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1. Introduction.

Let φ : (Mm, g)→ (Nn, h) be a smooth map between Riemannian manifolds. Then φ is said to be
harmonic if it is a critical point of the energy functional :

E(φ) =
1
2

∫
K
|dφ|2dvg (1)

for any compact subset K ⊂ M. Equivalently, φ is harmonic if it satisfies the associated Euler-Lagrange
equations :

τ(φ) = Trg∇dφ = 0, (2)

and τ(φ) is called the tension field of φ. One can refer to [1–4] for background on harmonic maps. In
the context of harmonic maps, the stress-energy tensor was studied in details by Baird and Eells in [5].
The stress-energy tensor for a map φ : (Mm, g) −→ (Nn, h) defined by

S(φ) = e(φ)g− φ∗h

and the relation between S(φ) and τ(φ) is given by

divS(φ) = −h(τ(φ), dφ).

The map φ is said to be biharmonic if it is a critical point of the bi-energy functional :

E2(φ) =
1
2

∫
M
|τ(φ)|2dvg (3)

Equivalently, φ is biharmonic if it satisfies the associated Euler-Lagrange equations :

τ2(φ) = −Trg
(
∇φ
)2

τ(φ)− TrgRN(τ(φ), dφ)dφ = 0, (4)
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where ∇φ is the connection in the pull-back bundle φ−1(TN) and, if (ei)1≤i≤m is a local orthonormal
frame field on M, then

Trg
(
∇φ
)2

τ (φ) =
(
∇φ

ei∇
φ
ei −∇

φ
∇ei ei

)
τ (φ) ,

where we sum over repeated indices. We will call the operator τ2(φ), the bi-tension field of the map φ.
In analogy with harmonic maps, Jiang In [6] has constructed for a map φ the stress bi-energy tensor
defined by

S2(φ) =

(
−1
2
|τ(φ)|2 + divh (τ(φ), dφ)

)
g− 2symh (∇τ(φ), dφ) ,

where
symh (∇τ(φ), dφ) (X, Y) =

1
2
{h (∇Xτ(φ), dφ (Y)) + h (∇Yτ(φ), dφ (X))} ,

for any X, Y ∈ Γ (TM) . The stress bi-energy tensor was also studied in [7] and those results could
be useful when we study conformal maps. The stress bi-energy tensor of φ satisfies the following
relationship

divS2(φ) = h (τ2(φ), dφ) .

Clearly any harmonic map is biharmonic, therefore it is interesting to construct non-harmonic
biharmonic maps. In [8] the authors found new examples of biharmonic maps by conformally
deforming the domain metric of harmonic ones. While in [9] the author analyzed the behavior of the
biharmonic equation under the conformal change the domain metric, she obtained metrics g̃ = e2γ

such that the idendity map Id : (M, g) −→ (M, g̃) is biharmonic non-harmonic. Moreover, in [10] the
author gave some extensions of the result in [9] together with some further constructions of biharmonic
maps. The author in [11] deform conformally the codomain metric in order to render a semi-conformal
harmonic map biharmonic. In [12] the authors studied the case where φ : (Mn, g) −→ (Nn, h) is a
conformal mapping between equidimensional manifolds where they show that a conformal mapping φ

is biharmonic if and only if the gradient of its dilation satisfies a second order elliptic partial differential
equation. We can refer the reader to [13], for a survey of biharmonic maps. In the first section of this
paper, we present some properties for a conformal mapping φ : (Mn, g) −→ (Nn, h), we prove that the
stress bi-energy tensor depend only on the dilation (Theorem 1) and we calculate the bitension field of
φ (Theorem 2). In the last section we study the biharmonicity of some maps on the warped product
(Theorem 4 and 5), with this setting we obtain new examples of biharmonic non-harmonic maps.

2. Some properties for conformal maps.

We study conformal maps between equidimensional manifolds of the same dimension n ≥ 3.
Note that by a result in [12], any such map can have no critical points and so is a local conformal
diffeomorphism. Recall that a mapping φ : (Mn, g)→ (Nn, h) is called conformal if there exist a C∞

function λ : M→ R∗+ such that for any X, Y ∈ Γ(TM) :

h(dφ(X), dφ(Y)) = λ2g(X, Y).

The function λ is called the dilation for the map φ. The tension field and the stress energy tensor for a
conformal map are given by (see [14]):

Proposition 1. Let φ : (Mn, g)→ (Nn, h) be a conformal map of dilation λ, we have

(i) divS(φ) = (n− 2)λ2d ln λ, (5)

(ii) divh(τ(φ), dφ) = (2− n)
(

2λ2 |grad ln λ|2 + λ2∆ ln λ
)

. (6)

(iii) τ(φ) = (2− n)dφ(grad ln λ). (7)

(iv) |τ(φ)|2 = (2− n)2λ2 |grad ln λ|2 . (8)
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Note that the conformal map φ : (Mn, g) → (Nn, h) of dilation λ is harmonic if and only if n = 2 or the
dilation λ is constant.

In the first, wa calculate the stress bi-energy tensor for a conformal map φ when we prove that
S2(φ) depend only the dilation.

Theorem 1. Let φ : (Mn, g)→ (Nn, h) be a conformal map with dilation λ, then we have

S2(φ) = (2− n) λ2
{(

n− 2
2
|grad ln λ|2 + ∆ ln λ

)
g− 2∇d ln λ

}
, (9)

and the trace of S2(φ) is given by

TrS2(φ) = − (2− n)2 λ2
{n

2
|grad ln λ|2 + ∆ ln λ

}
. (10)

To prove Theorem 1, we need the following Lemma :

Lemma 1. Let φ : (Mn, g)→ (Nn, h) be a conformal map with dilation λ, then for any function f ∈ C∞(M)

and for any X, Y ∈ Γ(TM), we have

h (∇Xdφ (grad f ) , dφ (Y)) = λ2 (X (ln λ)Y ( f )−Y (ln λ) X ( f ))

+ λ2∇d f (X, Y) + λ2d ln λ (grad f ) g (X, Y) .
(11)

Proof of Lemma 1. Let f ∈ C∞ (M), for any X, Y ∈ Γ (TM), we have

h (∇Xdφ (grad f ) , dφ (Y)) = X
(

λ2g (grad f , Y)
)
− h (dφ (grad f ) ,∇Xdφ (Y))

= X
(

λ2
)

g (grad f , Y) + λ2g (∇X grad f , Y) + λ2g (grad f ,∇XY)

− h (dφ (grad f ) ,∇dφ (X, Y))− h (dφ (grad f ) , dφ (∇XY))

= X
(

λ2
)

g (grad f , Y) + λ2g (∇X grad f , Y) + λ2g (grad f ,∇XY)

− h (dφ (grad f ) ,∇dφ (X, Y))− λ2g (grad f ,∇XY) .

Note that
g (∇X grad f , Y) = ∇d f (X, Y) ,

then we obtain

h (∇Xdφ (grad f ) , dφ (Y)) = 2λ2X (ln λ)Y ( f ) + λ2∇d f (X, Y)− h (dφ (grad f ) ,∇dφ (X, Y)) .

By similary, we have

h (∇Ydφ (grad f ) , dφ (X)) = 2λ2Y (ln λ) X ( f ) + λ2∇d f (X, Y)− h (dφ (grad f ) ,∇dφ (X, Y)) .

Then, we deduce that

h (∇Xdφ (grad f ) , dφ (Y)) = h (dφ (X) ,∇Ydφ (grad f ))

+ 2λ2 (X (ln λ)Y ( f )−Y (ln λ) X ( f )) .
(12)
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For the term h (dφ (X) ,∇Ydφ (grad f )), we have

h (∇Ydφ (grad f ) , dφ (X)) = h (∇dφ (grad f , Y) , dφ (X)) + λ2g (∇Ygrad f , X)

= h
(
∇grad f dφ (Y) , dφ (X)

)
− λ2g

(
∇grad f Y, X

)
+ λ2g (∇Ygrad f , X)

= grad f
(

λ2g (X, Y)
)
− h

(
∇grad f dφ (X) , dφ (Y)

)
− λ2g

(
∇grad f Y, X

)
+ λ2g (∇Ygrad f , X)

= 2λ2d ln λ (grad f ) g (X, Y)− h (∇dφ (X, grad f ) , dφ (Y))

+ λ2g (∇Ygrad f , X) .

We deduce that

h (∇Ydφ (grad f ) , dφ (X)) = −h (∇Xdφ (grad f ) , dφ (Y)) + 2λ2∇d f (X, Y)

+ 2λ2d ln λ (grad f ) g (X, Y) .
(13)

Finally, if we replace (13) in (12), we obtain

h (∇Xdφ (grad f ) , dφ (Y)) = λ2 (X (ln λ)Y ( f )−Y (ln λ) X ( f ))

+ λ2∇d f (X, Y) + λ2d ln λ (grad f ) g (X, Y) .

This completes the proof of Lemma 1.

Remark 1. Let φ : (Mn, g)→ (Nn, h) be a conformal map with dilation λ, then if we consider f = ln λ, the
equation (11) gives

h (∇Xdφ (grad ln λ) , dφ (Y)) = λ2
(
∇d ln λ (X, Y) + |grad ln λ|2 g (X, Y)

)
.

Proof of Theorem 1. By definition, the stress bi-energy tensor is given by :

S2(φ) =

(
−1

2
|τ(φ)|2 + divh (τ(φ), dφ)

)
g− 2symh (∇τ(φ), dφ) . (14)

Using the equations (2) et (4) for the Proposition 1, we have

− 1
2
|τ(φ)|2 + divh (τ(φ), dφ) = (2− n)λ2

(
n + 2

2
|grad ln λ|2 + ∆ ln λ

)
. (15)

Calculate now symh (∇τ(φ), dφ), we have by definition for any X, Y ∈ Γ (TM)

symh (∇τ(φ), dφ) (X, Y) =
1
2
(h (∇Xτ (φ) , dφ (Y)) + h (∇Yτ (φ) , dφ (X)))

=
2− n

2
(h (∇Xdφ (grad ln λ) , dφ (Y)) + h (∇Y (grad ln λ) , dφ (X))) .

By Lemma 1, we have

h (∇Xdφ (grad ln λ) , dφ (Y)) = λ2
(
∇d ln λ (X, Y) + |grad ln λ|2 g (X, Y)

)
and

h (∇Ydφ (grad ln λ) , dφ (X)) = λ2
(
∇d ln λ (X, Y) + |grad ln λ|2 g (X, Y)

)
,
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then
symh (∇τ(φ), dφ) (X, Y) = (2− n) λ2

(
∇d ln λ (X, Y) + |grad ln λ|2 g (X, Y)

)
. (16)

If we substitute (15) and (16) in (14), we conclude that

S2(φ) = (2− n) λ2
{(

n− 2
2
|grad ln λ|2 + ∆ ln λ

)
g− 2∇d ln λ

}
Calculate now the trace of stress bi-energy tensor. Let (ei)1≤i≤n be an orthonormal frame on M,
we have

TrgS2(φ) = S2(φ)(ei, ei)

= (2− n) λ2
(

n− 2
2
|grad ln λ|2 + ∆ ln λ

)
g (ei, ei)

− 2 (2− n) λ2∇d ln λ (ei, ei)

= (2− n) nλ2
(

n− 2
2
|grad ln λ|2 + ∆ ln λ

)
− 2 (2− n) λ2 (∆ ln λ)

= (2− n) λ2
{

n (n− 2)
2

|grad ln λ|2 + (n− 2)∆ ln λ

}
.

Then
TrS2(φ) = − (2− n)2 λ2

{n
2
|grad ln λ|2 + ∆ ln λ

}
.

By calculating the Laplacian of the function λ
n
2 and by using

∆λ
n
2 =

n
2

λ
n
2

(n
2
|grad ln λ|2 + ∆ ln λ

)
,

we obtain immediately the following corollary

Corollary 1. Let φ : (Mn, g)→ (Nn, h), (n 6= 2) to be a conformal map of dilation λ, then the trace of S2(φ)

is zero if and only if the function λ
n
2 is harmonic.

The bi-tension field of the conformal map is given by

Theorem 2. Let φ : (Mn, g)→ (Nn, h), (n ≥ 3) to be a conformal map of dilation λ, then bi-tension field of φ

is given by :
τ2(φ) = (n− 2) dφ (H)

where

H = grad∆ ln λ− (n− 6)
2

grad
(
|grad ln λ|2

)
+ 2RicciM (grad ln λ)

−
(

2 (∆ ln λ) + (n− 2) |grad ln λ|2
)

grad ln λ.
(17)

Remark 2. A. Balmus in [9] studied the case where φ = IdM, she obtained the biharmonicity of the identity
map from (M, g) onto

(
M, λ2g

)
, this case was also studied in [15].

To prove the Theorem 2, we need two Lemmas. In the first Lemma, we give a simple formula of
the term Trg

(
∇φ
)2 dφ (gradγ) for a conformal map φ : (Mn, g)→ (Nn, h) (n ≥ 3) of dilation λ and for

any function γ ∈ C∞ (M).

Lemma 2. Let φ : (Mn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ, then for any function
γ ∈ C∞ (M), we have

Trg
(
∇φ
)2 dφ (gradγ) = dφ (grad∆γ) + 4dφ

(
∇grad ln λgradγ

)
+ dφ

(
RicciM (gradγ)

)
+ (∆ ln λ) dφ (gradγ)− 2 (∆γ) dφ (grad ln λ)

− (n− 2) d ln λ (gradγ) dφ (grad ln λ) .

(18)
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Proof of Lemma 2. Let γ ∈ C∞ (M), by definition, we have

Trg
(
∇φ
)2 dφ (gradγ) = ∇φ

ei∇
φ
ei dφ (gradγ)−∇φ

∇ei ei
dφ (gradγ) . (19)

(Here henceforth we sum over repeated indices.) Let us start with the calculation of the term
∇φ

ei∇
φ
ei dφ (gradγ) , we have

∇φ
ei dφ (gradγ) = ∇dφ (ei, gradγ) + dφ (∇ei gradγ) .

It is known that (see [16])

∇dφ (ei, gradγ) = ei (ln λ) dφ (gradγ) + d ln λ (gradγ) dφ (ei)− ei (γ) dφ (grad ln λ) ,

then
∇φ

ei dφ (gradγ) = ei (ln λ) dφ (gradγ) + d ln λ (gradγ) dφ (ei)

− ei (γ) dφ (grad ln λ) + dφ (∇ei gradγ) .
(20)

It follows that

∇φ
ei∇

φ
ei dφ (gradγ) = ∇φ

ei {ei (ln λ) dφ (gradγ)}+∇φ
ei {d ln λ (gradγ) dφ (ei)}

−∇φ
ei {ei (γ) dφ (grad ln λ)}+∇φ

ei dφ (∇ei gradγ) .
(21)

We will study term by term the right-hand of this expression. For the first term
∇φ

ei {ei (ln λ) dφ (gradγ)}, we have

∇φ
ei {ei (ln λ) dφ (gradγ)} = ei (ln λ)∇φ

ei dφ (gradγ) + ei (ei (ln λ)) dφ (gradγ) .

By using the equation (20), we deduce that

∇φ
ei {ei (ln λ) dφ (gradγ)} = ei (ln λ) ei (ln λ) dφ (gradγ) + ei (ln λ) d ln λ (gradγ) dφ (ei)

− ei (ln λ) ei (γ) dφ (grad ln λ) + ei (ln λ) dφ (∇ei gradγ)

+ ei (ei (ln λ)) dφ (gradγ) ,

then, we obtain

∇φ
ei {ei (ln λ) dφ (gradγ)} = |grad ln λ|2 dφ (gradγ) + dφ

(
∇grad ln λgradγ

)
+ ei (ei (ln λ)) dφ (gradγ) .

(22)

For the second term ∇φ
ei {d ln λ (gradγ) dφ (ei)}, a similar calculation gives

∇φ
ei {d ln λ (gradγ) dφ (ei)} = d ln λ (gradγ)∇φ

ei dφ (ei) + ei {g (grad ln λ, gradγ)} dφ (ei)

= d ln λ (gradγ)∇φ
ei dφ (ei) + g (∇ei grad ln λ, gradγ) dφ (ei)

+ g (grad ln λ,∇ei gradγ) dφ (ei)

= d ln λ (gradγ)∇φ
ei dφ (ei) + g

(
∇gradγgrad ln λ, ei

)
dφ (ei)

+ g
(
∇grad ln λgradγ, ei

)
dφ (ei) ,
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it follows that

∇φ
ei {d ln λ (gradγ) dφ (ei)} = d ln λ (gradγ)∇φ

ei dφ (ei) + dφ
(
∇gradγgrad ln λ

)
+ dφ

(
∇grad ln λgradγ

)
.

(23)

For the third term ∇φ
ei {ei (γ) dφ (grad ln λ)}, by using the same calculation method and the equation

(20), we have

∇φ
ei {ei (γ) dφ (grad ln λ)} = ei (γ)∇

φ
ei dφ (grad ln λ) + ei (ei (γ)) dφ (grad ln λ)

= ei (γ) ei (ln λ) dφ (grad ln λ) + ei (γ) d ln λ (grad ln λ) dφ (ei)

− ei (γ) ei (ln λ) dφ (grad ln λ) + ei (γ) dφ (∇ei grad ln λ)

+ ei (ei (γ)) dφ (grad ln λ) ,

which gives us

∇φ
ei {ei (γ) dφ (grad ln λ)} = |grad ln λ|2 dφ (gradγ) + dφ

(
∇gradγgrad ln λ

)
+ ei (ei (γ)) dφ (grad ln λ) .

(24)

Now let us look at the last term ∇φ
ei dφ (∇ei gradγ), a simple calculation gives

∇φ
ei dφ (∇ei gradγ) = ei (ln λ) dφ (∇ei gradγ) + d ln λ (∇ei gradγ) dφ (ei)

− g (ei,∇ei gradγ) dφ (grad ln λ) + dφ (∇ei∇ei gradγ)

= 2dφ
(
∇grad ln λgradγ

)
− (∆γ) dφ (grad ln λ)

+ dφ (∇ei∇ei gradγ) ,

then
∇φ

ei dφ (∇ei gradγ) = dφ (∇ei∇ei gradγ) + 2dφ
(
∇grad ln λgradγ

)
− (∆γ) dφ (grad ln λ) .

(25)

If we replace (22), (23), (24) and (25) in (21), we obtain

∇φ
ei∇

φ
ei dφ (gradγ) = 4dφ

(
∇grad ln λgradγ

)
+ ei (ei (ln λ)) dφ (gradγ)

+ d ln λ (gradγ)∇φ
ei dφ (ei)− ei (ei (γ)) dφ (grad ln λ)

+ dφ (∇ei∇ei gradγ)− (∆γ) dφ (grad ln λ) .

(26)

To complete the proof, it remains to investigate the term ∇φ
∇ei ei

dφ (gradγ), we have

∇φ
∇ei ei

dφ (gradγ) = ∇dφ (∇ei ei, gradγ) + dφ
(
∇∇ei ei gradγ

)
,

Therefore, by using the equation (20), we obtain

∇φ
∇ei ei

dφ (gradγ) = ∇ei ei (ln λ) dφ (gradγ) + d ln λ (gradγ) dφ (∇ei ei)

−∇ei ei (γ) dφ (grad ln λ) + dφ
(
∇∇ei ei gradγ

)
.

(27)
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By substituting (26) and (27) in (19), we deduce

Trg
(
∇φ
)2 dφ (gradγ) = ∇φ

ei∇
φ
ei dφ (gradγ)−∇φ

∇ei ei
dφ (gradγ)

= dφ
(

Trg∇2gradγ
)
+ 4dφ

(
∇grad ln λgradγ

)
+ (∆ ln λ) dφ (gradγ) + d ln λ (gradγ) τ (φ)

− 2 (∆γ) dφ (grad ln λ) .

Finally, using the fact that (see [11])

Trg∇2gradγ = grad∆γ + RicciM (gradγ)

and
τ (φ) = (2− n) dφ (grad ln λ) ,

we conclude that

Trg
(
∇φ
)2 dφ (gradγ) = dφ (grad∆γ) + 4dφ

(
∇grad ln λgradγ

)
+ dφ

(
RicciM (gradγ)

)
+ (∆ ln λ) dφ (gradγ)− 2 (∆γ) dφ (grad ln λ)

− (n− 2) d ln λ (gradγ) dφ (grad ln λ) .

This completes the proof of Lemma 2. Now, in the second Lemma, we will calculate
TrgRN (dφ (gradγ) , dφ) dφ for a conformal maps φ : (Mn, g) → (Nn, h) (n ≥ 3) of dilation λ and
for any function γ ∈ C∞ (M)

Lemma 3. Let φ : (Mn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ, then for any function
γ ∈ C∞ (M), we have

TrgRN (dφ (gradγ) , dφ) dφ = dφ
(

RicciM (gradγ)
)
− (n− 2) dφ

(
∇gradγgrad ln λ

)
−
(

∆ ln λ + (n− 2) |grad ln λ|2
)

dφ (gradγ)

+ (n− 2) d ln λ (gradγ) dφ (grad ln λ)

(28)

Proof of Lemma 3. Let γ ∈ C∞ (M), by definition we have

TrgRN (dφ (gradγ) , dφ) dφ = RN (dφ (gradγ) , dφ (ei)) dφ (ei) (29)

but we know that (see [16])

RicN (dφ (X) , dφ (Y)) = RicM (X, Y) + (n− 2) X (ln λ)Y (ln λ)

− (n− 2) |grad ln λ|2 g (X, Y)

− (n− 2)∇d ln λ (X, Y)− (∆ ln λ) g (X, Y) .

Then
RicN (dφ (gradγ) , dφ (ei)) = RicM (gradγ, ei) + (n− 2) gradγ (ln λ) ei (ln λ)

− (n− 2) |grad ln λ|2 g (gradγ, ei)

− (n− 2)∇d ln λ (gradγ, ei)− (∆ ln λ) g (gradγ, ei)
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it follows that

RicN (dφ (gradγ) , dφ (ei)) = RicM (gradγ, ei) + (m− 2) d ln λ (gradγ) ei (ln λ)

− (n− 2) |grad ln λ|2 ei (γ)− (n− 2)∇d ln λ (gradγ, ei)

− (∆ ln λ) ei (γ) .

(30)

If we replace (30) in (29), we deduce that

TrgRN (dφ (gradγ) , dφ) dφ = RN (dφ (gradγ) , dφ (ei)) dφ (ei)

= dφ
(

RicciM (gradγ)
)
+ (n− 2) d ln λ (gradγ) dφ (grad ln λ)

− (n− 2) |grad ln λ|2 dφ (gradγ)− (n− 2)∇d ln λ (gradγ, ei) dφ (ei)

− (∆ ln λ) dφ (gradγ) .

To complete the proof, we will simplify the term ∇d ln λ (gradγ, ei) dφ (ei), we obtain

∇d ln λ (gradγ, ei) dφ (ei) = {ei (g (grad ln λ, gradγ))− d ln λ (∇ei gradγ)} dφ (ei)

= g (∇ei grad ln λ, gradγ) dφ (ei)

= g
(
∇gradγgrad ln λ, ei

)
dφ (ei)

= dφ
(
∇gradγgrad ln λ

)
,

which finally gives

TrgRN (dφ (gradγ) , dφ) dφ = dφ
(

RicciM (gradγ)
)
− (n− 2) dφ

(
∇gradγgrad ln λ

)
−
(

∆ ln λ + (n− 2) |grad ln λ|2
)

dφ (gradγ)

+ (n− 2) d ln λ (gradγ) dφ (grad ln λ) .

This completes the proof of Lemma 3. We are now able to prove Theorem 2.
Proof of Theorem 2. By definition, the bi-tension field is given by

τ2 (φ) = −Trg
(
∇φ
)2

τ (φ)− TrgRN (τ (φ) , dφ) dφ.

The tension field of the conformal map φ is given by

τ (φ) = (2− n) dφ (grad ln λ) ,

it follows that

τ2 (φ) = (n− 2)
(

Trg
(
∇φ
)2 dφ (grad ln λ) + TrgRN (dφ (grad ln λ) , dφ) dφ

)
. (31)

By Lemma 2, we have

Trg
(
∇φ
)2 dφ (grad ln λ) = dφ (grad∆ ln λ) + 2dφ

(
grad

(
|grad ln λ|2

))
− (∆ ln λ) dφ (grad ln λ) + dφ

(
RicciM (grad ln λ)

)
− (n− 2) |grad ln λ|2 dφ (grad ln λ) .

(32)
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By using lemma 3 and the fact that ∇grad ln λgrad ln λ = 1
2 grad

(
|grad ln λ|2

)
TrgRN (dφ (grad ln λ) , dφ) dφ = dφ

(
RicciM (grad ln λ)

)
− (∆ ln λ) dφ (grad ln λ)

− (n− 2)
2

dφ
(

grad
(
|grad ln λ|2

))
.

(33)

If we replace (32) and (33) in (31), we deduce that

τ2 (φ) = (n− 2) dφ (grad∆ ln λ)− (n− 2) (n− 6)
2

dφ
(

grad
(
|grad ln λ|2

))
− (n− 2)

(
2 (∆ ln λ) + (n− 2) |grad ln λ|2

)
dφ (grad ln λ)

+ 2 (n− 2) dφ
(

RicciM (grad ln λ)
)

.

Then the bi-tension field of φ is given by :

τ2(φ) = (n− 2) dφ (H)

where

H = grad∆ ln λ− (n− 6)
2

grad
(
|grad ln λ|2

)
+ 2RicciM (grad ln λ)

−
(

2 (∆ ln λ) + (n− 2) |grad ln λ|2
)

grad ln λ.

The proof of Theorem 2 is complete. By application of Theorem 2, we get the following result (see [15]).

Theorem 3. ([12]) Let φ : (Mn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ, then φ is
biharmonic if and only if the dilation λ satisfies

grad (∆ ln λ)−
(

2 (∆ ln λ) + (n− 2) |grad ln λ|2
)

grad ln λ

+
6− n

2
grad

(
|grad ln λ|2

)
+ 2RicciM(grad ln λ) = 0.

In particular, we prove that the biharmonicity of the conformal map φ : (Rn, g)→ (Nn, h) (n ≥ 3)
where the dilation λ is radial (ln λ = α (r) , r = |x| and α ∈ C∞ (R, R)) is equivalent to an ordinary
differential equation of the second order. More precisely, we have

Corollary 2. Let φ : (Rn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ when we suppose that
ln λ is radial (ln λ = α (r) , r = |x| and α ∈ C∞ (R, R)). Then φ is biharmonic if and only if β = α′ satisfies
the following ordinary differential equation :

β′′ − (n− 4) ββ′ +
n− 1

r
β′ − n− 1

r2 β− 2 (n− 1)
r

β2 − (n− 2) β3 = 0. (34)

Proof of Corollary 2 Let φ : (Rn, g)→ (Nn, h) (n ≥ 3) to be a conformal map of dilation λ such
that ln λ = α (r). By Theorem 3, φ is biharmonic if and only if the dilation λ satisfies

grad (∆ ln λ)−
(

2 (∆ ln λ) + (n− 2) |grad ln λ|2
)

grad ln λ

+
6− n

2
grad

(
|grad ln λ|2

)
+ 2RicciM(grad ln λ) = 0.

A direct calculation gives

grad ln λ = α′
∂

∂r
,
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|grad ln λ|2 =
(
α′
)2 ,

grad
(
|grad ln λ|2

)
= 2α′α′′

∂

∂r
,

∆ ln λ = α′′ +
n− 1

r
α′

and

grad (∆ ln λ) =

(
α′′′ +

n− 1
r

α′′ − n− 1
r2 α′

)
∂

∂r
.

Therefore φ is biharmonic if and only if the function α satisfies the following differential equation

α′′′ − (n− 4) α′α′′ +
n− 1

r
α′′ − n− 1

r2 α′ − 2 (n− 1)
r

(
α′
)2 − (n− 2)

(
α′
)3

= 0.

If we denote β = α′, the biharmonicity of φ is equivalent to the differential equation

β′′ − (n− 4) ββ′ +
n− 1

r
β′ − n− 1

r2 β− 2 (n− 1)
r

β2 − (n− 2) β3 = 0.

As a consequence of the Corollary 2, We will present some remarks which we give a particular solutions
of the equation (34) that allows us to construct a biharmonic non-harmonic maps.

Remark 3. . Looking for particular solutions of type β = a
r (a ∈ R∗). By (34), we deduce that φ : (Rn, g)→

(Nn, h) (n ≥ 3) is biharmonic if and only if a is a solution of the algebraic equation

(n− 2) a2 + (n + 2) a + 2n− 2 = 0.

This equation has real solutions if and only if n ∈ {3, 4}.

1. If n = 3, we find a = −5+
√

17
2 or a = −5−

√
17

2 , so λ = Cr−
(

5−
√

17
2

)
or λ = Cr−

(
5+
√

17
2

)
(C ∈ R∗+). It

follows that any conformal map φ : (R3, g)→ (N3, h) of dilation λ = Cr−
(

5−
√

17
2

)
or λ = Cr−

(
5+
√

17
2

)
is biharmonic non-harmonic.

2. If n = 4, we find a = −1 or a = −2, so λ = C
r2 or λ = C

r (C ∈ R∗+). Then, in this case any conformal
map φ : (R4, g)→ (N4, h) of dilation λ = C

r2 or λ = C
r is biharmonic non-harmonic. For example, the

inversion φ : (Rn\ {0} , gRn) −→ (Rn\ {0} , gRn) definded by φ (x) = x
|x|2

is a conformal map with

dilation λ = 1
r2 . By (34), the inversion is biharmonic non-harmonic if and only if n = 4.

Remark 4. . Looking for particular solutions of type β = ar
1+r2 (a ∈ R∗). By (34), φ : (Rn, g) → (Nn, h)

(n ≥ 3) is biharmonic if and only we have

(n− 2) a2 + (n + 2) a + 2n− 2 = 0

and
3 (n− 2) a + 2n + 4 = 0.

These two equations gives a = −2 and n = 4, it follows that the dilation is equal to λ = C
r2+1 (C ∈ R∗+). Then,

all conformal maps φ : (R4, g)→ (N4, h) of dilation λ = C
r2+1 are biharmonic non-harmonic. For example, the

inverse of the stereographic projection of the sphere φ : Rn −→ Sn definded by φ (x) = 1
|x|2+1

(
|x|2 − 1, 2x

)
is a conformal map with dilation λ = 2

r2+1 . By (34), the inverse of the stereographic projection is biharmonic
non-harmonic if and only if n = 4.
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The last part of this paper is devoted to the study of biharmonic maps between warped product
manifolds, these maps were also studied in [17]. We will give some results of the biharmonicity in
other particular cases.

3. Biharmonic maps and the warped product

Let (Mm, g) and (Nn, h) two Riemannian manifolds and let f ∈ C∞ (M) be a positive function.
The warped product M× f N is the product manifolds M× N endowed with the Riemannian metric
G f defined, for X, Y ∈ Γ (T (M× N)), by

G f (X, Y) = g (dπ (X) , dπ (Y)) + ( f ◦ π)2 h (dη (X) , dη (Y)) ,

where π : M× N −→ M and η : M× N −→ N are respectively the first and the second projection.
The function f is called the warping function of the warped product. Let X, Y ∈ Γ (T (M× N)),
X = (X1, X2), Y = (Y1, Y2) . Denote by ∇ the Levi-Civita connection on the Riemannian product
M× N . The Levi-Civita connection ∇̃ of the warped product M× f N is given by

∇̃XY = ∇XY + X1 (ln f ) (0, Y2) + Y1 (ln f ) (0, X2)− f 2h (X2, Y2) (grad ln f , 0) . (35)

In the first, we consider a smooth map φ : (Mm, g) −→ (Pp, k) and we defined the map φ̃ :(
Mm × f Nn, G f

)
−→ (Pp, k) by φ̃ (x, y) = φ (x). We will study the biharmonicity of φ̃. By calculating

the tension field of φ̃, we obtain the following result :

Proposition 2. Let φ : (Mm, g) −→ (Pp, k) be a smooth map. The tension field of the map φ̃ :(
Mm × f Nn, G f

)
−→ (Pp, k) defined by φ̃ (x, y) = φ (x) is given by

τ
(
φ̃
)
= τ (φ) + ndφ (grad ln f ) (36)

Proof of Proposition 2. Let us choose {ei}1≤i≤m to be an orthonormal frame on M and
{

f j
}

1≤j≤n

to be an orthonormal frame on N. An orthonormal frame on M× f N is given by
{
(ei, 0) , 1

f
(
0, f j

)}
.

Note that in this case we have dφ̃ (X, Y) = (dφ (X) , 0) for any X ∈ Γ (TM) and Y ∈ Γ (TN). By
definition to the tension field, we have

τ
(
φ̃
)
= TrG f∇dφ̃

= ∇φ̃

(ei ,0)
dφ̃ (ei, 0) +

1
f 2∇

φ̃

(0, f j)
dφ̃
(
0, f j

)
− dφ̃

(
∇̃(ei ,0) (ei, 0)

)
− 1

f 2 dφ̃
(
∇̃(0, f j)

(
0, f j

))
.

A simple calculation gives

∇φ̃

(ei ,0)
dφ̃ (ei, 0) = ∇φ

ei dφ (ei)

and
∇φ̃

(0, f j)
dφ̃
(
0, f j

)
= 0,

By using the equation (35), we deduce that

∇̃(ei ,0) (ei, 0) = (∇ei ei, 0)

and
∇̃(0, f j)

(
0, f j

)
=
(

0,∇ f j
f j

)
− n f 2 (grad ln f , 0) .
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It follows that
τ
(
φ̃
)
= ∇φ

ei dφ (ei)− dφ
(
∇M

ei
ei

)
+ ndφ (grad ln f ) ,

then, we obtain
τ
(
φ̃
)
= τ (φ) + ndφ (grad ln f ) .

Remark 5. If φ : (Mm, g) −→ (Pm, k) (m ≥ 3) is a conformal map with dilation λ, the tension field of φ̃ is
given by

τ
(
φ̃
)
= (2−m) dφ (grad ln λ) + ndφ (grad ln f ) = dφ

(
grad ln

(
λ2−m f n

))
.

Then φ̃ is harmonic if and only if the function λ2−m f n is constant.

We will now calculate the bitension field of the map φ̃ :
(

Mm × f Nn, G f

)
−→ (Pp, k).

Theorem 4. Let φ : (Mm, g) −→ (Pp, k) be a smooth map. The bitension field of the map φ̃ :(
Mm × f Nn, G f

)
−→ (Pp, k) defined by φ̃ (x, y) = φ (x) is given by

τ2
(
φ̃
)
= τ2 (φ)− n

(
Trg∇2dφ (grad ln f ) + TrgRp (dφ (grad ln f ) , dφ) dφ

)
− n∇grad ln f τ (φ)− n2∇grad ln f dφ (grad ln f ) .

(37)

Proof of Theorem 4. By definition of the bi-tension field, we have

τ2
(
φ̃
)
= −TrG f

(
∇φ̃
)2

τ
(
φ̃
)
− TrG f RP (τ (φ̃) , dφ̃

)
dφ̃ (38)

For the first term TrG f

(
∇φ̃
)2

τ
(
φ̃
)
, we have

TrG f

(
∇φ̃
)2

τ
(
φ̃
)
= ∇φ̃

(ei ,0)
∇φ̃

(ei ,0)
τ
(
φ̃
)
+

1
f 2∇

φ̃

(0, f j)
∇φ̃

(0, f j)
τ
(
φ̃
)

−∇φ̃

∇̃(ei ,0)(ei ,0)
τ
(
φ̃
)
− 1

f 2∇
φ̃

∇̃(0, f j)
(0, f j)

τ
(
φ̃
)

.

We will study term by term the right-hand of this expression. A simple calculation gives

∇φ̃

(ei ,0)
∇φ̃

(ei ,0)
τ
(
φ̃
)
= ∇φ̃

(ei ,0)
∇φ̃

(ei ,0)
τ (φ) + n∇φ̃

(ei ,0)
∇φ̃

(ei ,0)
dφ (grad ln f )

= ∇φ
ei∇

φ
ei τ (φ) + n∇φ

ei∇
φ
ei dφ (grad ln f )

and
∇φ̃

(0, f j)
∇φ̃

(0, f j)
τ
(
φ̃
)
= 0.

By using the equation (35), we obtain

∇φ̃

∇̃(ei ,0)(ei ,0)
τ
(
φ̃
)
= ∇φ

∇M
ei ei

τ (φ) + n∇φ

∇M
ei ei

dφ (grad ln f ) ,

and
∇φ̃

∇̃(0, f j)
(0, f j)

τ
(
φ̃
)
= −n f 2∇φ

grad ln f τ (φ)− n2 f 2∇φ
grad ln f dφ (grad ln f ) .

Then, we deduce that

TrG f

(
∇φ̃
)2

τ
(
φ̃
)
= Trg

(
∇φ
)2

τ (φ) + nTrg
(
∇φ
)2 dφ (grad ln f )

+ n∇φ
grad ln f τ (φ) + n2∇φ

grad ln f dφ (grad ln f ) .
(39)
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To complete the proof, we will simplify the term TrG f RP (τ (φ̃) , dφ̃
)

dφ̃, we have

TrG f RP (τ (φ̃) , dφ̃
)

dφ̃ = RP (τ (φ̃) , dφ̃ (ei, 0)
)

dφ̃ (ei, 0)

+
1
f 2 RP (τ (φ̃) , dφ̃

(
0, f j

))
dφ̃
(
0, f j

)
= RP (τ (φ̃) , dφ̃ (ei, 0)

)
dφ̃ (ei, 0)

= RP (τ (φ) , dφ (ei)) dφ (ei)

+ nRP (dφ (grad ln f ) , dφ (ei)) dφ (ei) .

It follows that

TrG f RP (τ (φ̃) , dφ̃
)

dφ̃ = TrgRP (τ (φ) , dφ) dφ + nTrgRP (dφ (grad ln f ) , dφ) dφ. (40)

If we replace (39) and (40) in (38), we obtain

τ2
(
φ̃
)
= τ2 (φ)− n

(
Trg∇2dφ (grad ln f ) + TrgRp (dφ (grad ln f ) , dφ) dφ

)
− n∇grad ln f τ (φ)− n2∇grad ln f dφ (grad ln f ) .

The proof of Theorem 4 is complete.

Remark 6. Theorem 4 is a particular result of generalized warped product manifolds (see [18]).

As a consequence, if φ is harmonic, we have

Corollary 3. Let φ : (Mm, g) −→ (Pp, k) a harmonic map. The map φ̃ :
(

Mm × f Nn, G f

)
−→ (Pp, k)

defined by φ̃ (x, y) = φ (x) is biharmonic if and only if

Trg∇2dφ (grad ln f ) + TrgRP (dφ (grad ln f ) , dφ) dφ + n∇grad ln f dφ (grad ln f ) = 0.

In particular if φ = IdM, the first projection P1 :
(

Mm × f Nn, G f

)
−→ (Mm, g) defined by P1 (x, y) = x is

biharmonic if and only if (see [17])

grad∆ ln f +
n
2

grad
(
|grad ln f |2

)
+ 2RicciM (grad ln f ) = 0.

In the following we shall present an example of biharmonic non-harmonic maps.

Example 1. Let ϕ̃ : Rm \ {0} × f Nn −→ Rm \ {0} defined by ϕ̃ (x, y) = x
|x|2

when we suppose that ln f

is radial (ln f = α (r)). Then by Theorem 4, we deduce that the map ϕ̃ : Rm \ {0} × f Nn −→ Rm \ {0} is
biharmonic if and only if the function α satisfies the following differential equation

nα′′′ +
n (m− 5)

r
α′′ − 3n (3m− 7)

r2 α′ + n2α′α′′ − 2n2

r
(
α′
)2 − 8 (m− 2) (m− 4)

r3 = 0.

Let β = α′, this equation becomes

nβ′′ +
n (m− 5)

r
β′ − 3n (3m− 7)

r2 β + n2ββ′ − 2n2

r
β2 − 8 (m− 2) (m− 4)

r3 = 0.

Looking for particular solutions of type β = a
r (a ∈ R∗), then ϕ̃ : Rm \ {0}× f Nn −→ Rm \ {0} is biharmonic

if and only if
3n2a2 + 2n (5m− 14) a + 8 (m− 2) (m− 4) = 0.

This equation has two solutions a = 4−2m
n and a = 4(4−m)

3n .
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1. For a = 4−2m
n , we obtain f (r) = Cr

4−2m
n and in this case ϕ̃ : Rm \ {0} × f Nn −→ Rm \ {0} is

harmonic so biharmonic.
2. For a = 4(4−m)

3n , we obtain f (r) = Cr
4(4−m)

3n and in this case ϕ̃ : Rm \ {0} × f Nn −→ Rm \ {0} is
biharmonic non-harmonic.

Now, we consider a smooth map ψ : (Nn, g) −→ (Pp, k) and we define the map ψ̃ :(
Mm × f Nn, G f

)
−→ (Pp, k) by ψ̃ (x, y) = ψ (y). We will study the biharmonicity of ψ̃, we obtain the

following result :

Theorem 5. Let ψ : (Nn, h) → (Pp, k) be a smooth map, we define ψ̃ :
(

Mm × f 2 Nn, G f 2

)
→ (Pp, k) by

ψ̃ (x, y) = ψ (y) . The tension field and the bi-tension field of ψ̃ are given by

τ
(
ψ̃
)
=

1
f 2 ◦ π

τ (ψ) (41)

and
τ2
(
ψ̃
)
=

1
f 4 ◦ π

τ2 (ψ)−
2

f 2 ◦ π

((
∆ ln f + (n− 2) |grad ln f |2

)
◦ π
)

τ (ψ) . (42)

Proof of Theorem 5. In the first, we calculate the tension field of of ψ̃. By definition to the tension
field, we have

τ
(
ψ̃
)
= TrG f∇dψ̃

= ∇ψ̃

(ei ,0)
dψ̃ (ei, 0) +

1
f 2 ◦ π

∇ψ̃

(0, f j)
dψ̃
(
0, f j

)
− dψ̃

(
∇̃(ei ,0) (ei, 0)

)
− 1

f 2 ◦ π
dψ̃
(
∇̃(0, f j)

(
0, f j

))
.

By using the equation (35), we obtain

τ
(
ψ̃
)
=

1
f 2 ◦ π

∇ψ
f j

dψ
(

f j
)
− 1

f 2 ◦ π
dψ
(
∇ f j

f j

)
=

1
f 2 ◦ π

τ (ψ) ,

then
τ
(
ψ̃
)
=

1
f 2 ◦ π

τ (ψ) .

By this expression, we deduce that ψ̃ is harmonic if and only if ψ is harmonic. Now, we will calculate
the bi-tension field of ψ̃. By definition, we have

τ2
(
ψ̃
)
= −TrG f

(
∇ψ̃
)2

τ
(
ψ̃
)
− TrG f RP (τ (ψ̃) , dψ̃

)
dψ̃. (43)

For the first term TrG f

(
∇ψ̃
)2

τ
(
ψ̃
)
, we have

TrG f

(
∇ψ̃
)2

τ
(
ψ̃
)
= ∇ψ̃

(ei ,0)
∇ψ̃

(ei ,0)
τ
(
ψ̃
)
+

1
f 2 ◦ π

∇ψ̃

(0, f j)
∇ψ̃

(0, f j)
τ
(
ψ̃
)

−∇ψ̃

∇̃(ei ,0)(ei ,0)
τ
(
ψ̃
)
− 1

f 2 ◦ π
∇ψ̃

∇̃(0, f j)
(0, f j)

τ
(
ψ̃
)

.

A long calculation gives

∇ψ̃

(ei ,0)
∇ψ̃

(ei ,0)
τ
(
ψ̃
)
=

2
f 2 ◦ π

((
2 |grad ln f |2 − ei (ei (ln f ))

)
◦ π
)

τ (ψ)

and
1

f 2 ◦ π
∇ψ̃

(0, f j)
∇ψ̃

(0, f j)
τ
(
ψ̃
)
=

1
f 4 ◦ π

∇ψ
f j
∇ψ

f j
τ (ψ) .
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Finally, by (35), we obtain

∇ψ̃

∇̃(ei ,0)(ei ,0)
τ
(
ψ̃
)
=

2
f 2 ◦ π

(∇ei ei ((ln f )) ◦ π) τ (ψ)

and
1

f 2 ◦ π
∇ψ̃

∇̃(0, f j)
(0, f j)

τ
(
ψ̃
)
=

1
f 4 ◦ π

∇ψ
∇ f j

f j
τ (ψ) +

2n
f 2 ◦ π

((
|grad ln f |2

)
◦ π
)

τ (ψ) .

Which gives us

TrG f

(
∇ψ̃
)2

τ
(
ψ̃
)
=

1
f 4 ◦ π

Trh∇2τ (ψ)− 2
f 2 ◦ π

((
∆ ln f + (n− 2) |grad ln f |2

)
◦ π
)

τ (ψ) (44)

Finally for the first term TrG f RP (τ (ψ̃) , dψ̃
)

dψ̃, it is easy to verify that

TrG f RP (τ (ψ̃) , dψ̃
)

dψ̃ =
1

f 4 ◦ π
TrhRP (τ (ψ) , dψ) dψ. (45)

If we substitute (44) and (45) in (43), we obtain

τ2
(
ψ̃
)
=

1
f 4 ◦ π

τ2 (ψ)−
2

f 2 ◦ π

((
∆ ln f + (n− 2) |grad ln f |2

)
◦ π
)

τ (ψ) .

This completes the proof of Theorem 5. An immediate consequence of Theorem 5 is given by the
following corollary :

Corollary 4. Let ψ : (Nn, h) −→ (Pp, k) a biharmonic non-harmonic map. The map φ̃ :(
Mm × f Nn, G f 2

)
−→ (Pp, k) defined by ψ̃ (x, y) = ψ (y) is biharmonic if and only if the function f n−2 is

harmonic.
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