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Abstract: In this paper, the interconnection between the cohomology of measured group actions and
the cohomology of measured laminations is explored, the latter being a generalization of the former
for the case of discrete group actions and cocycles evaluated on abelian groups. This relation gives
a rich interplay between these concepts. Several results can be adapted to this setting—for instance,
Zimmer’s reduction of the coefficient group of bounded cocycles or Fustenberg’s cohomological
obstruction for extending the ergodicity of a Z-action to a skew product relative to an S1 evaluated
cocycle. Another way to think about foliated cocycles is also shown, and a particular application is
the characterization of the existence of certain classes of invariant measures for smooth foliations in
terms of the L∞-cohomology class of the infinitesimal holonomy.
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1. Introduction

One of the most important tools to study the dynamical properties of an ergodic group action is
given by the cohomology of its measurable 1-cocycles. For instance, Furstenberg’s example (see [1])
of a minimal dynamical system on the torus which is minimal but non-Lebesgue strictly ergodic can
be interpreted as an obstruction for some continuous 1-cocycles to be cohomologically trivial in the
measurable cohomology. Zimmer’s results relative to semisimple Lie group ergodic actions and their
lattices are stated in terms of the cohomology of their actions [2]. Again, 1-cocycles carry their own
importance in terms of rigidity and amenability [3,4]. Zimmer pointed out the geometric interpretation
of the cohomology of group actions as the cohomology of a measurable lamination in the 1980s , which
led to a Mostow rigidity theorem for some kind of measured foliations [5]. Cocycles associated with
pseudogroup actions or holonomy grupoids are the direct generalization of cocycles associated to
group actions where the infinitesimal holonomy cocycle is the best example (see e.g., [6,7]).

The measurable cohomology of foliations can be traced back to the works of Connes [8,9] and
Heitsch and Lazarov [10], and it was studied in full generality by Bermudez and Hector [11–13]. In
[14], the author introduced the singular version of this cohomology which was a missing piece in order
to apply the full power of algebraic topology to this setting. The author was initially motivated by
the relation between the cup product of this cohomology and the tangential Lusternik–Schnirelmann
category of measured foliations [15]. It is required to mention that, in this work, we deal with
generalized measurable laminations in the sense that leaves could not be manifolds but only path
connected and locally compact Polish spaces, for instance connected and locally compact graphs or
CW-complexes (see e.g. [16] for formal definitions). We shall use the word lamination for such generic
foliations and the word foliation if every leaf is a manifold.

The purpose of this paper is to extend another bridge between these concepts. It is important to
note that only abelian groups are considered here as coefficient groups, whilst non-abelian coefficients
can be considered for group actions or foliated cocycles (e.g., Γ-structures).
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The paper is organized in five sections. The first section serves as an introduction to the definitions
of singular and simplicial cohomology of measured laminations and the cohomology of group actions.
It is shown that, for a given group action of a discrete group, there exists a measurable lamination
where its first cohomology group is isomorphic to the cohomology of that action. In fact, it is possible
to obtain a measurable foliation with this property.

The second section is devoted to prove an analogue of a Zimmer’s result (see [2]) for ergodic
group actions: if an R-evaluated 1-cocycle ω : T × G → R satisfies that ω({t} × G) is precompact for
every t ∈ T, then ω is cohomologous to a 1-cocycle evaluated in a compact subgroup of R. This result
is extended to higher dimensional cohomology groups.

In the third section, some classical results due to Furstenberg (see [1]) are translated to our setting
of measurable laminations. Furstenberg shows obstructions for a Z-action given by a skew product
over a strictly ergodic process to be also strictly ergodic, the obstruction is measured by the triviality
of some cohomological classes. This result is extended to the case of measurable cohomology of
laminations. In this section, it is also introduced the first group of continuous cohomology—it is
no surprise that the obstruction for a skew product to be minimal is given by the triviality of some
cohomology classes in the continuous category.

The fourth section deals with the infinitesimal holonomy cocycle associated with a smooth
foliation. This cocycle induces a closed R-valued 1-cochain in an associated measurable lamination.
Observe that the Lebesgue measure is always quasi-invariant for any (transversely) smooth foliation.
For Lebesgue ergodic smooth foliations, the triviality of this cocycle in L∞-cohomology is equivalent
to the existence of invariant measures in the Lebesgue class with L∞ Radon-Nikodyn derivative, and it
is also shown that this is equivalent to a boundedness condition on the infinitesimal holonomy.

The final section gives further comments and other possible generalizations of well-known results
of cohomological dynamics, as the Livsic theorem, to the setting of leafwise cohomology.

2. Cohomology of Measured Laminations

The purpose of this section is to introduce the singular and simplicial cohomology of measurable
laminations. It will be necessary to introduce a wider category of objects that are able to manage the
dual character of measurable laminations (the measurable structure and the leaf topology). A measurable
topological space, or MT-space, is a set X endowed with a σ-algebra and a topology. Usually, measure
theoretic concepts will refer to the σ-algebra of X, and topological concepts will refer to its topology;
in general, the σ-algebra is different from the Borel σ-algebra induced by the topology. An MT-map
between MT-spaces is a measurable and continuous map. An MT-isomorphism is a map between
MT-spaces, which is a measurable isomorphism and a homeomorphism.

Obvious examples are topological spaces with the Borel σ-algebra and measurable spaces with
the discrete topology. Let X and Y be MT-spaces. Suppose that there exists a measurable embedding
i : X → Y that maps measurable sets to measurable sets. Then, X is called an MT-subspace of Y.
The product X×Y is also an MT-space with the product topology and σ-algebra.

Let “∼” be an equivalent relation on an MT-space X. The quotient X/ ∼ is an MT-space with the
quotient topology and the σ-algebra generated by the projections of measurable saturated sets of X.

A Polish space is a completely metrizable and separable topological space. A standard Borel space is
a measurable space isomorphic to a Borel subset of a Polish space. Let S be a standard Borel space and
let P be a Polish space and let us consider the Borel σ-algebra on P. P× S will be endowed with the
structure of MT-space defined by the product σ-algebra and the product of the discrete topology on S
and the topology of P.

A measurable chart on an MT-space X is an MT-isomorphism ϕ : U → P× S, where U is open
and measurable in X, S is a standard Borel space, and P is a locally compact, connected and locally
path connected Polish space; let us remark that P and T depend on the chart. The sets ϕ−1(P× {∗})
are called plaques of ϕ, and the sets ϕ−1({∗} × S) are called associated transversals of ϕ. A measurable
atlas on X is a countable family of measurable charts whose domains cover X. A measurable lamination
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is an MT-space that admits a measurable atlas. Observe that we always consider countable atlases;
therefore, the ambient space is also a standard space. The connected components of X are called leaves.
An example of measurable lamination is a usual foliation with the ambient Borel σ-algebra and the
leaf topology. The notation F will be used to denote the collection of leaves and ‖F‖ will denote the
underlying MT-space. For every x ∈ ‖F‖, the leaf of F that contains x will be denoted by Lx.

According to this definition, the leaves are second countable connected manifolds, but they may
not be Hausdorff. Therefore, in what follows, it will be assumed that ‖F‖ is Hausdorff, locally path
connected and locally compact. Under these conditions, leaves are locally compact and path connected
Polish spaces.

In the case where the plaques of each chart are homeomorphic to a Euclidean ball, we shall use
the term measurable foliation. In the case where the leaves are graphs the term measurable graph will
be used.

A measurable subset T ⊂ X is called a transversal if its intersection with each leaf is countable [10].
Let T (X) be the family of transversals of X. This set is closed under countable unions and intersections,
but it is not σ-algebra. A transversal meeting all leaves is called complete.

A measurable holonomy transformation is a measurable isomorphism γ : T → T′, for T, T′ ∈ T (X),
which maps each point to a point in the same leaf. A transverse invariant measure on X is a σ-additive
map, µ : T (X)→ [0, ∞], invariant by measurable holonomy transformations. The classical definition of
transverse invariant measure in the context of foliated spaces is a measure on topological transversals
invariant by holonomy transformations (see e.g., [6]). These two notions of transverse invariant
measures agree for foliated spaces [8]. When the sets of null measure are invariant by holonomy
transformations, the measure µ will be called quasi-invariant. A measured foliation is a pair (‖F‖, µ)

where µ is a finite measure over some complete transversal and quasi-invariant for F . Fix a complete
transversal T of F so that (T, µ) is a finite measure space. Given a set A ⊂ M, let sat(A) denote the set
given by the union of all the leaves meeting A, this set will be called the saturation of A.

Definition 1. The measured foliation (F , µ) will be called ergodic if for every measurable subset A ⊂ T,
the set sat(A) ∩ T (which is always measurable) has null or full measure. This is equivalent to say that
every leafwise constant measurable map is almost everywhere constant.

Remark 1. In the world of measured laminations, holonomy transformations can be still interpreted
as the slice of a transversal following a leafwise path [14]. For this, it is always assumed that our
atlas is regular, i.e., plaques are precompact spaces in the corresponding leaf, every intersecting pair
of measurable charts of a given atlas is contained in another measurable chart (not necessarily in the
given atlas), and any chart meets a finite number of other charts. However, the concept of germ of a
measurable holonomy transformation makes no sense since transverse topology is needed, i.e., from
a measurable point of view, the holonomy group of a leaf is trivial. In a measured lamination, the
ergodic components play the role of minimal sets for foliations; therefore, ergodicity will be a natural
hypothesis with which to work.

Example 1 (Measurable suspensions). Let P be a locally compact, connected, locally path connected
and semi-locally 1-connected Polish space, and let S be a standard space. Let Meas(S) denote the
group of measurable transformations of S. Let

h : π1(P, x0)→ Meas(S)

be a homomorphism. Let P̃ be the universal covering of P and consider the action of π1(P, x0) on the
MT-space P̃× S given by

g · (x, t) = (xg−1, h(g)(t)) .
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The corresponding quotient MT-space, denoted as P̃×h S, will be called the MT-suspension of h.
P̃×h S is a measurable lamination, {∗} × S is a complete transversal, and its leaves are covering spaces
of P. See Figure 1 for a clarifying picture.

Figure 1. The simplest suspension of a circle transformation over S1. Bold circles represent the fiber
and base spaces.

The measurable cohomology of MT-spaces is the natural version of a cohomology theory, which
takes into account the mixing of their topology and measurable structure. It is also supposed that
the considered coefficient groups, which will be denoted by R, are standard abelian groups, i.e.,
an admissible coefficient group is an abelian group and a standard space where the product and the
inverse maps are measurable. In the world of group actions, cocycles evaluated in non-abelian groups
(e.g., Gl(n,R) or Diff(S1)) are of great importance, however the introduction of a non-commutative
cohomology theory is beyond the purpose of this work.

Definition 2 (Measurable simplex). A measurable simplex is the MT-space induced by the product
4N × S where S is a standard space and4N is the canonical N-simplex. A measurable singular simplex
on ‖F‖ is an MT-map σ : 4N × S→ ‖F‖.

Let ω be a usual singular n-cochain over a coefficient group R, as usual, an inversion of orientation
is translated to an inversion in R. It is said that ω is measurable if ωσ : S → R, s 7→ ω(σ|4×{s}), is
measurable for all measurable singular n-simplices σ. The set of measurable cochains is a subcomplex
of the complex of usual cochains since the coboundary operator δ preserves the measurability.
This measurable subcomplex is denoted by C∗MT(F , R), and the coboundary operator restricted to this
complex is also denoted by δ.

The singular measurable cohomology is defined as usual by

Hn
MT(X, R) = Ker δn/ Im δn−1 .

Any MT-map f : ‖F‖ → ‖G‖ defines a cochain map f ∗ : C∗MT(G, R)→ C∗MT(F , R) by f ∗(ω)(σ) =

ω( f ◦ σ). Since it commutes with the coboundary operator, it induces a homomorphism between
measurable cohomology groups, f ∗ : H∗MT(Y, R)→ H∗MT(X, R).

The importance of the measurable singular cohomology is the fact that it has substantial theoretical
advantages, which allows for adapting easily classical results from algebraic topology as excision,
functoriality, homotopy invariance, Mayer–Vietoris or cup product in relative cohomology—another
bonus is that it can be applied to every MT-space. This topic is treated deeply in [14]. However, for
explicit calculus, simplicial cohomology is easier to be analyzed. They are fully described in [11–13]
and, in [14], it is shown that simplicial and singular measurable versions are isomorphic, in particular,
it does not depend on the (measurable) simplicial description of leaves.
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Definition 3 (Measurable triangulation [11]). A measurable triangulation of a measurable lamination
F is the assocation of a structure of simplicial complex to each leaf of F , it will be denoted by T =⊔

L∈F T L. Measurability must be understood in the following way. For each n, the set of barycenters
of n-simplices, which will be denoted by Bn, is a (measurable) transversal and the function σn : 4n ×
Bn → ‖F‖, mapping a barycenter b ∈ Bn to the embedding σn

b : 4n → Lb given by the triangulation
T Lb , is also measurable, where4n is the canonical n-simplex. The term measurable simplicial lamination
will be also used for a measurable lamination endowed with a measurable triangulation.

Let b a barycenter of some n-simplex in T , then 4b will denote the simplex containing b,
i.e., the map σn

b : 4n → Lb, ∂4n will denote the set of faces of the canonical n-simplex and
∂4b = {σn

b|F)}F∈∂4n .

Remark 2. A simplicial complex does not need to be a manifold. This is the case for measurable graphs.

A measurable simplicial lamination will be denoted by the pair (‖F‖, T ). An n-cochain over
a standard abelian group R is a measurable map

ω : {±} × Bn → R

such that ω(−, b) = −ω(+, b). The orientation (+, b) refers to the orientation induced by the standard
orientation of the canonical n-simplex in the domain of σn

b and (−, b) to the inverse orientation. In order
to relax the notation, we use only the notation b for signed barycenters and −b should denote the
inverse orientation on the corresponding simplex. In this sense, we can define the set ∂b formed by the
face barycenters of4b with a positive sign if the orientation agrees with the orientation in {+} × Bk−1

or negative otherwise. Analogously, we shall use the signed notation for oriented simplices, where
−4b will denote that simplex with the opposite orientation. Clearly, a measurable n-cochain is
determined by the values on {+} × Bn, in this sense n-cochains can be interpreted as measurable
maps ω : Bn → R. This relaxed notation will be used only for the cases n = 0 and n = 1. Let Cn(T , R)
denote the set of simplicial n-cochains; this set is endowed with a group structure induced by R.
We define the coboundary operator δ : Cn(T , R)→ Cn+1(T , R) as usual by δω : {±} × Bn+1 → R,

δω(b) = ∑
b′∈∂b

ω(b′) .

Clearly, δ2 = 0 and we can define the cohomology groups as usual:

Hn(F , T , R) = Ker δn/ Im δn−1 .

Remark 3. In the case of a measured lamination (‖F‖, µ), the above definitions can be applied in
an almost everywhere sense (a.e. in what follows). This means that exact cocycles satisfy ω = δθ a.e.,
and this leads to the concept of a.e. cohomology or measured cohomology. The cohomology groups in
this sense will be denoted by Hn(F , µ, R).

In a similar sense, when R = R or C, it can be introduced the Lp cohomology, which we denote
by Hn

Lp(F , µ, R), 1 ≤ p ≤ ∞. For a locally compact R, the L∞ cohomology is obtained by considering
cochains which are taking its values a.e. in a compact subset of R.

It is also obvious that the definition of simplicial cohomology can be extended to the case of
polygonal subdivisions on the leaves, where simplices are replaced by compact linear regions of the
Euclidean space.

3. Cohomology of Measurable Group Actions and Measurable Laminations

The cohomology of measured group actions was introduced to provide invariants useful to
detect the wild dynamical behavior shown by non-amenable group actions [4]. For the amenable
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case, a measured group action is orbit equivalent to a Z-action [17] and measurable dynamics are not
so interesting.

Let G be a locally compact separable group acting (on the right) by measurable isomorphisms on
a measured standard Borel space (S, µ), where µ is a quasi-invariant measure. Let R be a standard
group (not necessarily conmutative). A 1-cocycle for the action is a map

ω : S× G → R

such that ω(s, gh) = ω(s, g)ω(sg, h) for all s ∈ S and g, h ∈ G and it is said that ω and θ are
cohomologous if there exists a measurable function f : S× R such that f (s)ω(s, g) f (sg)−1 = θ(s, g)
a.e. s ∈ S and all g ∈ G, when R is abelian this is written as ω(s, g)− θ(s, g) = f (sg)− f (t).

The right action will be denoted by a : S× G → S, however, the notation will be ignored if it is
clear in the context (sg := a(s, g)). Let H1(S×a G, µ, R) denote the set of 1-cocycles up to cohomology.

Recall that only abelian coefficient groups R and finitely generated G are considered in this work,
the remaining cases (G a continuous group and R non-abelian) are of great importance ([2,18]) but they
will not be treated in this work.

Assuming G finitely generated and R abelian, let SG = {g1, . . . , gn} be a minimal system of
generators of G and let Zn be the wedge union of n circles. Of course, π1(Zn) = ∗n

1Z with generators
e1, . . . , en given by the loops of each circle component. Let us consider the homomorphism

h : π1(Zn, ∗)→ Meas(S) , ei 7→ h(ei)(s) = a(s, gi) ,

which allows for defining the MT-suspension Xa = Z̃n ×h S. Clearly, Xa is a measurable simplicial
lamination, and, moreover, a measurable graph where the 0-simplices correspond with {∗} × S ≡ S,
and the 1-simplices are provided by the lifts of the generators ei to each leaf, their barycenters are in
a natural bijection with n copies of T. A positive orientation on the edges is provided by [t→ tg].

Now, we want to attach 2-cells to this measurable graph in the following way. Whenever we have
a non trivial irreducible relation g±1

i1
. . . g±1

ik
= 1, a chain of 2-cells bounded by the respective edges in

Xa is attached. This is done by attaching a 2-cell to the loop given by the relation in a minimal set of
relations. Let X̂a be the resulting measurable cellular lamination. To obtain a simplicial structure on
leaves, we can add edges joining the barycenter of each added 2-cell to each vertex in its boundary. It
is clear that these triangulations perform a structure of measurable triangulation on X̂a which will be
denoted by T a.

Remark 4. It is not important, for the definition of X̂a, the fact that the sets of generators and relations
are minimal (whenever they perform a presentation of the given group). However, the space X̂a

depends strongly on the choice of generators and relations (even minimal). This can be seen directly in
the points s ∈ S where the isotropy group is trivial, the leaf of X̂a meeting s is homeomorphic to the
Cayley graph of G associated to SG where every simple loop is bounded by at least one chain of 2-cells.

When the isotropy group is not trivial, interesting topology can appear. For instance, assume that
some generator e satisfies the relation e2 = 1 and h(e)(s) = s for some s. Thus, in the construction of
the leaf passing through s, we have to attach a 2-cell to the loop induced by e but in such a way that its
boundary is a double covering of that loop. This produces a projective plane embedded in that leaf. It
is clear that different relations can produce other embedded surfaces without any limitations.

The main point of this construction is the following observation: although the topology of the
leaves can change wildly, the first cohomology group of leaves is invariant.

Proposition 4. Let G be a finitely generated group acting by measurable isomorphisms on a standard measure
space (S, µ) and let R be a standard abelian coefficient group. Then H1(S ×a G, µ, R) and H1(X̂a, µ, R)
are isomorphic.
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Proof. Let us consider the above CW-structure T a on the leaves of X̂a and identify the set of
1-barycenters B1 of T a with S× {g1, . . . , gn}. Therefore, a 1-cocycle ω induces a simplicial 1-cochain
i∗(ω) of X̂a via the restriction map. The cocycle condition implies that ω(s, 1) = 0 for all s ∈ S, hence
i∗(ω) is closed since the attached 2-cells occur in a minimal set of relations for the group. Remark that,
since 2-cells were attached on a minimal set of relations, every relation (not necessarily irreducible)
induces a 1-simplicial chain bounded by a chain of 2-cells.

Clearly, 0-cocycles are naturally identified since B0 ≡ S. If ω is exact then ω(t, g) = f (tg)− f (t)
a.e. and f (tg) − f (t) = δ f by definition. Therefore, i∗ defines an injective map at the level of
1-cohomology groups.

Given a closed 1-cochain θ : B1 ≡ S× {g1, . . . , gn} → R, it defines an R-value on any chain of
1-simplices just by summing over the values on each simplex of the chain. We have to show that it
determines a 1-cocycle ω : S× G → R so that i∗(ω) = θ. Let us define

ω(s, g±1
i1

. . . , g±1
ik

) := θ(s, g±1
i1

) + θ(sg±1
i1

, g±1
i2

) + · · ·+ θ(sg±1
i1

. . . g±1
ik−1

, g±1
ik

) .

Observe that θ extends naturally to a map on the simplicial chains of T a, in fact, a complete
definition of cochain is given as a homomorphism from the abelian group of simplicial chains to R,
and the map θ is a way to give values for the generators of the group of simplicial chains. The above
definition of ω is consistent with the value of θ in the simplicial chain given by a oriented path of edges
with initial point in t ∈ T and determined by the sequences of generators g±1

i1
. . . g±ik . However, the

above equation does not guarantee the cocycle condition for ω. For an arbitrary measurable cochain,
two different words representing the same element in G can give different values in R. This is the point
where we use the fact that ω is closed. Let w = w1 . . . wk, v = v1 . . . vl be words in SG representing the
same element g ∈ G, then wv−1 is a trivial relation for G, and therefore (considering w0 = v0 = 1)

k−1

∑
i=0

θ(sw0 . . . wi, wi+1)−
l−1

∑
i=0

θ(sv0 . . . vi, vi+1) = 0 ,

since the edges provided by the word wv−1 bound a chain of 2-cells. The above equality means that
ω(s, w) = ω(s, v) as desired.

Example 2. In the case where G is a free group (with the usual presentation), there are no relations
and, therefore, X̂a = Xa.

Example 3. The suspension of two circle rotations gives a well known foliation over T3 with base T2.
In this case, this foliation agrees with the space X̂a. This is not the case for a suspension of three circle
rotations. In this case, three minimal relations appear (the commutators of each pair of generators
of Z3) and X̃a can be given as a 2-skeleton on the suspension foliation in T4 with base T3. Since the
MT-spaces considered only differ by 3-cells, the first cohomology groups of X̂a and the suspension
foliation on T4 are isomorphic.

The above example suggests that under certain hypothesis we can replace X̃a by a measurable
foliation, this happens when G is the fundamental group of a (closed) manifold such that the
fundamental region in the universal covering space is an n-cell. This is the case for surfaces of
genus ≥ 1. However, in general, the homomorphism ha : π1(B)→ Meas(S) is not a monomorphism,
this means that non-trivial words in π1(B) (or in G) can act trivially, which leads to a non-trivial (in
cohomology) loop on every leaf, even when ha is a monomorphism it could happen that a non-trivial
word induces an a.e. trivial map leading to a similar issue. This can be represented by a measurable
1-cochain (evaluating by a constant 6= 0 in these loops and 0 otherwise). Thus, non-trivial classes
represent non-trivial dynamics whenever the action of π1(B) is a.e. faithfull or essentially free,
this depends on our meaning of “non-trivial dynamics”. In the a.e. faithful case, non-trivial classes
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with trivial dynamics can arise from a set of fixed points of positive measure, but interesting things
can be happening outside of this set. In the essentially free case, a non-trivial cohomology class is
always detecting dynamics, but this is a more restrictive condition. Observe that, for a.e. faithful (resp.
essentially free), it is equivalent to say that fixed points in S have non-full (resp. null) measure for any
element of G.

When G is finitely presented, then it is well known that there exists a smooth closed 4-manifold
with fundamental group isomorphic to G. Although the fundamental region for this 4-manifold could
not be diffeomorphic to a disk, this region must be simply connected and the previous argument is
easily adapted. This can be summarized as follows:

Proposition 5. Let G be a group with finite presentation acting by measurable isomorphisms in (S, µ). Let R
be a standard abelian group, then there exists a measured foliation (‖F‖, µ) of dimension 4 such that H1(S×
G, µ, R) is isomorphic to H1(F , µ, R). This foliation is given by the suspension process of the G-action over
a closed 4-manifold with a fundamental group isomorphic to G.

4. Reduction of the Coefficient Group

Assume for this section that R is a topological abelian group which is a locally compact
Polish space.

Definition 6. A cocycle ω : S×G → R is said to be bounded if the set A(s) = a({s}×G) is precompact
for all s ∈ S.

We want to adapt the following result of Zimmer.

Proposition 7 (Zimmer [2]). Let a : S× G → S be a measured ergodic action on a standard measure space
(S, µ). If ω is a bounded cocycle then ω is cohomologous to a cocycle evaluated on a compact subgroup of R.

The next definition is introduced in order to adapt the notion of bounded cochain.

Definition 8. Let T 1(s) be the set of (finite) simplicial paths formed by an ordered finite family of
oriented edges of the 1-skeleton of T with initial point in s ∈ B0, so that the end point of an edge is
the initial point of the next one (with the eventual exception of the last edge). A (measurable) cochain
ω : B1 → R is called bounded if ω(T (s)) is a precompact set for all s ∈ S. It is said that ω is uniformly
bounded if there exists F ⊂ B0 a measurable set of full measure so that

⋃
s∈F T 1(s) is a precompact set.

Remark 5. In the above section, where the cohomology of group actions was translated to the language
of the cohomology of measurable laminations, the role of the edges of the 1-skeleton is the analogue of
the generators of the group. Thus, the 1-dimensional simplicial paths can be thought as an analogue of
the elements of the group.

Proposition 9. Let ω be a measurable 1-cochain of an ergodic simplicial lamination (‖F‖, T , µ). If ω is
a bounded cochain, then ω is cohomologous to a closed cochain evaluated on a compact subgroup of R.

Proof. The proof is a direct application of Zimmer’s original argument [2]. Since R is Polish, the
space C of compact sets in R is a complete and separable metric space with the Hausdorff metric.
Let b ∈ {±}×B1, and let i(b), e(b) ∈ B0 denote the initial and end points of the edge containing b with
the induced orientation. Since ω : {±}×B1 → R is a measurable function, the mapK : {±}×B1 → C,
b 7→ ω(T 1(i(b))) is measurable. Clearly, ω(b) + ω(T 1(e(b))) = ω(T 1(i(b))). If K ∈ C and there
exists a sequence xn ∈ R with xn + K → K′ in C, then, by compactness, there exists a subsequence
converging to x ∈ R such that x + K = K′. Therefore, the orbits of C under the natural R action are
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closed. As a consequence, the quotient space C/R is Polish. Since ω(b) + ω(T 1(e(b))) = ω(T 1(i(b))),
the sets ω(T 1(e(b))), ω(T 1(i(b))) represent the same equivalence class in C/R.

We want to show that there exists an equivalence class [B] ∈ C/R with ω(T 1(s)) ∈ [B] for almost
every s ∈ B0. Remark that B0 is a complete transversal and (B0, µ) is ergodic relative to the action of
the measurable holonomy pseudogroup, the measurable map

K : B0 → C/R , s 7→
[
ω(T 1(s))

]
is constant on each orbit (which is the intersection of each leaf with B0) and thus it is a.e. constant
by ergodicity. Let eB : R → [B] ⊂ C, r 7→ r + B, and let s : [B] → R be a measurable section, i.e., for
all D ∈ [B], s(D) + B = D (and B = −s(D) + D). The function ϕ(s) = −s(ω(T 1(s))) satisfies, for
almost every b ∈ B1:

ϕ(i(b)) + (ω(b) + (−ϕ(e(b)) + B)) = ϕ(i(b)) + (ω(b) + ω(T 1(e(b)))) =

= ϕ(i(b)) + ω(T 1(i(b))) = B .

Therefore, ω is cohomologous, via ϕ, to a cochain θ which takes values a.e. in the stabilizer of
B, Stab(B), which is compact since B is compact. By redefining θ in a negligible set by 0 the proof
is complete.

Corollary 10. Let ω be a measurable 1-cochain of an ergodic simplicial lamination (‖F‖, T , µ). If ω is
a uniformly bounded cochain then ω is L∞-cohomologous to a closed cochain evaluated on a compact subgroup
of R.

Proof. Observe that a uniformly bounded cochain is necessarily an element of L∞(µ). All the
arguments in the above proof works verbatim, and it is only required to check that the 0-cochain
ϕ(s) = −s(ω(T 1(s))) is essentialy bounded. Since ω(b) + ω(T 1(e(b))) = ω(T 1(i(b))), it follows
that the image of ϕ is contained in

⋃
s∈F T 1(s) a.e. s ∈ B0 which is a compact set by hypothesis.

Remark 6. Observe that the cochains are not required to be closed which is the natural translation of
cocycles. This comes from the fact that any measurable cochain satisfies for free a cocycle condition
since they can be seen as a homomorphism on the group of 1-simplicial chains, and this is enough
for the above argument to work. From another point of view, arbitrary cochains are closed cochains
relative to the measurable lamination defined by the 1-skeleton of T .

The above proposition has an analogue for higher dimensional cochains, and this will need the
introduction of new technology.

Definition 11. A k-simplicial path starting at b = b0 ∈ {±} × Bk−1 is a finite and ordered family
of pairs (4k

0, b0), . . . , (4k
m, bm) where 4k

i are oriented k-simplices and bi are (signed) barycenters of
(k− 1)-simplices for all i and for some m ∈ N, such that

• bi ∈ ∂4k
i and the sign of bi is determined by the induced orientation.

• −bi+1 ∈ ∂4k
i and bi,−bi+1 represent different faces of4k

i for all i ≥ 0.

A k-simplicial path is called even (resp. odd) whenever m + 1 is even (resp. odd). If4k
0 = 4k

m then
the k-simplicial path will be called k-simplicial loop.

Definition 12. For b ∈ Bk−1, let T k(b) the set of k-simplicial paths starting at b. A measurable
1-cochain is bounded if ω(T k(b)) is precompact for all b ∈ Bk−1.
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Definition 13. A measured simplicial lamination is said to be k-coherent if, for a.e. leaf, any pair of
different non-oriented (k− 1)-simplices in the same leaf is connected by a k simplicial path and a.e.
leaf contains simplices of dimension k. Observe that this is the case for measured simplicial foliations.
For k = 1, coherency is automatic since leaves are path connected by definition (whenever a.e. leaf is
not a singleton).

Definition 14. A measurable simplicial lamination (F , T ) is said to be k-evenly triangulated if there
exists a measurable set Tk ⊂ {+} × Bk−1 so that for every b ∈ {+} × Bk, ∂b contains exactly
one element of Tk t−Tk.

Remark 7. A barycentric subdivision of any triangulation is always even in the above sense. This is
provided by the fact that the barycentric subdivision of any old simplex can be seen as a subdivision
by attached pairs of new k-simplices, the faces (with a choice of orientation) between these attached
pairs perform the set Tk. This is the reason to use the word “evenly” for this kind of triangulation.

Proposition 15. Let ω be a measurable k-cochain, k ≥ 2, of an ergodic, k-coherent and k-evenly triangulated
measured lamination (‖F‖, T , µ). If ω is a bounded cochain then ω is uniformly bounded and cohomologous to
a k-cochain evaluated on a compact subgroup of R.

Proof. As before, let C denote the Polish space given by the compact sets of R with the Hausdorff
metric. Let b ∈ Bk and set ∂b = {i0(b), . . . , ik(b)} an enumeration of face barycenters with the induced
orientations. It is easy to check the following equation

−ω(b) + ω(T k(ij(b)) =
⋃
l 6=j

ω(T k(−il(b))) .

By a symmetric argument we get the following chain of equations:

ω(T k(ij(b)) = ω(b)−ω(b) + ω(T k(ij(b))) =

= ω(b) +
⋃
l 6=j

ω(T k(−il(b))) =

=
⋃
l 6=j

(ω(b) + ω(T k(−il(b)))) =
⋃

l

ω(T k(il(b))) .

Thus ω(T k(ij(b)) =
⋃

l ω(T k(il(b))) for all j ∈ {0, . . . , k}. This is only possible if ω(T k(ij(b))) =

ω(T k(il(b))) for all j, l. An intuitive way to see this relation is by observing that a simplicial path P
starting at ij(b) induces another simplicial path P̂ = ((4b, il(b)), ((−4b,−im(b)),P) starting at il(b)
for pairwise different j, l, m, observe that this is only true for k ≥ 2 since an intermediate third face,
im(b), is needed to perform P̂ . Now, consider the involution i : C → C, K 7→ −K. As before C/i is

Polish. Since ω(T k(−s)) = −ω(T k(s)), the map

K : {±} × Bk−1 → C/i , s 7→
[
ω(T k(s))

]
is a.e. constant if the measurable simplicial lamination is k-coherent. By ergodicity, there exists

B, a compact subset of R, such that
[
ω(T k(s))

]
= [B] for a.e. s ∈ {±}Bk−1. Therefore, ω is

uniformly bounded.
Now, a simple calculation shows that for a.e. b ∈ {±} × Bk, ω(b) + B = −B or ω(b)− B = B

depending on whether B = ω(T k(t)) or B = ω(T k(−t)). If b and c are barycenters of contiguous
k-simplices with compatible orientations (they form a k-simplicial path), then ω(b) + ω(c) + B = B
and thus ω(b) + ω(c) ∈ Stab(B) which is a compact subgroup of R. If (4b,4c,4d) is a k-simplicial
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path of length 3, then a similar argument shows ω(b)−ω(d) ∈ Stab(B) for a.e. b, d in these conditions.
More generally, if4b,4c are connected by a k-simplicial path then either ω(b) + ω(c) or ω(b)−ω(c)
belong to Stab(B) according to the length of the path being even or odd. Moreover, by ergodicity,
either ω(c) + ω(b) or ω(c)− ω(b) belong to Stab(B) for a.e. b, c ∈ {±} × Bk (not necessarily in the
same leaf).

Assume that there exists a k simplicial loop of even length based on a k-simplex b (b counts twice
for the length of that loop), therefore, 2ω(b) ∈ Stab(B) and, as a consequence, ω(b) ∈ Stab(B ∪−B),
which is also a compact subgroup. Observe that any other k-simplex in that leaf admits a simplicial
loop of even length, suppose that L is an even simplicial loop starting on4b and ending at4c, then
(P ,L,P−1) is another even simplicial loop starting at c where P is a k-simplicial path joining4c and
4b provided by coherency. Therefore, ω itself takes values in the compact subgroup Stab(B ∪−B).
Observe that the measurable function ev : {±}×Bk → {0, 1}, defined as ev(b) = 1 iff b has a simplicial
loop of even length, is leafwise constant. Therefore, if the set of these simplices is non-negligible, then
ω itself takes its values a.e. in a compact subgroup of R by ergodicity.

Assume now that a.e. leaf does not admit simplicial loops of even length and F is k-evenly
triangulated by T . Therefore, there exists a measurable set Tk ⊂ {+} × Bk−1 so that each simplex of
dimension k has exactly one face barycenter (up to orientation) in Tk. Since there are not even loops,
the measurable map ξ : {+} × Bk → {−1, 1} mapping c ∈ Bk to 1 if ω(b) + ω(c) ∈ Stab(B) and
−1 if ω(c)− ω(b) ∈ Stab(B), is well defined whenever ω(b) /∈ Stab(B) (in which case ω takes its
values in Stab(B)). This gives a partition of Bk into two subsets: ξ−1({±1}). The main point is that
each element b ∈ ξ−1({1}) has exactly one face barycenter in Sk t−Sk. Let T̂k ⊂ {±} × Bk−1 be the
measurable set obtained from Tk in order to match the induced orientations of ξ−1({1}), it agrees with
Tk up to orientation. Let us define the measurable cochain ϕ : {±} × Bk−1 → R as ϕ(s) = ±ω(b) iff
s ∈ ±T̂k and 0 otherwise. It follows that ω− δϕ is evaluated in Stab(B) completing the proof.

Remark 8. Let us remark that the reduction of ω is given by a (k− 1)-cochain in L∞(µ). Therefore,
the Proposition 15 holds for L∞-cohomology.

Question 1. It is unclear whether the above result holds for non k-evenly triangulated laminations.
Observe that measured cohomology does not depend on the chosen triangulation [14]. Let us
consider the k-skeleton, T (k) of T , thus every k-cochain is closed. Barycentric subdivision provides
a k-even triangulation of T (k), and we can consider the isomorphism between the measured
simplicial cohomology of T (k) and its barycentric subdivision. However, it is uncertain whether
this isomorphism should respect bounded k-cochains (up to cohomology).

Observe that the above proof holds when a.e. leaf admits even k-simplicial loops (even in the non
k-evenly triangulated case). In the case where a.e. k-simplicial loop is odd, Lusin–Novikov theorem
on the existence of measurable sections (see Theorem 18.10 in [19]) might be enough to produce
a measurable set with the properties of Tk.

Example 4. Let F α,β consider the suspension of two rationally independent circle rotations Rα, Rβ :
R/Z→ R/Z, t 7→ t + α, t 7→ t + β. The Lebesgue measure is an invariant and ergodic measure for F .
Leaves are planes, and we can consider the measurable triangulation given by the 2-simplices with
vertices S1(t) = [t, t + β, t + α + β] and S2(t) = [t, t + α, t + α + β], t ∈ R/Z. Let ω be the Z evaluated
measurable 2-cochain ω so that ω(S1(t)) = −1 and ω(S2(t)) = 1 relative to a compatible orientation
of the foliation, see Figure 2.

Clearly, ω is bounded (every simplicial path gives value −1, 0 or 1). Therefore it is cohomologous
to a 0 evaluated cochain (0 is the unique compact subgroup of Z), i.e., ω is exact. Observe that this
triangulation is 2-even and Tk can be given by the diagonal edges of the triangulation. An invariant
element in C/i is the class of B = {0, 1} or B = {−1, 0}. This is a toy example where the steps of the
proof of the Proposition 15 can be checked directly.
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Figure 2. Minimal linear foliation on T3 with a leafwise triangulation. Vertical segments represent,
after quotient, the set of 1-barycenters B1. The bounded cochain given in Example 4 is represented in
a generic leaf.

5. Furstenberg’s Criteria for Minimality and Ergodicity of Skew Products

In this section, we generalize some classical results due to Furstenberg for continuous Z-actions.
In [1], a cohomological criterium for the strict ergodicity of a skew product over a strictly ergodic
transformation is obtained. Observe that in this section we are working on topological laminations.
A formal definition can be found in [6], essentially they are defined by changing in our introductory
definitions of measurable laminations the word “standard” by “locally compact and Polish” and
measurable by “continuous”. For topological foliations, the notation ‖F‖ refers to the ambient space.
Furstenberg gives also a criterium for the minimality in the setting of continuous cocycles, this allows
to produce continuous transformations of the torus which are minimal but not Lebesgue ergodic.

Our aim is to define the necessary objects and show that Furstenberg’s proofs can be adapted
wihout major issues. This is in fact a way to show that Furstenberg’s work holds for discrete actions
and opens the door to higher dimensional analogues.

Furstenberg assumes that the measure µ is invariant instead of quasi-invariant. This is not
restrictive for continuous flows: since leaves are homeomorphic to S1 or R, they satisfy the Fölner
condition, the averaging process [20] on any orbit produces an invariant measure supported in the
closure of that leaf. However, in general, the existence of invariant measures is a high restriction. In this
section, all the considered measures will be quasi-invariant and Radon. As usual, S1 will denote the
circle as the set of unimodular complex numbers and m will denote the normalized Lebesgue measure
on the circle. Although S1 is abelian, we shall use the multiplicative notation for the operations in S1.

Now, the Furstenberg’s criterium is stated in a different way from the original. In this version,
nothing is said about strict ergodicity, but this is a price to pay in order to allow the inclusion of
quasi-invariant measures.

Proposition 16 (Furstenberg). Let T0 : Ω0 → Ω0 be a Borel transformation (which induces a Z-action) on
a compact Polish space Ω0 and let µ0 be a quasi-invariant measure which is ergodic for this action. Let g : Ω0 →
S1 be a Borel function and let T : Ω0 × S1 → Ω0 × S1, (w0, z) 7→ (T0(w0), g(w0)z). Then µ = µ0 ×m is
a ergodic measure for T if and only if gk is not trivial in measured cohomology for every integer k 6= 0, i.e.,
[gk] 6= 0 in H1(XT0 , µ, S1) where XT0 is the suspension of T0 over the circle.

Proof. We refer to the original proof in [1] for more details. It relies on the following two points:

1. µ is always a quasi-invariant measure for T. This is provided by using Fubbini in the product
measure µ, the quasi-invariance of µ0 and the fact that m is fiberwise invariant.

2. Let f ∈ L2(Ω0× S1, µ) so that T f = f , since µ is a product measure we can express f as a fiberwise
Fourier series

f ≡
∞

∑
k=−∞

ck(w)zk
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for ck ∈ L2(Ω0, µ0). By using the invariance under T, one can easily check that ck(T0(w)) =

g(w)−kck(w) for every k ∈ Z. The ergodicity of T0 shows that some ck is non essentially zero for
k 6= 0. Since |g| = 1 the saturation of the non-zero set of ck is also non-zero, and thus has full
measure. Therefore, h(w) = ck(w)−1 trivializes g in measured cohomology. Conversely, if gk = δh
then the function h(w)−1zk is T invariant and is not a.e. constant, so T is not ergodic.

Before proceeding to adapt the above proposition, it is necessary to explain the meaning of
a leafwise continuous triangulation of a topological lamination. A measurable triangulation of
a topological lamination is said to be continuous if the union of the barycenters (of all simplices)
is a closed space in the ambient topology and for every convergent sequence bn → b of barycenters, the
corresponding simplices converge in the Hausdorff metric. Observe that simplices associated to bn and
b could have different dimensions. In the case of foliations on a smooth manifold where the leaves are
smooth manifolds, a leafwise triangulation can be obtained by choosing a triangulation of the ambient
manifold in general position with the foliation (see Figure 3). This provides a polygonal subdivision
on leaves which can be refined to simplicial after a barycentric subdivision. Most of the interesting
examples of topological laminations arise from minimal sets of usual foliations, so the existence of
a leafwise triangulation is not so strong as it seems at first glance.

Figure 3. Transverse intersection of a planar foliation with a 3-simplex in general position.

Now, it is time to translate the necessary objects and apply Furstenberg’s original proof. Of course,
Ω0 will be the set of 0-barycenters B0 and T0 must be now given by oriented edges. Whenever we
consider the space ‖F‖ × S1, we can obtain a new topological foliation by translating each leaf of F to
each fiber ‖F‖ × {z}, z ∈ S1. This foliation can be seen as a “trivial skew product”. Its ambient space
can fail to be a manifold in general (since ‖F‖ is not a manifold in general), but we can at least perturb
in the S1 “direction” and ask what ergodic and topological properties of F can be translated to the
perturbed foliation.

When we deal with suspensions, the triangulation obtained by lifting a triangulation of the base
manifold provides a leafwise continuous triangulation where each Bk, k ≥ 0, is homeomorphic to
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a disjoint union of closed sets homeomorphic to the fiber space. However, in the general case, B1 can
fail to be closed (check the Reeb component). In this case, it has accumulation points in B0.

Definition 17. Let us consider ξ(B1) = B1 \ B1, which is always a closed set. A continuous 1-cochain
is a continuous map g : B1 → S1 such that g|ξ(B1) = 1, i.e., g vanishes in its relative boundary.

Although B0 is a complete transversal in the measurable sense it has, in general, singularities
where bifurcations occur, this set of singularities agrees with ξ(B1). Recall that now the dynamics are
generated by the holonomy maps associated to a 1-simplicial path of edges, we can assume that the
domain and range are contained in B0 whenever the initial point of the first edge and the end point of
the last edge of the path are non-singular. If any of these points is singular, we can also assume that
the domain and range are in B0 but not as open subsets, this is done by considering the outer and inner
transversal relative to a singular point and a 1-simplex defined below.

Definition 18. Let U be a foliated chart neighboring a singular point p ∈ B0 and let b ∈ {±} × B1

so that i(b) = p. Since simplices must be converging in the Hausdorff metric, it follows that for
any plaque of U close to p, there exists a sequence of 1-simplices 4bP which are converging in the
Hausdorff metric to4b. We define the outer transversal through p relative to b, denoted by out(p, b),
as the union of the initial points of all bP and p. This is a locally closed set which meets each plaque
close to P in a single point, so it is a transversal in the topological sense where the holonomy is well
defined. Analogously, the inner transversal, inn(p, b), is defined for a signed 1-barycenter b such that
e(b) = p. See Figure 4.

Figure 4. Outer and inner transversals associated to the extreme singular points of the bold 1-simplices.
The leafwise triangulation is induced by a transverse triangulation.

Definition 19 (Leafwise skew product). Let g be a continuous S1 evaluated closed 1-cochain on
the topological 1-dimensional foliation F . For every t ∈ B0, let b ∈ {±} × B1 such that i(b) = t.
The leafwise skew product, F ng S1 is defined as the topological simplicial foliation in ‖F‖ × S1 where
the 0 simplices are identified with B0 × S1 and each (t, z) is joined with (e(b), g(b)z) by an edge with
this orientation. The fact that g is closed means that any 1-simplicial loop bounded by a 2-cell induces
a family of 1-simplicial loops in the skew product and thus 2-cells (and higher dimensional cells) can
be attached accordingly, this implies that ‖F ng S1‖ = ‖F‖× S1. The fact that g vanishes in its relative
boundary is necessary to make the holonomy of the leafwise skew product continuous.

Proposition 20. Let (F , µ0) be an ergodic oriented topological measured simplicial lamination. Let g :
{±} × B1 → S1 be a closed 1-cochain. Then µ = µ0 ×m is an ergodic measure for F ng S1 if and only if gk is
not trivial in measured cohomology for every integer k 6= 0, i.e., [gk] 6= 0 in H1(F , S1, µ).
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Proof. We follow the method of proof of Proposition 16. First, we show that µ0 ×m is quasi-invariant.
Let us consider a holonomy transformation γg : D× S1 → Q× S1 of F ng S1, where D, Q are local
transversals which can be considered as subsets of B0 (see Definition 18) which are the domain and
range of a holonomy transformation γ of F associated to a 1-simplex, so γg(t, z) = (γ(t), g([t, γ(t)])z).
It is clear that such maps γg generate the holonomy pseudogroup ofF ng S1. Since µ is a Radon product
measure, we can estimate the measure of a set Z of null measure by product functions. Let us consider
a sequence of continuous and positive functions fn : Q× S1 → R such that

⋂
n Supp( fn) = Z and

fn(w, z) =
∞

∑
k=1

an,k(w)bn,k(z) ,

∫
Q×S1

fn(w, z) dµ =
∞

∑
k=1

∫
Q×S1

an,k(w)bn,k(z)dµ −−−→
n→∞

0 .

We only have to show that
∫

D×S1 fn ◦ γgdµ converges to zero. Since fn(γg(w, z)) =

∑k an,k(γ(w))bn,k(g(w)z), we have

∫
Q×S1

fn ◦ γg dµ =
∞

∑
k=1

∫
Q×S1

an,k(γ(w))bn,k(g(w)z) dµ =

=
∫

Q

(∫
S1

bn,k(g(w)z)dm
)

an,k(γ) dµ0 =

=
∞

∑
k=1

∫
Q

(∫
S1

bn,k(z)dm
)

an,k(γ(w)) dµ0 =

=
∞

∑
k=1

∫
Q

an,k(γ(w))dµ0

∫
S1

bn,k(z) dm =

=
∫

D×S1
fn dγ∗µ0 ×m .

Since µ0 is quasi-invariant, µ is quasi-invariant for the transformation γ× id : D× S1 → Q× S1,
therefore the latest expression converges to zero as desired.

In order to check whether F ng S1 is ergodic, let f ∈ L2(F ng S1, µ) (with complex values) be
a leafwise constant (but a.e. non-constant) function and let f ≡ ∑k∈Z ck(x)zk be the fiberwise Fourier
series. At the level of the B0 and for a given holonomy map γ of F induced by an oriented 1-simplex,
we obtain ck(γ(w)) = g([w, γ(w)])−kck(w) where [w, γ(w)] denotes the 1-simplex joining w and γ(w).
Of course c0 is a.e. constant by ergodicity of F and therefore some ck is not essentially zero for some
k 6= 0. Now, by ergodicity of F and the fact that |g| = 1, this ck is a.e. non-zero, and we can check
that ϕ(w) = ck(w)−1 a.e. satisfies gk = δϕ almost everywhere. Conversely, if some gk is trivial in
cohomology then gk = δϕ a.e. and f = ϕ(w)−1zk a.e. gives a leafwise constant function in B0 which is
non a.e. constant.

Example 5. Let F α,β be a linear foliation on T3. Dealing with this foliation as a suspension with the
polygonal structure given in Figure 2 by removing the diagonals, we obtain B1 = S1 t S1 with no
singularities. Let g be a 1-cochain with constant values γ, θ on each copy of S1, it is clear that it is
a closed 1-cochain. The foliation F α,β ng S1 is nothing else than a 2-dimensional linear foliation on
T4 which can be seen as the suspension over T2 of the following conmuting transformations on T2:
A(z1, z2) = (αz1, γz2) and B(z1, z2) = (βz1, θz2). It is well known that this foliation is not ergodic
(or minimal) if and only if there exists integers k, k′ 6= 0 so that αk = γk′ and θk = θk′ . We can
check this directly, under this condition the function f (z) = zk satisfies f (αz) f (z)−1 = αk = γk′ and
f (βz) f (z)−1 = θk′ , so gk′ = δ f . The converse is a little harder, but in this particular example it is
easy to see that gk = δ f implies f (βα−1z) = (γθ−1)k · f (z) for all z ∈ S1, since βα−1 is irrational by
hypothesis it follows, by a Fourier series argument, that f must be of the form f (z) = c0 + cmzm for
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c0, cm ∈ S1 constants and some m 6= 0. Finally, the analysis of this example is finished by Furstenberg’s
criterium.

The next step is to work in the continuous category and show that a similar proposition holds for
the continuous cohomology.

Definition 21. Let F be a topological simplicial lamination as above and let T be a leafwise continuous
triangulation. The first R-evaluated continuous cohomology group for F is defined as the quotient
group of the continuous closed 1-cochains g : B1 → R via the equivalence relation induced by the
coboundary of continuous maps f : B0 → R. It will be denoted by H1

C0(F , T , R). Observe that δ f
vanishes in the relative boundary of B1.

Proposition 22. Let F be a minimal oriented 1-dimensional topological foliation with a regular leafwise
triangulation T . Let g : B1 → S1 be a continuous closed 1-cochain. Then F ng S1 is minimal if and only if gk

is not trivial in continuous cohomology for every integer k 6= 0, i.e., [gk] 6= 0 in H1
C0(F , T , S1).

Proof. Recall that minimality can be checked by any of the following three equivalent definitions:

1. There are no closed proper saturated sets,
2. Every leaf is dense,
3. Any continuous leafwise constant function f : F → H, where H is any Frechet space, is constant.

We have a natural projection π : ‖F ng S1‖ → ‖F‖, by minimality of F , any non-empty
closed saturated set K ⊂ ‖F ng S1‖ satisfies π(K) = ‖F‖. Let f ∈ C(F ng S1,C) be a leafwise
constant (but non-constant) continuous function. As before, we can consider the fiberwise Fourier
series f = ∑k∈Z ck(w)zk where the Fourier coefficients belong to C(‖F‖,C). Let γ be a holonomy
transformation induced by an oriented 1-simplex, we have ck(γ(w)) = g−k([w, γ(w)])ck(w) since the
function is supposed to be leafwise constant. By minimality of F , c0 is a constant λ. If ck = 0 for all
k 6= 0 then f is constant which contradicts the choice of f . Assume that some ck is not constant zero for
k 6= 0, then, since |g| = 1, the zero level set of ck is closed and saturated for F and therefore it must be
the emptyset. This means that ϕ(w) = ck(w)−1 is well defined and continuous and satisfies gk = δϕ.
Conversely for gk = δϕ, the function ϕ(w)−1zk is a continuous leafwise constant but non-constant.

In fact, for the continuous cohomology we can adapt Zimmer’s result on the coefficient group. As
a corollary, we obtain a well known characterization of exact R or C evaluated cocycles of Z-actions
given by W. H. Gottschalk and G. A. Hedlund [21].

Proposition 23. Let ω be a continuous 1-cochain of a minimal simplicial lamination (F , T , µ) evaluated in
an abelian group R which is isomorphic to a discrete group, Rn or Cn. If ω is a bounded cochain then ω is
cohomologous to a continuous cochain evaluated on a compact subgroup of R, in the particular case of Rn or Cn

the bounded cochain is, in fact, null cohomologous.

Proof. As in Proposition 9, C denotes the Polish space of compact sets in R and T 1(t) the set of
oriented 1-simplicial paths with initial point t ∈ B0. Since ω : B1 → R is continuous and vanishes
in its relative boundary the map K : {±} × B1 → C, b 7→ T 1(i(b)) is also continuous. Clearly,
ω(b) + ω(T 1(e(b))) = ω(T 1(i(b))). The quotient space C/R is a Polish since the equivalence relation
is closed. Since ω(b) + ω(T 1(e(b))) = ω(T 1(i(b))), the sets ω(T 1(e(b))), ω(T 1(i(b))) represent the
same equivalence class in C/R.

The map K : B0 → C/R, s 7→ T 1(s) is continuous and constant on each orbit (which is the
intersection of each leaf with B0) and thus it is constant by minimality of F , call [B] this constant class
and assume without loss of generality that 0 ∈ B. Let eB : R → [B] ⊂ C, r 7→ r + B, the class r + B
is naturally identified with the coset r + Stab(B). Now, we study each possibility in order to obtain
a map s : [B]→ R which is a continuous section, i.e., for all D ∈ [B], s(D) + B = D.



Mathematics 2016, 4, 18 17 of 20

• If R is a discrete abelian group, then any section is also a continuous section because the quotient
space is also discrete.

• If R is Rn or Cn, then Stab(B) = {0} because these spaces does not admit non-trivial compact
subgroups, thus eB is bijective with continuous inverse. This is the desired section.

Let ϕ be the 0-cochain ϕ(t) = −s(ω(T 1(t))). As in Proposition 9 ω + δϕ takes its values
in Stab(B).

Corollary 24 (Gottschalk-Hedlund [21]). Let h : X → X be a minimal homeomorphism on a compact
Hausdorff space. A continuous function f : X → C is null-cohomologous if and only if the functions
ψk = ∑k

i=0 f ◦ hi : X → C, k ∈ Z, are uniformly bounded for all x ∈ X.

Proof. We are in the hypothesis of Proposition 23 by considering the suspension of h and the induced
simplicial structure. In this corollary, R = C. The fact that ψk are uniformly bounded implies that f
is a bounded cochain and so f is null cohomologous. Conversely, if f is null cohomologous, there
exists g : X → C continuous so that f = g ◦ h − g. Therefore, a telescopic argument shows that
ψk = g ◦ hk+1 − g for k ≥ 0 and ψk = g ◦ h − g ◦ hk for k < 0. Thus ‖ψk‖ ≤ 2‖g‖ for all k ∈ Z
concluding the proof.

Remark 9. Furstenberg uses this dual result to obtain a minimal but not strictly Lebesgue ergodic
transformation on the torus Tk, k ≥ 2, just by obtaining a non-trivial class in the continuous cohomology
which is trivial in the measurable cohomology. This work provides the technology to perform such
examples in higher dimensional foliations. Another observation is that Furstenberg’s technique works
in the world of discrete actions, and we are showing that in fact it works in the world of (simplicial)
foliations. Another interesting option is to change the coefficient group by a compact Lie group and
the Lebesgue measure by the Haar measure (although this is only interesting if non-abelian coefficient
groups were allowed).

Observe also that our continuous simplicial cohomology of foliations is nothing else than the
leafwise cohomology for usual foliations (via a leafwise de Rham theorem).

6. Foliated Cocycles and Invariant Measures

It is important to remark that all the dynamical information of a measurable lamination is
encoded in the holonomy pseudogroup, and the holonomy pseudogroup is generated by the transverse
coordinate changes of a regular foliated atlas. Given a locally finite foliated atlas U , we can associate
a measurable graph GU where each plaque in a foliated chart is identified with its barycenter and we
perform an edge between barycenters associated to adjacent plaques.

Let Uα, Uβ, Uσ ∈ U so that Uα ∩ Uβ ∩ Uσ 6= ∅. Let Pi ∈ Ui, i ∈ {α, β, σ}, be plaques so that
Pα ∩ Pβ ∩ Pσ 6= ∅. They induce a 1-simplicial loop in the leaf which contains these plaques, these kind
of loops will be called cocycle loops. We attach a 2-simplex on each cocycle loop, and we can perform
these operation in a measurable way performing a new measurable lamination ĜU . This lamination
induces the same holonomy pseudogroup in B0. In particular, they have the same invariant measures.

Definition 25. (see e.g., [7]) An R-evaluated foliated cocycle relative to the atlas U = {Uα}α∈A of the
measurable lamination F is a family of maps ν = {γαβ : Uα ∩Uβ → R} so that γαβ · γβσ = γασ on any
point of Uα ∩Uβ ∩Uσ. Of course, we consider these maps only on non trivial intersections. When R is
the germ of diffeomorphisms of Rq at the origin, then the cocycle is called a Haefliger cocycle.

Of course, Haefliger cocycles are evaluated on a non-abelian group, and so they are out of our
actual discussion. An interesting example to be considered is the infinitesimal holonomy cocycle
associated to a usual foliation in a smooth manifold. For a point x ∈ Uα ∩ Uβ we define ν =

{γαβ(x) = log |det Jhαβ(x)|}, where Jhαβ denotes the Jacobian matrix relative to the transverse change
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of coordinates. This evaluation does not depend on the points in the same plaque, and, therefore, we
can define an R-evaluated 1-cochain in GU by ν([bα, bβ]) = γαβ(xαβ) for any xαβ ∈ Pα ∩ Pβ. This is
a closed cochain in ĜU and, conversely, any closed 1-cochain in ĜU defines a foliated cocycle relative to
U which is constant on the plaques of the atlas.

The measurable cohomology class of ν is an obstruction to the existence of invariant measures
in the measure class (i.e., with the same sets of null measure) of the Lebesgue measure of a smooth
foliation. This is explictly done in [7,22].

Proposition 26. Let (M,F , m) be a smooth measured foliation on a smooth manifold M so that m is the
Lebesgue measure in B0. Let GU be the measurable graph associated to a regular foliated atlas U of F . Then F
has an invariant measure in the same class of m if and only if the cohomology class [ν] ∈ H1(GU , m, R) is trivial.

Proof. Let b ∈ B1, we associate a holonomy transformaion γb : out(i(b), b)→ inn(e(b), b). Of course,
out(i(b), b) (resp. inn(e(b), b)) is identified with the projection of Uα ∩Uβ in an associated transversal
of Uα (resp. Uβ). γb can be seen also as a map γb : inn(i(b), b) → {±} × B1, t 7→ [t, γb(t)] where
[t, γb(t)] denotes the barycenter of the edge between t and γb(t) with the orientation t 7→ γb(t). We
shall use the same notation for both maps.

Assume µ a measure in the Lebesgue class. Therefore, the Radon–Nikodyn formula provides
a measurable map h : B0 → R so that ehdm = dµ. The change of variable formula provides that
γ∗b dµ = eν◦γb+h◦γb−hdµ (Lemma 7.1.21 in [7]). If µ is invariant, then ν + δh = 0 a.e. and so [ν] = 0.
Conversely, let h so that ν + δh = 0 a.e. then the above equation shows that the measure given by ehdm
is invariant and, of course, it is in the Lebesgue class.

The infinitesimal holonomy is one of the components of the Godbillon–Vey class of a foliation
and Hurder shows in [22] that the existence of an invariant measure in the Lebesgue class forces
the vanishing of the Godbillon–Vey class. The Godbillon–Vey class encodes interesting data of the
transverse dynamics, for instance, a deep result of Duminy shows that, for codimension 1 foliations,
a non-trivial Godbillon–Vey class implies the existence of a resilient leaf (a non-proper leaf which has
a transverse self-accumulation point given by a holonomy contraction), see [7] for a proof. Then, even
for smooth foliations, the measurable cohomology is interesting on its own. At this point, we can use
our work in Section 4 and obtain the following corollary.

Corollary 27. Let (M,F , m) be a smooth Lebesgue ergodic foliation on a smooth manifold M. If ν is a bounded
1-cochain of GU (in the sense of Definition 8) then F has an invariant measure in the Lebesgue class.

Remark 10. When the Lebesgue measure is invariant, then it is clear that ν is trivial and in
particular, bounded.

Recall that, in continuous cohomology, R-valued bounded 1-cochains are exactly the
cohomologically trivial 1-cochains (see Corollary 24). This suggests that Corollary 10 is close to
be an equivalence. If M is a closed manifold, then ν defines an L∞(m) 1-cochain. Clearly, if ν = δh
for some h ∈ L∞(B0,R; m) then ν is uniformly bounded since sup{|x| | x ∈ ω(T 1(t)|} ≤ 2|h|∞ for all
t ∈ B0. The converse is also true, and it was proved in Corollary 10. These data can be encoded in the
following result.

Corollary 28. Let (M,F , m) be a smooth Lebesgue ergodic foliation on a smooth closed manifold M. Then ν

is a uniformly bounded 1-cochain of GU (in the sense of Definition 8) if and only if there exists an invariant
measure µ in the Lebesgue class so that dµ = ehdm for some h ∈ L∞(B0,R; m).
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7. Conclusions

What is lost in our approach is the possibility of having non-abelian coefficient groups. This is
of extreme importance in many interesting problems where the coefficient groups can be Gl(n,R),
Diff+(S1), a compact Lie group or the unitary group of a Hilbert space. For measurable graphs, the
definition of the first cohomology set (in general fails to be a group) can be adapted with no further
problems. However, higher dimensional cohomology seems to be much more difficult to properly
define.

At this point, the reader would see that a lot of dynamical and topological results can be a target
for being adapted in this framework. In this section, we state two of them.

Livsic’s theorem states that the Hölder cohomology classes of a transitive Anosov diffeomorphism
are determined by their values on the periodic points. More precisely:

Theorem 29 (Livsic). [18] Let h : M → M be a transitive Anosov diffeomorphism. Let f : M → R be
an α-Hölder function so that hn(p) = p implies ∑n

i=0 f ◦ hi(p) = 0, then there exists an α-Hölder function
g : M→ R so that f = g ◦ h− g, i.e., f is null cohomologus in the α-Hölder cohomology.

It is well known that the Livsic theorem holds for transitive Anosov flows, and this suggests
an adaptation to foliations: periodic points are interpreted as compact leaves, and the Anosov condition
is translated to the notion of Anosov pseudogroups, which are analogous to Anosov flows.

On the other hand, the Mostow rigidity theorem says that the volume of hyperbolic manifolds of
dimensions greater than 2 is determined by their fundamental group. Zimmer [5] adapted the Mostow
rigidity for measurable laminations coming from ergodic measured locally free actions of certain Lie
groups. Thus, the natural question is how to extend Zimmer’s result to a wider class of measurable
laminations.
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