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Abstract:

 We consider two principal bundles of embeddings with total space [image: there is no content] with structure groups [image: there is no content] and [image: there is no content] where [image: there is no content] is the groups of orientation preserving diffeomorphisms. The aim of this paper is to describe the structure group of the tangent bundle of the two base manifolds:


B(M,N)=Emb(M,N)/Diff(M)andB+(M,N)=Emb(M,N)/Diff+(M)








from the various properties described, an adequate group seems to be a group of Fourier integral operators, which is carefully studied. It is the main goal of this paper to analyze this group, which is a central extension of a group of diffeomorphisms by a group of pseudo-differential operators which is slightly different from the one developped in the mathematical litterature e.g. by H. Omori and by T. Ratiu. We show that these groups are regular, and develop the necessary properties for applications to the geometry of [image: there is no content] A case of particular interest is [image: there is no content] where connected components of [image: there is no content] are deeply linked with homotopy classes of oriented knots. In this example, the structure group of the tangent space [image: there is no content] is a subgroup of some group [image: there is no content] following the classical notations of (Pressley, A., 1988). These constructions suggest some approaches in the spirit of one of our previous works on Chern-Weil theory that could lead to knot invariants through a theory of Chern-Weil forms.
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1. Introduction


Given M and N two Riemannian manifolds without boundary, with M compact, the space of smooth embeddings [image: there is no content] is currently known as a principal bundle with structure group [image: there is no content] where [image: there is no content] naturally acts by composition of maps. The base:


[image: there is no content]








is known as a Fréchet manifold, and there exists some local trivializations of this bundle. We focus here on the base manifold, which seems to carry a richer structure than [image: there is no content] itself.



This paper gives the detailed description of the structure group of the tangent bundle of connected components of [image: there is no content] This structure group can be slightly different when changing of connected component of [image: there is no content] It is viewed as an extension of the group of automorphisms [image: there is no content] of a vector bundle E by some group of pseudo-differential operators. We show that this group is a regular Lie group (in the sense that it carries an exponential map), and that it is also a group of Fourier integral operators, which explains the notations [image: there is no content] and [image: there is no content] (“[image: there is no content]” for “classical”). All these groups are constructed along a short exact sequence of the type:


[image: there is no content]








where [image: there is no content] is a group of pseudo-differential operators, FIO is a group of Fourier integral operators, and [image: there is no content] is a group of diffeomorphisms; this sequence plays a central role in the proofs. The theorems described are general enough to be applied to many groups of diffeomorphisms: volume preserving diffeomorphisms, symplectic diffeomorphisms, hamiltonian diffeomorphisms, and to groups of pseudo-differential operators: classical or non-classical, bounded or unbounded, compact and so on, but we concentrate our efforts on [image: there is no content] and [image: there is no content] the group of orientation preserving diffeomorphisms. The constructions are made for operators acting on smooth sections of trivial or non trivial bundles. For a non trivial bundle [image: there is no content] the group of automorphisms of the bundle plays a central role in the description, because easy arguments suggest that there is no adequate embedding of the group of diffeomorphisms of the base manifold into the group of automorphisms of the bundle. Specializing to [image: there is no content] given a (real) vector bundle E over [image: there is no content] the groups FIO[image: there is no content]([image: there is no content],E) and in particular [image: there is no content] is of particular interest, where [image: there is no content] is defined through the short exact sequence:


[image: there is no content]








where [image: there is no content] is the group of bounded classical pseudo-differential operators and [image: there is no content] is the group of orientation-preserving diffeomorphisms. We have to notice that the necessary Fourier analysis on these operators naturally takes place in the complexification [image: there is no content] of the vector bundle E, and that [image: there is no content] as a complex vector bundle is trivial, but the real vector bundle E can be non trivial. Given any Riemannian connection on the bundle E, if ϵ is the sign of this connection (and this is a bounded pseudo-differential operators acting on smooth sections of E), it appears that [image: there is no content] is a set of smoothing operators. Thus, it is a subgroup of the group


Glres=u∈Gl([image: there is no content]([image: there is no content],E))|[ϵ,u]isHilbert-Schmidt











Even if the inclusion is not a bounded inclusion, this result extends the results given in [1] on the group: [image: there is no content] (which inclusion map into [image: there is no content] is not bounded too) and in [2] for the group [image: there is no content] We get a non-trivial cocycle on the Lie algebra of [image: there is no content] by the Schwinger cocycle, extending results obtained in [2,3] for a trivial complex bundle.



Coming back to [image: there is no content] one could suggest that [image: there is no content] is sufficient as a structure group, but we refer the reader to earlier works such as [4,5,6] to see how pseudo-differential operators can arise from Levi-Civita connections of Sobolev metrics when the adequate structure group for the [image: there is no content] metric is a group of multiplication operators. Moreover, especially for [image: there is no content] taking the quotient:


[image: there is no content]








we show that there is a sign operator [image: there is no content], which is a pseudo-differential operator of order 0, and coming intrinsically from the geometry of [image: there is no content] such that the recognized structure group of [image: there is no content] is [image: there is no content] We finish with the starting point of this work, which was a suggestion of Claude Roger, saying that any well-defined Chern-Weil form of a connected component of [image: there is no content] can be understood as an invariant of a knot, whose homotopy class is exactly a connected component of [image: there is no content] If one considers oriented knots, we get connected components of [image: there is no content] The work begun has not been completely successful yet, but it is a pleasure to suggest some Chern-Weil froms that may lead to knot invariants, extending the approach of [6].




2. Preliminaries on Algebras and Groups of Operators


Now we fix M the source manifold, which is assumed to be Riemannian, compact, connected and without boundary, and the target manifold which is only assumed Riemannian. We note by [image: there is no content] the space of vector fields on [image: there is no content] Recall that the Lie algebra of the group of diffeomorphisms is [image: there is no content] which is a Lie-subalgebra of the (Lie-)algebra of differential operators, which is itself a subalgebra of the algebra of classical pseudo-differential operators.



2.1. Differential and Pseudodifferential Operators on a Manifold M


Definition 1. Let [image: there is no content] be the graded algebra of operators, acting on [image: there is no content], generated by:

	
the multiplication operators: for [image: there is no content] we define the multiplication operator:


Mf:g∈[image: there is no content](M,[image: there is no content])↦f.g(bypointwisemultiplication)











	
the vector fields on M: for a vector field [image: there is no content], we define the differentiation operator:


DX:g∈[image: there is no content](M,[image: there is no content])↦DXg(bydifferentiation,pointwise)
















Multiplication operators are operators of order 0, vector fields are operators of order 1. For [image: there is no content] we note by [image: there is no content] the differential operators of order [image: there is no content]



Differential operators are local, which means that:


[image: there is no content]











The inclusion [image: there is no content] is an inclusion of Lie algebras. The algebra [image: there is no content] graded by the order, is a subalgebra of the algebra of classical pseudo-differential operators [image: there is no content] which is an algebra that contains the square root of the Laplacian, and its inverse. This algebra contains trace-class operators on [image: there is no content](M,[image: there is no content]). Basic facts on pseudo-differential operators defined on a vector bundle [image: there is no content] can be found in [7]. We assume known the definition of the algebra of pseudo-differential operators [image: there is no content], classical pseudo-differential operators [image: there is no content]. When the vector bundle E is assumed trivial, i.e., [image: there is no content] or [image: there is no content] with [image: there is no content] or [image: there is no content] we use the notation [image: there is no content] or [image: there is no content] instead of [image: there is no content] These operators are pseudolocal, which means that:


∀A∈PDO(M,E),∀f∈[image: there is no content](M,E),iffissmoothonK,thenA(f)issmoothonK











Definition 2. A pseudo-differential operator A is log-polyhomogeneous if and only if its formal symbol reads (locally) as:


[image: there is no content]








where [image: there is no content] is a positively [image: there is no content]homogeneous symbol.



The set of log-polyhomogenous pseudo-differential operators is an algebra.



A global symbolic calculus has been defined independently by two authors in [8,9], where we can see how the geometry of the base manifold M furnishes an obstruction to generalize local formulas of composition and inversion of symbols. We do not recall these formulas here because they are not involved in our computations. More interesting for this article is to precise when the local formulas of composition of formal symbols extend globally on the base manifold.



We assume that M is equipped with charts such that the changes of coordinates are translations and that the vector bundle [image: there is no content] is trivial. This is in particular true when [image: there is no content] or when [image: there is no content] In the case of [image: there is no content] we use the smooth atlas [image: there is no content] of [image: there is no content] defined as follows:


[image: there is no content]={φ0,φ1}φn:x∈]0;2π[↦ei(x+nπ)⊂[image: there is no content]forn∈{0;1}











Associated to this atlas, we fix a smooth partition of the unit [image: there is no content]. An operator A:[image: there is no content]([image: there is no content],[image: there is no content])→[image: there is no content]([image: there is no content],[image: there is no content]) can be described in terms of 4 operators:


[image: there is no content]:f↦sm∘A∘snfor(m,n)∈{0,1}











Such a formula is a straightforward application of a localization formula in the case of an atlas [image: there is no content] of a manifold M with associated family of partitions of the unit [image: there is no content] see e.g., [7] for details.



Notations. We note by [image: there is no content] (resp. [image: there is no content], resp. [image: there is no content]) the space of pseudo-differential operators (resp. pseudo-differential operators of order o, resp. classical pseudo-differential operators) acting on smooth sections of E, and by Clo(M,E)=PDOo([image: there is no content],E)∩Cl([image: there is no content],E) the space of classical pseudo-differential operators of order o.



If we set:


[image: there is no content]








we notice that it is a two-sided ideal of [image: there is no content], and we define the quotient algebra:


[image: there is no content]










[image: there is no content]










FClo(M,E)=Clo(M,E)/PDO−∞(M,E)








called the algebras of formal pseudo-differential operators. [image: there is no content] is isomorphic to the set of formal symbols [8], and the identification is a morphism of [image: there is no content]-algebras, for the multiplication on formal symbols defined before (see e.g., [7]). At the level of kernels of operators, a smoothing operator has a kernel K∞∈[image: there is no content](M×M,[image: there is no content]), where as the kernel of a pseudo-differential operator is in general smooth only on the off-diagonal region [image: there is no content] where [image: there is no content] denotes here, very exceptionnally in this paper, the diagonal set (and not a Laplacian operator). We finish by mentioning that the last property is equivalent to pseudo-locality.




2.2. Fourier Integral Operators


With the notations that we have set before, a scalar Fourier-integral operator of order o is an operator:


A:[image: there is no content](M,[image: there is no content])→[image: there is no content](M,[image: there is no content])








such that, [image: there is no content]


[image: there is no content]



(1)




where σk,j∈[image: there is no content](supp(sj)×[image: there is no content],[image: there is no content]) satisfies:


∀(α,β)∈N2,|DxαDξβσk,j(x,ξ)|≤Cα,β(1+|ξ|)o−β








and where, on any domain U of a chart on M,


[image: there is no content]








is a smooth map, positively homogeneous of degree 1 fiberwise and such that:


[image: there is no content]











Such a map is called phase function. (In these formulas, the maps are read on local charts but we preferred to only mention this aspect and not to give heavier formulas and notations.) An operator A is pseudo-differential operator if the operators [image: there is no content] in Formula (1) can be written as Fourier integral operators with [image: there is no content] Notice that, in order to define an operator [image: there is no content] the choice of [image: there is no content] and [image: there is no content] is not a priori unique for general Fourier integral operators. Let E=[image: there is no content]×[image: there is no content]k be a trivial smooth vector bundle over [image: there is no content]. An operator acting on [image: there is no content](M,[image: there is no content]n) is Fourier integral operator (resp. a pseudo-differential operator) if it can be viewed as a [image: there is no content]-matrix of Fourier integral operators with same phase function (resp. scalar pseudo-differential operators).



We define also the algebra of formal operators, which is the quotient space:


[image: there is no content]








which is possible because [image: there is no content] is a closed two-sided ideal. When we consider classical Fourier integral operators, noted [image: there is no content] that is operators with classical symbols, we add to this topology the topology on formal symbols [10,11] which is an ILH topology (see e.g., [12] for state of the art). We want to quote that if the symbols [image: there is no content] are symbols of order [image: there is no content] then we get Fourier integral operators that are [image: there is no content]−bounded. We note this set [image: there is no content] This set is a subset of [image: there is no content] and we have:


[image: there is no content]











The techniques used for pseudo-differential operators are also used on Fourier integral operators, especially Kernel analysis. Let us consider a local coordinate operator [image: there is no content] then, using the notation of of the Formula (1), the operator [image: there is no content] is described by a kernel:


Km,n(x,y)=∫ξeiϕx,ξ)−y.ξ[image: there is no content](x,ξ)dξ











From this approach one derives the composition and inversion formulas that will not be used in this paper, see e.g., [13], but in the sequel we shall use the slightly restricted class of operators studied in [14,15,16,17,18,19,20,21] and also in [10,11] for formal operators.




2.3. Topological Structures and Regular Lie Groups of Operators


The topological structures can be derived both from symbols and from kernels, as we have quoted before, but principally because there is the exact sequence described below with slice. At the level of units of these sets, i.e., of groups of invertible operators, the existence of the slice is also crucial. In the papers [10,11,14,15,16,17,18,19,20,21,22], the group of invertible Fourier integral operators receives first a structure of topological group, with in addition a differentiable structure, e.g., a Frölicher structure, which recognized as a structure of generalized Lie group, see e.g., [12].



We have to say that, with the actual state of knowledge, using [23], we can give a manifold structure (in the convenient setting described by Kriegl and Michor or in the category of Frölicher spaces following [24]) to the corresponding Lie groups. Let us recall the statement.



Theorem 3. 

[23] Let [image: there is no content]be convenient Lie groups or Frölicher Lie groups such that there is a short exact sequence of Lie groups:


[image: there is no content]








such that there is a local slice [image: there is no content]. Then:


Gregular⇔HandKregular













Remark 1. In [10,11,14,15,16,17,18,19,20,21,22], the group K considered is the group of 1-positively homogeneous symplectomorphisms [image: there is no content] where ω is the canonical symplectic form on the cotangent bundle. The local section considered enables to build up the phase function of a Fourier integral operator from such a symplectic diffeomorphism inside a neighborhood of [image: there is no content] There is a priori no reason to restrict the constructions to classical pseudo-differential operators of order 0, and have groups of Fourier integral operators with symbols in wider classes. This remark appears important to us because the authors cited before restricted themselves to classical symbols.




2.4. [image: there is no content][image: there is no content] and [image: there is no content]


We now get another group.



Theorem 4. 

Let H be a regular Lie group of pseudo-differential operators acting on smooth sections of a trivial bundle [image: there is no content]The group [image: there is no content]acts smoothly on [image: there is no content]and is assumed to act smoothly on H by adjoint action. If H is stable under the [image: there is no content]adjoint action, then there exists a corresponding regular Lie group G of Fourier integral operators through the exact sequence:


[image: there is no content]













If H is a Frölicher Lie group, then G is a Frölicher Lie group. If H is a Fréchet Lie group, then G is a Fréchet Lie group.



Remark 2. The pseudo-differential operators can be classical, log-polyhomogeneous, or anything else. Applying the formulas of “changes of coordinates” (which can be understood as adjoint actions of diffeomorphisms) of e.g., [7], one easily gets the result.



Proof of Theorem 4. 

Let us first notice that the action:


[image: there is no content]








can be read as, first a linear operator [image: there is no content] with kernel:


K(x,y)=δ(g(x),y)(Diracδ−function)








or equivalently, on an adequate system of trivializations [7],


[image: there is no content](f)(x)=∫eig(x).ξf^(ξ)dξ













This operator is not a pseudo-differential operator because it is not pseudolocal (unless [image: there is no content]), but since:


[image: there is no content]








we get that [image: there is no content] is a Fourier-integral operator. Notice that another way to see it is the expression of its kernel.



Now, given [image: there is no content] we define:


Ag=[image: there is no content]∘A











We get here a set G of operators which is set-theorically isomorphic to [image: there is no content] Since H is invariant under the adjoint action of the group [image: there is no content] G is a group, and from the beginning of this proof, we get that G is a group, and that there is the short exact sequence announced:


[image: there is no content]








with a global slice:


g∈Diff(M)↦[image: there is no content]∈G











Since the adjoint action of Diff(M) is assumed smooth on H, we can endow G with the product Frölicher structure to get a regular Frölicher Lie group. Since [image: there is no content] is a Fréchet Lie group, if H is a Fréchet Lie group, then G is a Fréchet Lie group. ☐



Remark 3. Some restricted classed of such operators are already considered in the literature under the name of [image: there is no content]pseudo-differential operators, see e.g., [25], but the groups considered are discrete (amenable) groups of diffeomorphisms. This gives a class of FIOs with linear phase, see [13].



Definition 5. Let M be a compact manifold and E be a (finite rank) trivial vector bundle over [image: there is no content] We define:


FIO[image: there is no content](M,E)=A∈FIO(M,E)|ϕA(x,ξ)=g(x).ξ;g∈Diff(M)











The set of invertible operators FIO[image: there is no content]*(M,E) is obviously a group, that decomposes as:


0→PDO*(M,E)→FIO[image: there is no content]*(M,E)→Diff(M)→0








with global smooth section:


g∈Diff(M)↦(f∈[image: there is no content]([image: there is no content],E)↦f∘g)











Hence, Theorem 4 applies trivially to the following context:



Proposition 6. 

Let FCl[image: there is no content]0,*(M,E)be the set of operators A∈FIO[image: there is no content]*(M,E)such that A has a 0-order classical symbol. Then we get the exact sequence:


0→Cl0,*(M,E)→FCl[image: there is no content]0;*(M,E)→Diff(M)→0








and FCl[image: there is no content]0,*(M,E)is a regular Frölicher Lie group, with Lie algebra isomorphic, as a vector space, to [image: there is no content]





Notice that the triviality of the vector bundle E is here essential to make a [image: there is no content]action on smooth section of [image: there is no content] Let us assume now that E is not trivial. At the infinitesimal level, trying to extend straightway, one gets a first condition for the extension.



Lemma 7. 

(see e.g., [26]) Let us fix a [image: there is no content]curvature connection ∇ on [image: there is no content]Then [image: there is no content]is a one-to-one Lie algebra morphism.





We remark that the analogy with the setting of trivial bundles E stops here since the group [image: there is no content] cannot be recovered in this group of operators. For example, when M=[image: there is no content], if E is non trivial, the (infinitesimally) flat connection ensures that the holonomy group [image: there is no content] is discrete, but it cannot be trivial since the vector bundle E is not. On a non trivial bundle [image: there is no content] let us consider the group of bundle automorphism [image: there is no content] The gauge group [image: there is no content] is naturally embedded in [image: there is no content] and the bundle projection:


[image: there is no content]








induces a group projection


[image: there is no content]











Therefore ,we get a short exact sequence:


[image: there is no content]











Following [27] there exists a local slice [image: there is no content] where U is a [image: there is no content]open neighborhood on [image: there is no content] which shows that [image: there is no content] is a regular Fréchet Lie group. Therefore, the smallest group spanned by [image: there is no content] and [image: there is no content] is such that:

	
the projection [image: there is no content] induces a map [image: there is no content] with kernel [image: there is no content]



	
Ad[image: there is no content](PDO(M,E))=PDO(M,E)





therefore we can consider the space of operators on [image: there is no content]


FIO[image: there is no content]*(M,E)=Aut(E)∘PDO*(M,E)











Lemma 8. 

The map


[image: there is no content]








induces a “phase map”


[image: there is no content]:FIO[image: there is no content]*(M,E)→Diff(M)













Proof. 

Let [image: there is no content]


B∘A=B′∘A′⇔IdE∘A=[image: there is no content]∘B′∘A′⇔[image: there is no content]∘B′=A∘A′−1∈PDO*(M,E)⇒[image: there is no content]∘B′∈DO0,*(M,E)⇔π([image: there is no content]∘B′)=IdM⇔π(B)=π(B′)








☐





The next lemma is obvious:



Lemma 9. 

FIO[image: there is no content]*(M,E) is a group





Lemma 10. 

[image: there is no content]





Proof. 

Let [image: there is no content] such that:


[image: there is no content]













Then [image: there is no content] and [image: there is no content]  ☐



These results show the following theorem:



Theorem 11. 

There is a short exact sequence of groups :


0→PDO*(M,E)→FIO[image: there is no content]*(M,E)→Diff(M)→0








and, if [image: there is no content] is a regular Fréchet or Frölicher Lie group of operators that contains the gauge group of [image: there is no content] if K is a regular Fréchet or Frölicher Lie subgroup of [image: there is no content] such that there exists a local section [image: there is no content] the subgroup [image: there is no content] of FIO[image: there is no content]*(M,E) is a regular Fréchet Lie group from the short exact sequence:


[image: there is no content]














2.5. Diffeomorphisms and kernel operators


Let [image: there is no content] Then a straightforward computation on local coordinates shows that the kernel of [image: there is no content] is:


[image: there is no content]








where δ is the Dirac [image: there is no content]function. These operators also read locally as:


[image: there is no content](f)=∫Meig(x).ξf^(ξ)dξ








on the same system of local trivializations used in [7], p.30-40.




2.6. Renormalized Traces on Diff(M)-Pseudodifferential Operators


Basics on renormalized traces are given in the appendix. Let us now investigate their extensions to the class of FIOs considered. Let us first explore the action of [image: there is no content] and of [image: there is no content] on [image: there is no content]For this, we get:



Lemma 12. 

Let [image: there is no content] Let [image: there is no content] and let Q be a weight on [image: there is no content] Let B be an operator on [image: there is no content] such that

	
[image: there is no content]



	
[image: there is no content] is a weight of the same order as Q








Then

	
[image: there is no content]



	
tr[image: there is no content](AdBA)=trQ(A)










The properties 1,2 are true in particular for operators [image: there is no content]



Proof. 

Let Q be a weight on [image: there is no content] and let [image: there is no content] Let [image: there is no content] Let [image: there is no content] then [image: there is no content] is trace class. By [7], we know that [image: there is no content] (resp. [image: there is no content]) is a classical pseudo-differential operator of the same order (resp. a weight of the same order). Then, since [image: there is no content] is smoothing, [image: there is no content]BA[image: there is no content] and [image: there is no content][image: there is no content] are smoothing, and the following computations are fully justified:


trAdB(Ae−sQ)=trBA[image: there is no content][image: there is no content][image: there is no content]=tr[image: there is no content][image: there is no content]BA[image: there is no content]=tr[image: there is no content]A[image: there is no content]=trAe−sQ













So that, we get the announced property.  ☐





3. Splittings on the Set of [image: there is no content]−Fourier Integral Operators


3.1. The Group [image: there is no content] and the Diffeomorphism Group Diff([image: there is no content])


Let us consider the [image: there is no content]-action on [image: there is no content]=[image: there is no content]/Z given by [image: there is no content] This group acts on [image: there is no content] by [image: there is no content] and we have:


f(x+θ)=∫e−i(x+θ).ξf^(ξ)dξ=∫e−i(x.ξ+θ.ξf^(ξ)dξ











The term [image: there is no content] is oscillating in ξ and does not satisfies the estimates on the derivatives of symbols. So that, this operator is not a pseudo-differential operator but has obviously the form of a Fourier integral operator. The same is for the reflection [image: there is no content] which corresponds to the conjugate transformation [image: there is no content] when representing [image: there is no content] as the set of complex numbers z such that [image: there is no content] This is a spacial case of the properties already stated for a general manifold M given g∈Diff([image: there is no content]),g acts on [image: there is no content] by right composition of the inverse, namely, for f∈[image: there is no content],


g.f(x)=f∘g(x)=∫e−ig(x).ξf^(ξ)dξ








which is also obviously a Fourier-integral operator, and the kernel of this operator is:


[image: there is no content]








where δ is the Dirac δ-function. This is the construction already used in the proof of Theorem 4.




3.2. [image: there is no content] Its Formal Symbol and the Splitting of [image: there is no content]


The operator [image: there is no content] splits [image: there is no content]([image: there is no content],[image: there is no content]k) into three spaces:

	-

	
its kernel [image: there is no content], made of constant maps




	-

	
the vector space spanned by eigenvectors related to positive eigenvalues




	-

	
the vector space spanned by eigenvectors related to negative eigenvalues.









The following elementary result will be useful for the sequel, see [28] for the proof, and e.g., [3,6]:



Lemma 13. 


	(i) 

	
[image: there is no content]




	(ii) 

	
[image: there is no content] where [image: there is no content], with [image: there is no content].




	(iii) 

	
[image: there is no content], where [image: there is no content] is the sign of D, since |D||[image: there is no content]=Id[image: there is no content]




	(iv) 

	
Let [image: there is no content] (resp. [image: there is no content]) be the projection on [image: there is no content] (resp. [image: there is no content]), then σ([image: there is no content])=12(Id+ξ|ξ|) and σ([image: there is no content])=12(Id−ξ|ξ|)











Let us now define two ideals of the algebra [image: there is no content], that we call [image: there is no content] and [image: there is no content], such that [image: there is no content]. This decomposition is implicit in [29], section 4.4., p. 216, for classical pseudo-differential operators and we furnish the explicit description given in [28], extended to the whole algebra of (maybe non formal, non classical) pseudo-differential symbols here.



Definition 14. Let σ be a symbol (maybe non formal). Then, we define, for ξ∈T*[image: there is no content]−[image: there is no content],


σ+(ξ)=σ(ξ)ifξ>00if[image: there is no content]andσ−(ξ)=0ifξ>0σ(ξ)if[image: there is no content]











At the level of formal symbols, we also define the projections: [image: there is no content] and [image: there is no content] .



The maps [image: there is no content]:FPDO([image: there is no content],[image: there is no content]k)→FPDO([image: there is no content],[image: there is no content]k) and [image: there is no content]:FPDO([image: there is no content],[image: there is no content]k)→FPDO([image: there is no content],[image: there is no content]k) are clearly algebra morphisms that leave the order invariant and are also projections (since multiplication on formal symbols is expressed in terms of pointwise multiplication of tensors).



Definition 15. We define FPDO+([image: there is no content],[image: there is no content]k)=Im([image: there is no content])=Ker([image: there is no content]) and FPDO−([image: there is no content],[image: there is no content]k)=Im([image: there is no content])=Ker([image: there is no content]).



Since [image: there is no content] is a projection, we have the splitting:


FPDO([image: there is no content],[image: there is no content]k)=FPDO+([image: there is no content],[image: there is no content]k)⊕FPDO−([image: there is no content],[image: there is no content]k)











Let us give another characterization of [image: there is no content] and [image: there is no content]. Looking more precisely at the formal symbols of [image: there is no content] and [image: there is no content] computed in Lemma 13, we observe that:


σ([image: there is no content])=1ifξ>00ifξ<0andσ([image: there is no content])=0ifξ>01ifξ<0











In particular, we have that Dxασ([image: there is no content]),Dξασ([image: there is no content]),Dxασ([image: there is no content]),Dξασ([image: there is no content]) vanish for [image: there is no content]. From this, we have the following result:



Proposition 16. Let a∈FPDO([image: there is no content],[image: there is no content]k).[image: there is no content](a)=σ([image: there is no content])∘a=a∘σ([image: there is no content]) and [image: there is no content](a)=σ([image: there is no content])∘a=a∘σ([image: there is no content])[28].




3.3. The Case of Non Trivial (Real) Vector Bundle Over [image: there is no content]


Let π:E→[image: there is no content] be a non trivial real vector bundle over [image: there is no content] of rank [image: there is no content] Its bundle of frames is a [image: there is no content] principal bundle, which means the following (see e.g., [30]):



Lemma 17. Let [image: there is no content] and [image: there is no content] be two local trivializations of E. Let [image: there is no content] let [image: there is no content] and let [image: there is no content] Then,


[image: there is no content]








reads as:


[image: there is no content]








where γ is a smooth diffeomorphism from [image: there is no content] to [image: there is no content] and where M∈[image: there is no content]([image: there is no content],Gl([image: there is no content]k)).



Let us now turn to symbols of pseudo-differential operators acting on smooth sections of [image: there is no content] We first assume that we work with a system of local trivializations such that the diffeomorphisms γ are translations, and let us now look at the transformations of the symbols read on local trivializations. Under these assumptions, and with the notations of the previous lemma, a formal symbol [image: there is no content] read on [image: there is no content] reads on [image: there is no content] as:


σ2(γ(x),ξ)=M(x)[image: there is no content](x,ξ)M(x)−1











Proposition 18. Let ∇ be a Riemannian covariant derivative on the bundle E→[image: there is no content] and let [image: there is no content] be the associated first order differential operator, given by the covariant derivative evaluated at the unit vector field over [image: there is no content]. We modify the operator [image: there is no content] into an injective operator D=[image: there is no content]+pker[image: there is no content], where pker[image: there is no content] is the [image: there is no content] orthogonal projection on ker[image: there is no content]⊂[image: there is no content]([image: there is no content],E)⊂[image: there is no content]([image: there is no content],E), and we set:


[image: there is no content]








Then the formal symbol of [image: there is no content] is [image: there is no content]



Proof. Let us use the holonomy trivialization over an interval [image: there is no content] In this trivialization,


[image: there is no content]=ddt








and hence the formal symbol of [image: there is no content] reads as [image: there is no content] Calculating exclusively on the algebra of formal operators on which composition and inversion governed by local formulas, we get [image: there is no content] and, by the same arguments as those of [28], we get the result.  ☐



Proposition 19. For each A∈PDO([image: there is no content],E),[A,ϵ(∇)]∈PDO−∞([image: there is no content];E).



Proof. We remark that, for any multiindex α such that [image: there is no content][image: there is no content] and [image: there is no content] Hence, in FPDO([image: there is no content],E),


[image: there is no content]








so that [A,ϵ(∇)]∈PDO−∞([image: there is no content],E).  ☐




3.4. The Splitting Read on the Phase Function


The fiber bundle T*[image: there is no content]−[image: there is no content] has two connected components and the phase function is positively homogeneous, so that we can make the same procedure as in the case of the symbols. However, we remark that we can split:


[image: there is no content]








where [image: there is no content] if [image: there is no content] and [image: there is no content] if [image: there is no content] Unfortunately, [image: there is no content] and [image: there is no content] are not phase functions of Fourier integral operators because there are some points where ∂2[image: there is no content]∂x∂ξ=0 or ∂2[image: there is no content]∂x∂ξ=0. However, we can have the following identities:


∫[image: there is no content]eiϕ(x,ξ)σ(x,ξ)f^(ξ)dξ=∫ξ>0eiϕ(x,ξ)σ(x,ξ)f^(ξ)dξ+∫[image: there is no content]eiϕ(x,ξ)σ(x,ξ)f^(ξ)dξ=∫ξ>0ei[image: there is no content](x,ξ)σ(x,ξ)f^(ξ)dξ+∫[image: there is no content]ei[image: there is no content](x,ξ)σ(x,ξ)f^(ξ)dξ=∫[image: there is no content]ei[image: there is no content](x,ξ)σ+(x,ξ)f^(ξ)dξ+∫[image: there is no content]ei[image: there is no content](x,ξ)σ−(x,ξ)f^(ξ)dξ=∫[image: there is no content]eiϕ(x,ξ)σ+(x,ξ)f^(ξ)dξ+∫[image: there is no content]eiϕ(x,ξ)σ−(x,ξ)f^(ξ)dξ.











In the last line, we get the phase of a FIO.




3.5. The Schwinger Cocycle on PDO([image: there is no content],E) When E Is a Real Vector Bundle


The Scjwinger cocycle [31] is well-known in the theory of central extensions of algebras of pseudo-differential operators [3,6,32,33,34] are now analyzed from the viewpoint of operators acting on smooth sections of real vector bundles. Here, [image: there is no content] is not a sign operator, but an operator such that [image: there is no content] up to a smoothing operator.



Theorem 20. For any A∈PDO([image: there is no content],E), [A,ϵ(∇)]∈PDO−∞([image: there is no content],E). Consequently,


[image: there is no content]:A,B∈PDO([image: there is no content],E)↦12trϵ(∇)[ϵ(∇),A][ϵ(∇),B]








is a well-defined [image: there is no content]-valued 2-cocycle on PDO([image: there is no content],E). Moreover, [image: there is no content] is non trivial on any Lie algebra [image: there is no content] such that [image: there is no content]([image: there is no content],[image: there is no content])⊂[image: there is no content]⊂PDO([image: there is no content],E).



Notice that [image: there is no content]([image: there is no content],[image: there is no content]) is understood as an algebra acting on [image: there is no content]([image: there is no content],E) by scalar multiplication fiberwise. The proof follows the same arguments as in [3].



Proof. First, [image: there is no content] is the trace of operators acting on a real Hilbert space. so that, it is real valued. Since [1], see e.g., [6], if [image: there is no content] was trivial on Hoschild cohomology, there would have a 1-form ν:[image: there is no content]→[image: there is no content] such that:


[image: there is no content]








and hence it would be true on [image: there is no content]([image: there is no content],[image: there is no content]) which is a commutative algebra. Hence, since [image: there is no content]≠0 on [image: there is no content]([image: there is no content],[image: there is no content]), it is non trivial on [image: there is no content]  ☐





4. Sets of Fourier Integral Operators


4.1. The set FIO([image: there is no content],E)


Here, for the definitions, [image: there is no content] or [image: there is no content] depending on the fact that E is a complex or a real vector bundle. Let us now define:


FIOres([image: there is no content];E)={A∈FIO([image: there is no content],E)suchthat[A;ϵ]∈PDO−∞([image: there is no content],E)}











Proposition 21. FIOres([image: there is no content],E) is a set, stable under composition, with unit element.



Proof. FIO([image: there is no content],E) is stable under composition [13]. Since Cl0([image: there is no content],E) is contained in FIOres([image: there is no content],E) by Theorem 20 so that FIOres([image: there is no content],E) contains the identity map.



Let A,B∈FIOres([image: there is no content],E),


[image: there is no content]











Since [image: there is no content] and [image: there is no content] are smoothing, we get that [image: there is no content] is smoothing.  ☐



We use the natural notations,


[image: there is no content]











We shall note by FIOres*([image: there is no content],E) the group of units of this set, and by FIOres0,*([image: there is no content],E) the group of units of the set FIOres0([image: there is no content],E).



Proposition 22. FIOres*([image: there is no content],E)=FIO*([image: there is no content],E)∩FIOres([image: there is no content],E) and FIOres0,*([image: there is no content],E)=FIO0,*([image: there is no content],E)∩FIOres([image: there is no content],E).



Proof. We already have trivially FIOres*([image: there is no content],E)⊂([image: there is no content],E)∩FIOres([image: there is no content],E). Let A∈FIO*([image: there is no content],E)∩FIOres([image: there is no content],E). We have to check that A−1∈FIOres([image: there is no content],E).


A[A−1,ε]=[AA−1,ε]−[A,ε]A−1=[Id,ε]−[A,ε]A−1=−[A,ε]A−1∈PDO−∞([image: there is no content],E).











So that,


[A−1,ε]=A−1A[A−1,ε]∈PDO−∞([image: there is no content],E)











The proof is the same for [image: there is no content]order operators.  ☐



By the way, since FIO0,*([image: there is no content],E) is a "`generalized Lie group"’ in the sense of Omori, it is a Frölicher Lie group. By the trace property of Frölicher spaces, using the last proposition, FIOres0,*([image: there is no content],E) is a Frölicher Lie group [24]. Now, since we have that:


[image: there is no content]








the determinant bundle defined over [image: there is no content] can be pulled-back on [image: there is no content]. The same way, it is shown in [2,3] that the Schwinger cocycle extends to the Lie algebra PDO0([image: there is no content],E)+PDO1([image: there is no content],[image: there is no content])⊗IdE.




4.2. Yet Some Subgroups of FIOres*([image: there is no content],E)


Let us first gather and reformulate many known results:



Lemma 23. Diff+([image: there is no content])×[image: there is no content]([image: there is no content],[image: there is no content]*)⊂FIOres0,*([image: there is no content],[image: there is no content]).



Proof. First, we have that:


[image: there is no content]([image: there is no content],[image: there is no content]*)⊂Cl0,*([image: there is no content],[image: there is no content])








so that,


[image: there is no content]([image: there is no content],[image: there is no content]*)⊂FIO0,*([image: there is no content],[image: there is no content])











Let g∈Diff+([image: there is no content]). Following [1], the map [image: there is no content] describes an operator in [image: there is no content] Since the map [image: there is no content] is a multiplication operator in [image: there is no content]([image: there is no content],[image: there is no content]*), we get that:


f↦f∘g=∫eig(.).ξf^(ξ)dξ∈GLres∩FIO0,*([image: there is no content],[image: there is no content])








☐



Theorem 24. Assume that E be a trivial vector bundle over [image: there is no content]. Let [image: there is no content] be the projection FIO[image: there is no content]*([image: there is no content],E)→Diff([image: there is no content]). Then,


π−1(Diff+([image: there is no content]))⊂FIOres([image: there is no content],E)











This is a simple consequence of the previous results.



Theorem 25. Assume that E is non trivial and let ϵ defined as before. Let [image: there is no content] be the projection FIO[image: there is no content]*([image: there is no content],E)→Diff([image: there is no content]). Then,


FIODiff+*([image: there is no content],E)=π−1(Diff+([image: there is no content]))⊂FIOres([image: there is no content],E)








and there is a global smooth section (in the sense of Frölicher spaces, not necessarily in the sense of groups)


Diff+([image: there is no content])→FIOres([image: there is no content],E)








of the short exact sequence:


0→PDO*([image: there is no content],E)→FIO[image: there is no content]*([image: there is no content],E)∩FIOres([image: there is no content],E)→Diff+([image: there is no content])→0











Proof. Let g∈Diff+([image: there is no content]). We fix on E a connection ∇ and we set [image: there is no content] Since [image: there is no content]is the connected component of Id[image: there is no content] in Diff([image: there is no content]), given η the unit vector field defined by orientation on [image: there is no content], we can choose a path


γ∈[image: there is no content]([0,1],Diff+([image: there is no content]))⊂[image: there is no content]([0,1]×[image: there is no content],[image: there is no content])








such that:


γ(0)=Id[image: there is no content],γ(1)=g








and


∀x∈[image: there is no content],∀t∈[0;1],(dγdt(t)(x),η(x))Tx[image: there is no content]>0











This path is unique up to parametrization since we impose also the condition of minimal length. Let


[image: there is no content]








be the induced parallel transport map. We get, for each g∈Diff+([image: there is no content]), a map [image: there is no content] which is smooth by the properties of parallel transport, linear on the fibers, invertible, and which projects on [image: there is no content] to [image: there is no content] Thus, [image: there is no content]∈Aut(E), and it easy to see that it is a bijection on the collection of smooth trivializations of [image: there is no content] Now, turning to the map


g↦[image: there is no content]








is appears as a smooth map Diff([image: there is no content])→Aut(E), but it cannot ba a group morphism when E is non trivial. We have, moreover, that


∀g∈Diff+([image: there is no content]),[∇,[image: there is no content]]=0








since dim([image: there is no content])=1 and [image: there is no content] is a parallel transport map. So that, since ϵ is derived from [image: there is no content]=∇η, we get that: [image: there is no content]∈GLres. Now, an operator in FIODiff+*([image: there is no content],E) reads as:


[image: there is no content]∘A,








where A∈PDO*([image: there is no content],E)⊂GLres. Then [image: there is no content]∘A∈FIOres  ☐



Theorem 26. The group


FClDiff+0,*([image: there is no content],E)=FIODiff+*([image: there is no content],E)∩FCL0([image: there is no content],E)








is a regular Frölicher Lie group.



Proof. We get the obvious exact sequence of Lie groups:


0→Cl*,0([image: there is no content],E)→FCl[image: there is no content]*,0([image: there is no content],E)→Diff+([image: there is no content])→0











Both Cl*,0([image: there is no content],E) and [image: there is no content] are regular, and Aut(E)⊂Cl*,0([image: there is no content],E), so that the smooth section Diff+([image: there is no content])→Aut(E) described in the proof of the previous theorem gives the result by Theorem 11.  ☐



Let us now describe a subgroup of FIODiff+*([image: there is no content],E).



Definition 27. Let FIOb,Diff+*([image: there is no content],E) be the space of operators A∈FIODiff+*([image: there is no content],E) such that

	
[image: there is no content] is a diffeomorphism of [image: there is no content]=[image: there is no content]/Z such that [image: there is no content]



	
if u is a smooth section of E such that [image: there is no content] then [image: there is no content]








These operators are called based operators, and the set of sections u of E such that [image: there is no content] is the space of based sections, noted Cb∞([image: there is no content];E). We note by Diffb,+([image: there is no content]) the infinite dimensional Lie group of diffeomorphisms g such that [image: there is no content]



We recall that Diffb,+([image: there is no content]) is a regular Lie subgroup of Diff+([image: there is no content]). Its Lie algebra is noted diffb([image: there is no content]). Given [image: there is no content] a smooth curve in FIOb,Diff+*([image: there is no content],E), starting at [image: there is no content][image: there is no content] where X∈diffb([image: there is no content]) and U∈PDO([image: there is no content],E) which stabilize Cb∞([image: there is no content];E).



Theorem 28.

	
Let G⊂PDO*([image: there is no content],E) be a regular Lie group of based operators, that contains the space of based invertible multiplication operators, with Lie algebra [image: there is no content]



	
Let D⊂Diffb,+([image: there is no content]) be a regular Lie subgroup of based diffeomorphisms, with regular Lie algebra [image: there is no content]








There is a regular Lie group FGD⊂FIOb,Diff+*([image: there is no content],E) for which the following sequence is exact:


[image: there is no content]











Proof. We consider first the regular Lie group of automorphisms [image: there is no content] Then, with the same arguments, G and generate a group that we note [image: there is no content] and adapting the computations of Lemma 8, we obtain the above exact sequence. Finally, by Theorem 3, [image: there is no content] is a regular Lie group.  ☐





5. Manifolds of Embeddings


Notation: Let [image: there is no content] be a smooth vector bundle over M with typical fiber x. For [image: there is no content], we denote by

	-

	
[image: there is no content] the product bundle, of basis M, with typical fiber [image: there is no content];




	-

	
[image: there is no content] the space of [image: there is no content] on M with values in E, that is, the set of smooth maps [image: there is no content] that are fiberwise k-linear and skew-symmetric [image: there is no content] for any [image: there is no content]. If [image: there is no content], we note [image: there is no content] the space of k-forms instead of [image: there is no content].









Let M be a compact manifold without boundary; let N be a Riemannian manifold, equipped with the metric [image: there is no content]. Let [image: there is no content] be the manifold of smooth embeddings [image: there is no content]. References for principal bundles of embeddings are [35,36].



5.1. [image: there is no content] as a Principal Bundle


The group of diffeomorphisms of M, [image: there is no content], acts smoothly and on the right on [image: there is no content], by composition. Moreover,


[image: there is no content]








is a smooth manifold [23], and [image: there is no content] is a principal bundle with structure group [image: there is no content] (see [23]). Then, [image: there is no content] is in the [image: there is no content]orbit of f if and only if [image: there is no content]. Let us now precise the vertical tangent space and a normal vector space of the orbits of [image: there is no content] on [image: there is no content]. [image: there is no content], the tangent space at f, is identified with the space of smooth sections of [image: there is no content], which is the pull-back of [image: there is no content] by f. [image: there is no content], the vertical tangent space at f is the space of smooth sections of [image: there is no content]. Let [image: there is no content] be the normal space to [image: there is no content] with respect to the metric [image: there is no content] on N. For any [image: there is no content], [image: there is no content]. Hence, denoting f*[image: there is no content] the pull back of [image: there is no content] by f, we have that:


[image: there is no content](f*TN)=[image: there is no content](TM)⊕f*[image: there is no content]











Moreover, for any volume form [image: there is no content] on M, if:


<.,.>:X,Y∈[image: there is no content](f*TN)↦<X,Y>=∫M(X(x),Y(x))dx








is a [image: there is no content]-inner product on [image: there is no content](f*TN), this splitting is orthogonal for [image: there is no content]. We get here a fundamental difference between the inclusion Emb(M,N)⊂[image: there is no content](M,N), where the model space of the type [image: there is no content](f*TN), and [image: there is no content] as a [image: there is no content] principal bundle: sections of the vertical tangent vector bundle read as order 1 differential operators, where as the operators acting on the normal vector bundle reads as [image: there is no content]order differential operators, just like the structure group of T[image: there is no content](M,N). To be more precise, let X∈[image: there is no content](f*TN) and let [image: there is no content] be the orthogonal projection. The vector field p(X)∈[image: there is no content](Tf(M)) is seen as a differential operator acting on smooth functions f(M)∼M→[image: there is no content], and the normal component [image: there is no content] is a smooth section on [image: there is no content]. In the sequel we shall note:


N=∐[image: there is no content][image: there is no content]











We turn now to local trivializations. Let [image: there is no content]. We define the map [image: there is no content] defined by [image: there is no content] where [image: there is no content] is the exponential map on [image: there is no content] Then [image: there is no content] is a smooth local diffeomorphism. Restricting [image: there is no content] to a [image: there is no content] - neighborhood [image: there is no content] of the 0-section of [image: there is no content], we define a diffeomorphism, setting:


(Expf)|[image: there is no content]:[image: there is no content]→[image: there is no content]=Expf([image: there is no content])⊂Cb∞(M,N)











Then, setting Uf=If−1[image: there is no content], we can define a chart [image: there is no content] on [image: there is no content] by:


[image: there is no content](g)=(If−1∘(Expf)|[image: there is no content]−1)(g)∈Uf⊂Cb∞(M,E)











Given [image: there is no content] in [image: there is no content] such that V[image: there is no content]=[image: there is no content]∩Vg≠¬0, we compute the changes of charts Ξ[image: there is no content] from U[image: there is no content]f=[image: there is no content]V[image: there is no content] to U[image: there is no content]g=ΞgV[image: there is no content]. Let u∈U[image: there is no content]f, v=([image: there is no content])−1(u)∈V[image: there is no content].


Ξ[image: there is no content](u)=Ξg∘([image: there is no content])−1(u)=(Ig−1∘(Expg)−1∘Expf∘[image: there is no content])(u)











Since, [image: there is no content], the transition maps:


Ξ[image: there is no content](u)(x)=(Ig−1∘(expg(x))−1∘expf(x)∘[image: there is no content])(u(x))








are smooth, ([image: there is no content],[image: there is no content],Uf)[image: there is no content] is a smooth atlas on [image: there is no content]. Moreover, let [image: there is no content], setting v=([image: there is no content])−1(u), the evaluation of the differential at [image: there is no content] reads :


DuΞ[image: there is no content](w)(x)=(Ig−1∘Dv(x)(expg(x))−1∘Du(x)(expf(x)∘[image: there is no content]))(w(x))











Hence, for u∈[image: there is no content], DuΞ[image: there is no content] is a multiplication operator acting on smooth sections of E for any isomorphism [image: there is no content] and [image: there is no content] we can choose. Since [image: there is no content] and [image: there is no content] are fixed, the family u↦DuΞ[image: there is no content] is a smooth family of 0- order differential operators; this construction is described carefully in [37]. Now, let [image: there is no content] and let us consider the map:


ΦU,f:(f,v,X)∈TU∼(1−p)TU⊕pTU↦[image: there is no content](v).exp[image: there is no content](X)∈Emb(M,N)











This map gives a local (fiberwise) trivialization of the principal bundles [image: there is no content] following [23,38,39], and we see that the changes of local trivializations have [image: there is no content] as a structure group.



If M is oriented, we note by [image: there is no content] the group of orientation preserving diffeomorphisms and we have the following trivial lemma:



Lemma 29.


[image: there is no content][image: there is no content]=Z2











Then, defining


B+(M,N)=[image: there is no content]Diff+(M)








we get:



Proposition 30. [image: there is no content] is a 2-cover of [image: there is no content]



Now, taking basepoints [image: there is no content] and [image: there is no content] we define the principal bundle of based embeddings



Proposition 31. Let


[image: there is no content]








Let


[image: there is no content]








Let


[image: there is no content]








Let


[image: there is no content]








and


[image: there is no content]











Then [image: there is no content] is a principal bundle with base [image: there is no content] (resp. [image: there is no content]) and with structure group [image: there is no content] (resp. [image: there is no content])



Proof. It follows from the fact that [image: there is no content] in [image: there is no content] and [image: there is no content] in [image: there is no content]  ☐




5.2. Almost Complex Structure on Based Oriented Knots


Here, we consider Bb,+([image: there is no content],N), which can be understood as a space of unparametrized oriented knots. Let f∈Embb([image: there is no content],N). Following the decompositions of the previous section, the tangent space


TfEmb([image: there is no content],N)={X∈f*TN|X(0)=0}








decomposed into the sum:


Nb,f⊕Df(Cb∞(T[image: there is no content]))











Let us consider the operator:


[image: there is no content]








where D=−i[image: there is no content]. We get that [image: there is no content] so that J is an almost complex structure of TB+([image: there is no content],N).





6. Chern-Weil Forms on Principal Bundle of Embeddings and Homotopy Invariants


6.1. Chern Forms in Infinite Dimensional Setting


Let P be a principal bundle, of basis M and with structure group G. Let [image: there is no content] be the Lie algebra of G. Recall that G acts on P, and also on P×[image: there is no content] by the action ((p,v),g)∈(P×[image: there is no content])×G↦(p.g,Adg−1(v))∈(P×[image: there is no content]). Let AdP=P×Adg=(P×[image: there is no content])/G be the adjoint bundle of P, of basis M and of typical fiber [image: there is no content], and let [image: there is no content] be the product bundle, of basis M and of typical fiber [image: there is no content]×k.



Definition 32. Let k in [image: there is no content]. We define [image: there is no content], the set of smooth maps AdkP→[image: there is no content] that are k-linear and symmetric on each fiber, equivalently as the set of smooth maps P×[image: there is no content]k→[image: there is no content] that are k-linear symmetric in the second variable and G-invariants with respect to the natural coadjoint action of G on [image: there is no content]k.



Let [image: there is no content].



Let [image: there is no content] be the set of connections on P. For any [image: there is no content], we denote by [image: there is no content] its curvature and [image: there is no content] (or ∇ when it carries no ambiguity) its covariant derivation. Given an algebra A, In this section, we study the maps, for [image: there is no content],


Ch:C(P)×Polk(P)→Ω2k(M,[image: there is no content])



(2)






[image: there is no content]



(3)




where [image: there is no content] denotes the skew-symmetric part of the form. Notice that, in the case of the finite dimensional matrix groups [image: there is no content] with Lie algebra [image: there is no content], the set [image: there is no content] is generated by the polynomials A∈[image: there is no content]↦tr(Ak), for [image: there is no content]. This leads to classical definition of Chern forms. However, in the case of infinite dimensional structure groups, most situations are still unknown and we do not know how to define a set of generators for [image: there is no content]



Lemma 33. Let [image: there is no content] Then


f([a1,v],a2,...,ak)+f(a1,[a2,v],...,ak)+...+f(a1,a2,...,[ak,v])=0











Proof. Let us notice first that f is symmetric. Let v∈[image: there is no content], and [image: there is no content] a path in G such that {ddt[image: there is no content]}t=0=v. Let a1,...,ak∈[image: there is no content]k.


{ddt{f(adct−1a1,...,adct−1ak)}t=0=f([a1,v],a2,...,ak)+f(a1,[a2,v],...,ak)+...+f(a1,a2,...,[ak,v])











Since f in G-invariant, we get:


f([a1,v],a2,...,ak)+f(a1,[a2,v],...,ak)+...+f(a1,a2,...,[ak,v])=0











Lemma 34. Let [image: there is no content] such that f, as a smooth map P×[image: there is no content]k→[image: there is no content], satifies [image: there is no content] on a system of local trivializations of [image: there is no content] Then, the map


Chf:θ∈C(P)↦Chf(θ)=Ch(θ,f)∈Ω*(P,[image: there is no content])








takes values into closed forms on P. Moreover,

	(i) 

	
it is vanishing on vertical vectors and defines a closed form on M.




	(ii) 

	
the cohomology class of this form does not depend on the choice of the chosen connexion θ on P.









Proof. The proof runs as in the finite dimensional case, see e.g., [30]. First, it is vanishing on vertical vectors and G-invariant because the curvature of a connexion vanishes on vertical forms and is G-covariant for the coadjoint action. Let us now fix [image: there is no content]. We compute [image: there is no content] We notice first that it vanishes on vertical vectors trivially. Let us fix [image: there is no content][image: there is no content] horizontal vectors on P at [image: there is no content]. On a local trivialization of P around p, these vectors read as:


Y1h=Y1−[image: there is no content](Y1)(...)Y2kh=Y2k−[image: there is no content](Y2k)Xh=X−[image: there is no content](X)








where [image: there is no content] stands here for the expression of θ in the local trivilization, and [image: there is no content][image: there is no content] tangent vectors on M at [image: there is no content] We extend these vector fields on a neighborhood of p

	-

	
by the action of G in the vertical directions




	-

	
setting the vectors fields constant on [image: there is no content], where U is a local chart on M around [image: there is no content].









Then, we have:


[image: there is no content]








since [image: there is no content] is vanishing on vertical vectors.



Then, on a local trivialization with the notations defined before (the sign [image: there is no content] is omitted for easier reading), and writing [image: there is no content] for the differential of forms on any open subset of M,


[image: there is no content]f(F([image: there is no content]),...,F([image: there is no content]))=∑i=1kf([image: there is no content]F([image: there is no content]),F([image: there is no content]),...,F([image: there is no content]))+f(F([image: there is no content]),[image: there is no content]F([image: there is no content]),...,F([image: there is no content]))+...+f(F([image: there is no content]),F([image: there is no content]),...,[image: there is no content]F([image: there is no content]))











and then, using Lemma 33,


[image: there is no content]f(F([image: there is no content]),...,F([image: there is no content]))=∑i=1kf([image: there is no content]F([image: there is no content]),F([image: there is no content]),...,F([image: there is no content]))+f(F([image: there is no content]),[image: there is no content]F([image: there is no content]),...,F([image: there is no content]))+...+f(F([image: there is no content]),F([image: there is no content]),...,[image: there is no content]F([image: there is no content]))











Then, by Bianchi identity, we get that:


[image: there is no content]Ch(f,θ)=[image: there is no content]Ch(f,θ)=0











This proves (i) Then, following e.g., [30], if θ and [image: there is no content] are connections, fix μ=[image: there is no content]−θ and [image: there is no content] for [image: there is no content] We have:


[image: there is no content]











Moreover, μ is G-invariant and vanishes on vertical vectors. Thus,


dCh(f,θt)dt=kf(F(θt),...,F(θt),∇θtμ)=k[image: there is no content](f(F(θt),...,F(θt),μ))











Integrating in the t-variable, we get:


Ch(f,θ0)−Ch(f,θ1)=−k[image: there is no content]∫01f(F(θt),...,F(θt),μ)dt











Even if these computations are local, the two sides are global objects and do not depend on the chosen trivialization, which ends the proof.  ☐



Important Remark. The condition [image: there is no content] is a local condition, checked in an (adequate) system of trivializations of the principal bundle, because it has to be checked on the vector bundle [image: there is no content] This is in particular the case when we can find a 0-curvature connection θ on P such that:


[[image: there is no content],f]=0











In that case, since the structure group G is regular, we can find a system of local trivializations of P defined by θ and such that, on any local trivialization, [image: there is no content]=[image: there is no content] (see e.g., [23,40] for the technical tools that are necessary for this).



This technical remark can appear rather unsatisfactory first because it restricts the ability of application of the previous lemma, secondly because we need have a local (and rather unelegant) condition. This is why we give the following theorem, from Lemma 34.



Theorem 35. Let [image: there is no content] for which there exists [image: there is no content] such that [[image: there is no content],f]=0. We shall note this set of polynomials by [image: there is no content] Then, the map:


Chf:θ∈C(P)↦Chf(θ)=Ch(θ,f)∈Ω*(P,[image: there is no content])








takes values into closed forms on P. Moreover,

	(i) 

	
it is vanishing on vertical vectors and defines a closed form on M.




	(ii) 

	
The cohomology class of this form does not depend on the choice of the chosen connexion θ on P.









Moreover, ∀(θ,f)∈C(P)×[image: there is no content](P),[[image: there is no content],f]=0.



Proof. Let [image: there is no content] and let [image: there is no content] such that [[image: there is no content],f]=0. Let [image: there is no content]∈c(P) and let ν=[image: there is no content]−θ∈Ω1(M,[image: there is no content]). Let (α1,...,αk)∈(Ω2(M,[image: there is no content]))k.


[∇[image: there is no content],f](α1,...αk)=[[image: there is no content],f](α1,...αk)+f([α1,ν],...,αn)+...+f(α1,...,[αn,ν])=f([α1,ν],...,αn)+...+f(α1,...,[αn,ν])=0











Then, ∀(θ,f)∈C(P)×[image: there is no content](P),[[image: there is no content],f]=0. By the way, ∀[image: there is no content]∈C(P),


[image: there is no content]f(α1,...,αk)=f(∇[image: there is no content]α1,...,αk)+...+f(α1,...,∇[image: there is no content]αk)











Applying this to α1=...=αk=F([image: there is no content]), we get:


dCh(f,[image: there is no content])=f(∇[image: there is no content]F([image: there is no content]),...,F([image: there is no content]))+...+f(F([image: there is no content]),...,∇[image: there is no content]F([image: there is no content]))=0








by Bianchi identity. Thus Ch(f,[image: there is no content]) is closed. Then, mimicking the end of the proof of Lemma 34, we get that the difference Ch(f,θ)−Ch(f,[image: there is no content]) is an exact form, which ends the proof.



Proposition 36. Let ϕ:[image: there is no content]k→[image: there is no content] be a [image: there is no content]linear, symmetric, [image: there is no content]invariant form. Let f:P×[image: there is no content]k→[image: there is no content] be the map induced by [image: there is no content] by the formula: [image: there is no content] Then [image: there is no content]



Proof. Obsiously, [image: there is no content] Let [image: there is no content] and [image: there is no content] be a local trivialisations of P, where U is an open subset of [image: there is no content] Then there exists a smooth map [image: there is no content] such that [image: there is no content] Then we remark that [image: there is no content] is a constant map on horizontal slices since ϕ is Ad-invariant. Moreover, since [image: there is no content] in a constant (polynomial-valued) map on [image: there is no content] we get that [[image: there is no content],f]=0 for the (flat) connection θ such that [image: there is no content] spans the horizontal bundle over U.  ☐




6.2. Application to [image: there is no content]


Mimicking the approach of [6], the cohomology classes of Chern-Weil forms should give rise to homotopy invariants. Applying Theorem 35, we get:



Theorem 37. The Chern-Weil forms [image: there is no content] is a [image: there is no content]valued invariant of the homotopy class of an embedding, ∀k∈[image: there is no content].



When M=[image: there is no content], Emb([image: there is no content],N) is the space of (parametrized) smooth knots on N, and B([image: there is no content],N) is the space of non parametrized knots. Its connected components are the homotopy classes of the knots, through classical results of differential topology, see e.g., [41]. We now apply the material of the previous section to manifolds of embeddings. For this, we can define invariant polynomials of the type of those obtained in [6] (for mapping spaces) by a field of linear functionnal λ with “good properties” that ensures that:


[image: there is no content]











This approach is a straightforward generalization of the description of Chern-Weil forms on finite dimensional principal bundles where polynomials are generated by functionnals of the type [image: there is no content] (tr is the classical trace) but as we guess that we can consider other classes of polynomials for spaces of embeddings. In this paper, let us describe how to replace the classical trace of matrices tr by a renormalized trace [image: there is no content] In the most general case, it is not so easy to define a family of weights [image: there is no content] which satisfy the good properties. Indeed, we have two examples of constructions which match the necessary assumptions for [image: there is no content] when M=[image: there is no content], and the first one is derived from the following example:



Knot Invariant Through Kontsevich and Vishik Trace


The Kontsevich and Vishik trace is a renormalized trace for which [image: there is no content] for each differential operator [image: there is no content] and does not depend on the weight chosen in the odd class. For example, one can choose [image: there is no content], where ∇ is a connection induced on [image: there is no content] by the Riemannian metric, as described in [6]. It is an order 2 injective elliptic differential operator (in the odd class), and the coadjoint action of Aut([image: there is no content]) will give rise to another order 2 injective elliptic differential operator [7]. When [image: there is no content] this only changes ∇ into another connection on [image: there is no content] Thus, setting:


[image: there is no content]








we have:


f∈[image: there is no content]











Let us now consider a connected component of [image: there is no content]i.e., a homotopy class of an embedding among the space of embeddings. We apply now the construction to M=[image: there is no content]. The polynomial:


[image: there is no content]








is Diff([image: there is no content])−invariant, and gives rise to an invariant of non oriented knots, i.e., a Chern form on the base manifold:


B([image: there is no content],N)=Emb([image: there is no content],N)/Diff([image: there is no content])








by theorem 37. This approach can be extended to invariant of embeddings, replacing [image: there is no content] by another odd-dimensional manifold.






7. Conclusions


We have given here some groundbreaking properties for a theory of differential invariants on non-linear grassmannians. A work in progress intends to describe such Chern-Weil, or Chern-Simons, or Cheeger-Simons invariant which could lead to non trivial knot invariants.
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Appendix


Renormalized Traces of PDOs


E is equipped this an Hermitian products [image: there is no content], which induces the following [image: there is no content]-inner product on sections of E:


∀u,v∈[image: there is no content]([image: there is no content],E),(u,v)[image: there is no content]=∫[image: there is no content]<u(x),v(x)>dx








where [image: there is no content] is the Riemannian volume. The main references are [42,43], see e.g., [6].



Definition A1. Q is a weight of order [image: there is no content] on E if and only if Q is a classical, elliptic, admissible pseudo-differential operator acting on smooth sections of E, with an admissible spectrum.



Recall that, under these assumptions, the weight Q has a real discrete spectrum, and that all its eigenspaces are finite dimensional. For such a weight Q of order q, one can define the complex powers of Q [44], see e.g., [4] for a fast overview of technicalities. The powers [image: there is no content] of the weight Q are defined for [image: there is no content] using with a contour integral,


[image: there is no content]=∫Γλs(Q−λId)−1dλ








where Γ is an “angular” contour around the spectrum of [image: there is no content] Let A be a log-polyhomogeneous pseudo-differential operator. The map ζ(A,Q,s)=s∈[image: there is no content]↦trA[image: there is no content]∈[image: there is no content] , defined for [image: there is no content] large, extends on [image: there is no content] to a meromorphic function with a pole of order [image: there is no content] at 0 ([45]). When A is classical, [image: there is no content] has a simple pole at 0 with residue [image: there is no content], where res is the Wodzicki residue ([46], see also [29]). Notice that the Wodzicki residue extends the Adler trace [47] on formal symbols. Following [45], we define the renormalized trace, see e.g., [4,48] for the renormalized trace of classical operators.



Definition A2. [image: there is no content].



On the other hand, the operator [image: there is no content] is a smoothing operator for each [image: there is no content] which shows that trA[image: there is no content] is well-defined and finite for [image: there is no content] From the function t↦trA[image: there is no content], we recover the function [image: there is no content] by the Mellin transform (see e.g., [42], pp. 115–116), which shows the following lemma:



Lemma A1. Let [image: there is no content] be classical pseudo-differential operators, let [image: there is no content] be weights.


∀t>0,trA[image: there is no content]=trA′e−tQ′⇒trQ(A)=trQ′(A′)res(A)=res(A′)











If A is trace class, [image: there is no content]. The functional [image: there is no content] is of course not a trace on [image: there is no content]. Notice also that, if A and Q are pseudo-differential operators acting on sections on a real vector bundle E, they also act on E⊗[image: there is no content]. The Wodzicki residue res and the renormalized traces [image: there is no content] have to be understood as functionals defined on pseudo-differential operators acting on E⊗[image: there is no content]. In order to compute [image: there is no content][A,B] and to differentiate [image: there is no content]A, in the topology of classical pseudo-differential operators, we need the following ([4], see also [49] for the first point):



Proposition A1.

	(i)

	
Given two (classical) pseudo-differential operators A and B, given a weight Q,


[image: there is no content][A,B]=−1qres(A[image: there is no content])



(A1)








	(ii)

	
Given a differentiable family [image: there is no content] of pseudo-differential operators, given a differentiable family [image: there is no content] of weights of constant order q,


ddttr[image: there is no content][image: there is no content]=tr[image: there is no content]ddt[image: there is no content]−1qres[image: there is no content](ddtlog[image: there is no content])



(A2)













The following "covariance" property of [image: there is no content] ([4,48]) will be useful to define renormalized traces on bundles of operators,



Proposition A2. Under the previous notations, if C is a classical elliptic injective operator of order 0, [image: there is no content] is well-defined and equals [image: there is no content]A.



We moreover have specific properties for weighted traces of a more restricted class of pseudo-differential operators (see [4,50,51]), called odd class pseudo-differential operators following [50,51] :



Definition A3. A classical pseudo-differential operator A is called odd class if and only if:


[image: there is no content]











We note this class [image: there is no content]



Such a definition is consistent for pseudo-differential operators on smooth sections of vector bundles, and applying the local formula for Wodzicki residue, one can prove [4]:



Proposition A3. If M is an odd dimensional manifold, A and Q lie in the odd class, then f(s)=tr(A[image: there is no content]) has no pole at [image: there is no content]. Moreover, if A and B are odd class pseudo-differential operators, [image: there is no content][A,B]=0 and [image: there is no content]A does not depend on [image: there is no content]



This trace was first defined in the papers [50,51] by Kontesevich and Vishik. We remark that it is in particular a trace on [image: there is no content] when M is odd-dimensional.



Let us now describe a class of operators which is, in some sense, complementary to odd class:



Definition A4. A classical pseudo-differential operator A is called even class if and only if:


[image: there is no content]











We note this class [image: there is no content]



Very easy properties are the following:



Proposition A4.



[image: there is no content] and



[image: there is no content]



Now, following [6], we explore properties of [image: there is no content] on Lie brackets.



Definition A5. Let E be a vector bundle over M, Q a weight and [image: there is no content]. We define :


[image: there is no content]aQ={B∈Cl(M,E);[image: there is no content]∈Cla(M,E)}











Theorem A1. [6]

	(i)

	
[image: there is no content]aQ∩Cl0(M,E) is a subalgebra of [image: there is no content] with unit.




	(ii)

	
Let [image: there is no content], [image: there is no content][image: there is no content]aQB=Aa[image: there is no content]QB, where [image: there is no content] is the parametrix.




	(iii)

	
Let [image: there is no content], and B∈[image: there is no content]−dimM−b−1Q, then [image: there is no content][A,B]=0.




	(iv)

	
For [image: there is no content], [image: there is no content]aQ∩Cl−dimM2(M,E) is an algebra on which the renormalized trace is a trace (i.e., vanishes on the brackets).









We now produce non trivial examples of operators that are in [image: there is no content]aQ when Q is scalar, and secondly we give a formula for some non vanishing renormalized traces of a bracket.



Lemma A2. Let Q be a weight on [image: there is no content] and let B be a classical pseudo-differential operator of order b. If B or Q is scalar, then [image: there is no content] is a classical pseudo-differential operator of order [image: there is no content].



Proposition A5. Let Q be a scalar weight on [image: there is no content]. Then


Cla+1(M,V)⊂[image: there is no content]aQ








Consequently,

	(i)

	
if [image: there is no content][image: there is no content][A,B]=0.




	(ii)

	
when M=[image: there is no content], if A and B are classical pseudo-differential operators, if A is compact and B is of order 0, [image: there is no content][A,B]=0.









Lemma A3. Let Q be a scalar weight on [image: there is no content], and A, B two pseudo-differential operators of orders a and b on [image: there is no content], such that [image: there is no content] (m = dim M). Then


[image: there is no content][A,B]=−1qresA[B,logQ]=−1q(2π)n∫M∫|ξ|=1tr(σa(A)σ[image: there is no content]([image: there is no content]))
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