial software Maple, and all new solutions have been verified to the original
equations Equations (1) and (2). Zayed and Alurrfi [56] recently solved the two equations but used the
alternative generalized Ricatti projective method. There, they also obtained trigonometric, hyperbolic
and rational solutions but failed to obtain the exponential ones that we got. Our distinction resides
mostly in obtaining extra solution types using our method. Of course, the choice of parameters yields
different facets of the solutions and their graphic presentation so as to be type representative, without
rendering the paper so voluminous, should more realizations be expected.
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Appendix

Zdravkovic et al. [56] studied solutions of of the nonlinear PDE describing the nonlinear
dynamics of radially dislocated MTs using the simplest equation method and achieved the following
exact solutions:

ψ1px, tq “ ˘
1
2

«

1` tanhy`
1

cosh2ypd` tanhyq

ff

ψ2px, tq “ ˘
1
2

„

1` tanhp
y
2
q `

1
sinhyq


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