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of the arithmetic algebra A, consisting of all arithmetic functions. In particular,
we apply such free probability to consider operator-theoretic and operator-algebraic
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1. Introduction

While in standard probability spaces, the random variables are functions (measurable with respect
to a prescribed σ-algebra), and hence their analysis entails only abelian algebras of functions.
By contrast, in free probability, one studies (both) noncommutative (and commutative) random variables
(on algebras) in terms of fixed linear functionals. In the classical case, independence is fundamental,
and we get the notion of products of probability spaces. The analogous concept in the noncommutative
setting is freeness and free products. Freeness (or free independence) is then studied in connected with
free products. The free probability theory was pioneered by D. Voiculescu (e.g., [1,2]) and motivated



Mathematics 2015, 3 1096

by a question in von Neumann algebra (alias W ∗-algebra) theory, the free-group factors isomorphism
problem (e.g., [2,3]). There has been a recent renewed interest in analysis on free probability spaces,
especially in connection with free random processes (e.g., [4,5])

In this paper, we consider connections between the two independent free-probabilistic models induced
from number-theoretic objects, (i) free probability spaces (Mp, ϕp) of the von Neumann algebras
Mp generated by p-adic number fields Qp and the corresponding integrations ϕp on Mp, (e.g., [6–8])
and (ii) free probability spaces (A, gp) of the algebra A consisting of all arithmetic functions, equipped
with the usual functional addition (+) and the convolution (∗), and the point-evaluation linear functionals
gp on A, for all primes p (e.g., [9–12]). And we apply such relations to study W ∗-dynamical systems
induced by Qp (e.g., [9]).

In particular, for the later models (ii), we construct free-probabilistic sub-structures (Φp, gp) of
(A, gp) (under suitable quotient) for primes p. Here, Φp is an subalgebra ofA (under quotient) generated
by the Euler totient function φ ∈ A, defined by

φ(n)
def
=

∣∣∣∣∣
{
k ∈ N

∣∣∣∣∣ 1 ≤ k ≤ n

gcd(k, n) = 1

}∣∣∣∣∣
for all n ∈ N.

The main purpose of this paper is to show the free probability on W ∗-dynamical systems induced by
Qp is related to the free probability on the correspondingW ∗-dynamical systems acted by Φp. Our results
not only relate the calculus on Qp with the free probability on Φp (Also, see [9]), but also provide better
tools for studying non-Archimedean p-adic (or Adelic) dynamical systems.

We considered how primes (or prime numbers) act on operator algebras, in particular, on von
Neumann algebras. The relations between primes and operator algebra theory have been studied in
various different approaches. For instance, in [11], we studied how primes act “on” certain von Neumann
algebras generated by p-adic and Adelic measure spaces. Also, the primes as operators in certain von
Neumann algebras, have been studied in [8].

The main results deal with explicit computations for our free-dynamical systems in Sections 5 and 6,
and structure theorems in Sections 8–10. The first four sections deal with some preliminaries
(free probability systems generated by arithmetic functions, and their prime components), which we
need in the proofs of main results (Theorems 5.1, 6.3, 8.6, 9.3, 9.4, and 10.2).

We address-and-summarize the main theorems, (i) in a given free probability space, either global,
or one of the prime factors, how do we identify mutually free sub-systems? See, for example, Theorem 8.6;
and (ii) how do our global systems factor in terms of the prime free probability spaces? See especially
Theorem 9.3; and (iii) how do we apply the above results from (i) and (ii), see Theorem 10.2.

Independently, in [9,10], we have studied primes as linear functionals acting on arithmetic functions.
i.e., each prime p induces a free-probabilistic structure (A, gp) on arithmetic functions A. In such
a case, one can understand arithmetic functions as Krein-space operators, via certain representations
(See [11,12]).

These studies are all motivated by well-known number-theoretic results (e.g., [13–17]) with help of
free probability techniques (e.g., [8,11,12]).

In modern number theory and its application, p-adic analysis provides an important tool for studying
geometry at small distance (e.g., [18]). it is not only interested in various mathematical fields but also
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in related scientific fields (e.g., [11,12,15,19]). The p-adic number fields Qp and the Adele ring AQ play
key roles in modern number theory, analytic number theory, L-function theory, and algebraic geometry
(e.g., [9,19,20]).

In earlier papers [11,12], the authors studied harmonic analysis of arithmetic functions, leading
to free probability spaces (A, gp) indexed by the prime numbers p. In [21], we considered von
Neumann algebras L∞(Qp) induced by p-adic number fields Qp, and realized the connection between
non-Archimedean calculus on L∞(Qp) and free probability on (A, gp), liked via Euler totient function φ.
The purpose of the present paper is to enlarge such connections between them, and apply such
connections to non-Archimedean p-adic or Adelic dynamical systems.

In [8], the first-named author constructedW ∗-dynamical systems induced by Qp, by understanding the
σ-algebra σ(Qp) as a semigroup (σ(Qp), ∩) under set-intersection ∩. By acting this semigroup σ(Qp)

on an arbitrary von Neumann algebra M via a semigroup-action α, one can establish a W ∗-dynamical
system (σ(Qp), M, α). Then the corresponding crossed product algebra M ×α σ(Qp) is constructed and
it is ∗-isomorphic to the conditional tensor product algebra M ⊗α L∞(Qp). The free probability on such
von Neumann algebras was studied in [8].

In [21], the author and Jorgensen considered the connection between calculus (in particular,
integration) on L∞(Qp) and free probability on Φp (inherited from the free probability on A under
the linear functional gp). We realized that, for any f ∈ L∞(Qp), there exists h ∈ Φp (under quotient),
such that ∫

Qp

fdρp = gp(h)

and vice versa.
We here apply the results of [21] to the study of W ∗-dynamical systems.
In Section 2, we introduce basic concepts for the paper. In Sections 3–6, we briefly consider main

results of [8]. The main results of [21] are reviewed in Sections 7 and 8. In Sections 9 and 10,
we re-construct free probability on the W ∗-dynamical systems induced by Qp in terms of W ∗-dynamical
systems induced by Φp.

2. Definitions and Background

For related themes fromW ∗-Dynamical Systems, see [22]. For useful themes from harmonic analysis
of number fields, both commutative and noncommutative, see [23–26]. Some related themes from
mathematical physics are found in [17,27,28].

In this section, we introduce basic definitions and backgrounds of the paper.

2.1. p-Adic Number Fields Qp

Throughout this section, let p be a fixed prime, and let Qp be the p-adic number field for p. This set
Qp is by definition the completion of the rational numbers Q with respect to the p-adic norm

|q|p =
∣∣∣pk a

b

∣∣∣ =

(
1

p

)k
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for q = pk a
b
∈ Q, for some k ∈ Z. Remark here that the norm |.|p satisfies that

|q1 + q2|p ≤ max{|q1|p , |q2|p}

and hence, it is non-Archimedean. The topology for Qp is induced by the non-Archimedean metric dp
induced by the p-adic norm |.|p

dp(q1, q2) = |q1 − q2|p
for all q1, q2 ∈ Q

Under topology, Qp is locally compact and totally disconnected as a topological space, and contains
a maximal compact subring,

Zp = {x ∈ Qp : |x|p ≤ 1}

We call Zp, the unit disk of Qp, and all elements of Zp are said to be the p-adic integers in Qp. The unit
disk Zp, as an algebraic object, is a discrete valuation ring, in the sense that: it is a principal ideal domain
with a unique non-zero prime ideal (generated by p). The ideal (p) is also a maximal ideal, and hence,
the quotient

Zp/(p)
Field
= Z/pZ

forms a field, called the residue field of Zp. Similarly, one can verify that

Zp/(pk)
Ring
= Z/pkZ, for k ∈ N

Using powers of the ideal (p), we obtain a particularly nice description for the topology of Qp. It has
neighborhood bases of zero consisting of the compact open (additive) subgroups

pkZp = {pkx : x ∈ Zp}, for k ∈ Z

In fact, set-theoretically, one has
Qp = ∪

k∈Z
pkZp

In other words, if we consider Qp as an additive group, then it is locally profinite.
Recall that an arbitrary group is called profinite, if it is both locally profinite and compact. So, the unit

disk Zp of Qp is profinite, since Qp is locally profinite and Zp is compact in Qp.

Recall also that any profinite group can be realized as the inverse limit of finite groups. Since Zp is
compact and has a neighborhood base of zero consisting of compact open subgroups obtained by taking
k to be a natural number above, there exists an isomorphism ϕ,

ϕ : Zp → lim←−
(
Zp / (pk)

)
= lim←−

(
Z / pkZ

)
such that

ϕ(x) = (xmod(pk))k∈N

for all x ∈ Zp. This inverse limit runs over finite groups since
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Zp/(pk) ∼= Z/pkZ

are finite groups, for any k ∈ N.
For a fixed prime p, note that the unit disk Zp of Qp is then a compact group with the induced

(+)-operation on Qp, passed to the projective limit. Hence, Zp has a unique normalized Haar measure
ρp, satisfying

ρp(Zp) = 1

and
ρp(x+ S) = ρp(S + x) = ρp(A)

for all Borel subsets S ⊆ Zp, and x ∈ Zp. Here,

x+ S = {x+ a : a ∈ S}

where (+) is the p-adic addition on Zp (inherited from that on Qp).
One can check that the dual character group Z∗p of Zp,

Z∗p = ∪
k∈N

p−kZ

and it is an injective limit of the group inducing

p−kZ ↪→ p−(k+1)Z

So, there is an associated Fourier transform

f ∈ L2(Zp, ρp) 7−→ f̂ ∈ l2(Z∗p)

such that
f̂(ξ) =

∫
Zp

< ξ, x >f(x)dρp(x)

for all ξ ∈ Z∗p. Moreover, we have ∑
ξ∈Z∗p

∣∣∣f̂(ξ)
∣∣∣2 =

∫
Zp

|f |2 dρp

The boundary Up of the unit disk Zp is defined by

Up = Zp \ pZp

We call Up, the unit circle of Qp.

Under the Haar measure ρp on Qp, we have

ρp
(
a+ pkZp

)
= ρp

(
pkZp

)
=

1

pk

and

ρp
(
a+ pkUp

)
= ρp

(
pkUp

)
=

1

pk
− 1

pk+1
= pk

(
1− 1

p

)
for all a ∈ Qp and for all k ∈ Z, where

pkX = {pkx : x ∈ X}, for all subsets X of Qp
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2.2. Free Probability

In this section, we briefly introduce free probability. Free probability is one of a main branch
of operator algebra theory, establishing noncommutative probability theory on noncommutative
(and hence, on commutative) algebras (e.g., pure algebraic algebras, topological algebras, topological
∗-algebras, etc.).

Let A be an arbitrary algebra over the complex numbers C, and let ψ : A→ C be a linear functional
on A. Then the pair (A, ψ) is called a free probability space (over C). All operators a ∈ (A, ψ) are
called free random variables. Remark that free probability spaces are dependent upon the choice of
linear functionals.

Let a1, ..., as be a free random variable in a (A, ψ), for s ∈ N. The free moments of a1, ..., as are
determined by the quantities

ψ(ai1 ...ain)

for all (i1, ..., in) ∈ {1, ..., s}n, for all n ∈ N
and the free cumulants kn(ai1 , ..., ain) of a1, ..., as is determined by the Möbius inversion,

kn(ai1 , ..., ain) =
∑

π∈NC(n)

ψπ(ai1 , ..., ain)µ(π, 1n)

=
∑

π∈NC(n)

(
Π
V ∈π

ψV (ai1 , ..., ain)µ
(
0|V |, 1|V |

))
for all (i1, ..., in) ∈ {1, ..., s}n, for all n ∈ N, where ψπ(...) means the partition-depending moments, and
ψV (...) means the block-depending moment, for example, if

π0 = {(1, 5, 7), (2, 3, 4), (6)} in NC(7)

with three blocks (1, 5, 7), (2, 3, 4), and (6), then

ψπ0
(
ar1i1 , ..., ar7i7

)
= ψ(1,5,7)(a

r1
i1
, ..., ar7i7 )ψ(2,3,4)(a

r1
i1
, ..., ar7i7 )ψ(6)(a

r1
i1
, ..., ar7i7 )

= ψ(ar1i1 a
r5
i5
ar7i7 )ψ(ar2i2 a

r3
i3
ar4i4 )ψ(ar6i6 )

Here, the set NC(n) means the noncrossing partition set over {1, ..., n}, which is a lattice with the
inclusion ≤, such that

θ ≤ π
def⇐⇒ ∀V ∈ θ, ∃B ∈ π, s.t. , V ⊆ B

where V ∈ θ or B ∈ π means that V is a block of θ, respectively, B is a block of π, and ⊆ means
the usual set inclusion, having its minimal element 0n = {(1), (2), ..., (n)}, and its maximal element
1n = {(1, ..., n)}.

Especially, a partition-depending free moment ψπ(a, ..., a) is determined by

ψπ(a, ..., a) = Π
V ∈π

ψ
(
a|V |
)

where |V | means the cardinality of V.
Also, µ is the Möbius functional fromNC ×NC into C,whereNC =

∞
∪
n=1

NC(n). i.e., it satisfies that

µ(π, θ) = 0, for all π > θinNC(n)
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and
µ(0n, 1n) = (−1)n−1cn−1, and

∑
π∈NC(n)

µ(π, 1n) = 0

for all n ∈ N, where

ck =
1

k + 1

(
2k

k

)
=

1

k + 1

(2k)!

k!k!

means the k-th Catalan numbers, for all k ∈ N. Notice that since each NC(n) is a well-defined lattice,
if π < θ are given in NC(n), one can decide the “interval”

[π, θ] = {δ ∈ NC(n) : π ≤ δ ≤ θ}

and it is always lattice-isomorphic to

[π, θ] = NC(1)k1 ×NC(2)k2 × ...×NC(n)kn

for some k1, ..., kn ∈ N, where NC(l)kt means “l blocks of π generates kt blocks of θ,” for kj ∈ {0, 1,

..., n}, for all n ∈ N. By the multiplicativity of µ on NC(n), for all n ∈ N, if an interval [π, θ] in NC(n)

satisfies the above set-product relation, then we have

µ(π, θ) =
n

Π
j=1
µ(0j, 1j)

kj

(For details, see [11,12]).
By the very definition of free cumulants, one can get the following equivalent Möbius inversion,

ψ (ai1ai2 ... ain) =
∑

π∈NC(n)

kπ (ai1 , ..., ain)

where kπ(ai1 , ..., ain) means the partition-depending free cumulant, for all (ai1 , ..., ain) ∈ {a1, ..., as}n,
for n ∈ N, where a1, ..., as ∈ (A, ψ), for s ∈ N. Under the same example,

π0 = {(1, 5, 7), (2, 3, 4), (6)} in NC(7)

we have

kπ0(ai1 , ..., ai7) = k(1,5,7) (ai1 , ..., ai7) k(2,3,4) (ai1 , ..., ai7) k(6) (ai1 , ..., ai7)
= k3 (ai1 , ai5 , ai7) k3 (ai2 , ai3 , ai4) k1(ai6)

In fact, the free moments of free random variables and the free cumulants of them provide equivalent
free distributional data. For example, if a free random variable a in (A, ψ) is a self-adjoint operator
in the von Neumann algebra A in the sense that a∗ = a, then both free moments {ψ(an)}∞n=1 and free
cumulants {kn(a, ..., a)}∞n=1 give its spectral distributional data.

However, their uses are different case-by-case. For instance, to study the free distribution of fixed free
random variables, the computation and investigation of free moments is better, and to study the freeness
of distinct free random variables in the structures, the computation and observation of free cumulants is
better (See [12]).
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Definition 2.1. We say two subalgebras A1 and A2 of A are free in (A, ψ), if all “mixed” free cumulants
of A1 and A2 vanish.. Similarly, two subsets X1 and X2 of A are free in (A, ψ), if two subalgebras A1

and A2, generated by X1 and X2 respectively, are free in (A, ψ). Two free random variables x1 and x2

are free in (A, ψ), if {x1} and {x2} are free in (A, ψ).

Suppose A1 and A2 are free subalgebras in (A, ψ). Then the subalgebra A generated both by these
free subalgebras A1 and A2 is denoted by

A
denote

= A1 ?C A2

Inductively, assume that A is generated by its family {Ai}i∈Λ of subalgebras, and suppose the
subalgebras Ai are free from each other in (A, ψ), for i ∈ Λ. Then we call A, the free product algebra of
{Ai}i∈Λ (with respect to ψ), i.e.,

A = ?C
i∈Λ
Ai

is the free product algebra of {Ai}i∈Λ (with respect to ψ).
In the above text, we concentrated on the cases where (A, ψ) is a “pure-algebraic” free probability

space. Of course, one can take A as a topological algebra, for instance, A can be a Banach algebra.
In such a case, ψ is usually taken as a “bounded (or continuous)” linear functional (under topology).
Similarly, A can be taken as a ∗-algebra, where (∗) means here the adjoint on A, satisfying that

a∗∗ = a, foralla ∈ A
(a1 + a2)∗ = a∗1 + a∗2
(a1a2)∗ = a∗2a

∗
1

for all a1, a2 ∈ A. Then we put an additional condition on ψ, called the (∗)-relation on ψ,

ψ(a∗) = ψ(a), for all a ∈ A

where z means the conjugate of z, for all z ∈ C.
Finally, the algebra A can be taken as a topological ∗-algebra, for example, a C∗-algebra or a von

Neumann algebra. Then usually we take a linear functional ψ satisfying both the boundedness and the
(∗)-relation on it.

In the following, to distinguish the differences, we will use the following terms.

(i) If A is a Banach algebra and if ψ is bounded, then (A, ψ) is said to be a Banach probability space.
(ii) If A is a ∗-algebra and if ψ satisfies the (∗)-relation, then (A, ψ) is called a ∗-probability space.

(iii) If A is a C∗-algebra and if ψ is bounded with (∗)-relation, then (A, ψ) is a C∗-probability space.
(iv) If A is a von Neumann algebra and if ψ is bounded with (∗)-relation, then (A, ψ) is a

W ∗-probability space.
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2.3. The Arithmetic Algebra A

In this section, we introduce an algebra A, consisting of all arithmetic functions. Recall that an
arithmetic function f is nothing but a C-valued function whose domain is N. i.e.,

A = {f : N→ C : f is a function}

set-theoretically. It is easy to check that A forms a vector space over C. Indeed, the functional addition
(+) is well-defined on A, since f + h is a well-defined arithmetic function whenever f and h are
arithmetic functions, and the scalar product is well-defined onA, because r f is a well-defined arithmetic
function whenever f is an arithmetic function and r ∈ C.

Moreover, one can define the convolution (∗) on A by

f ∗ h(n)
def
=
∑
d|n

f(d)h
(n
d

)
=

∑
d1,d2∈N s.t., n=d1d2

f(d1)h(d2)

for all n ∈ N, for all f, h ∈ A, where “d | n” means “d is a divisor of n,” or “d divides n,” or “n is
divisible by d,” for d, n ∈ N.

Then f ∗ h ∈ A, too. Also, we have that

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3

and
(f1 + f2) ∗ f3 = f1 ∗ f3 + f2 ∗ f3

for all f1, f2, f3 ∈ A.
Thus, equipped with this vector multiplication (∗) on A, the vector space A forms an algebra over C.

Definition 2.2. The algebra A = (A, +, ∗) over C is called the arithmetic algebra.

This algebra A has its (+)-identity 0A, the arithmetic function,

0A(n) = 0, for all n ∈ N

and the (∗)-identity 1A, the arithmetic function,

1A(n) =

{
1 if n = 1

0 otherwise

for all n ∈ N.
Note the difference between the constant arithmetic function 1 and the (∗)-identity 1A,

1(n) = 1, for all n ∈ N

It is not difficult to check that, in fact, the algebra A is commutative under (∗), i.e.,

f ∗ h = h ∗ f, for all f, h ∈ A
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2.4. The Euler Totient Function φ

In this section, we consider a special element, the Euler totient function φ of the arithmetic algebraA.
Let φ be an arithmetic function,

φ(n)
def
=

∣∣∣∣∣
{
k ∈ N

∣∣∣∣∣ 1 ≤ k ≤ n,

gcd(k, n) = 1

}∣∣∣∣∣
where gcd(n1, n2) means the greatest common divisor of n1 and n2, for all n1, n2 ∈ N. This function φ
is a well-defined arithmetic function, as an element of A.

Definition 2.3. The above arithmetic function φ is called the Euler totient function in A.

The Euler totient function φ is so famous, important, and applicable in both classical and modern
number theory that we cannot help emphasizing the importance of this function not only in mathematics
but also in other scientific areas (e.g., [4,5,22,23,29]).

For any fixed prime p, and k ∈ N, one can have φ(1) = 1, and

φ(pk) = pk − pk−1 = pk
(

1− 1

p

)
in particular, with φ(p) = p− 1.

Recall that an arithmetic function f is multiplicative, if

f(nm) = f(n)f(m), whenever gcd(n,m) = 1

for all n, m ∈ N.
The Euler totient function φ is multiplicative by definition. Thus, we have that

φ(n) = φ

(
Π

p:prime, p|n
pkp
)

= n Π
p:prime, p|n

(
1− 1

p

)
for all n ∈ N, whenever n is prime-factorized by Π

p|n
pkp , with φ(1) = 1.

Furthermore, the arithmetic function φ satisfies the following functional equation in general,

φ(nm) = φ(n)φ(m)
gcd(n, m)

φ (gcd(n, m))

for all n, m ∈ N.
The above Formula generalizes the multiplicativity of φ. So, one can have that

φ(2m) =

{
2φ(m) if m is even
φ(m) if m is odd

for all m ∈ N.
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We also obtain that

φ(nk) = nk−1φ(n)

for all n, k ∈ N.
Recall the Möbius inversion on A,

h = f ∗ 1⇐⇒ f = h ∗ µ

where µ is the arithmetic Möbius function (different from the Möbius functional in the incidence algebra
in Section 2.2), i.e.,

µ(n) =

{
(−1)ω(n) if ω(n) = Ω(n)

0 otherwise

for all n ∈ N, where

ω(n) = the number of “distinct” prime, as factors of n

and
Ω(n) = the number prime factors of n

for all n ∈ N.
It is well-known that

φ = 1 ∗ µ⇐⇒ 1 = φ ∗ µ.

3. Free Probability on Von Neumann Algebras L∞(Qp)

Let’s establish von Neumann algebras Mp induced by the p-adic number fields Qp, for primes p.
Since Qp is an unbounded Haar-measured non-Archimedean Banach field, for each fixed prime p,

we naturally obtain the corresponding von Neumann algebra L∞(Qp), induced by a Haar-measure space

Qp = (Qp, σ(Qp), ρp) (1)

where σ(Qp) means the σ-algebra of Qp, consisting of all ρp-measurable subsets of Qp.

Then there exists a natural linear functional, denoted by ϕp, on the von Neumann algebra Mp,
satisfying that

ϕp (χS) =

∫
Qp

χSdρp = ρp(S) (2)

for all S ∈ σ(Qp), where χS means the characteristic function of S.
I.e., one has a well-defined W ∗-probability space (Mp, ϕp), in terms of the integration ϕp.
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3.1. p-Adic Von Neumann Algebras Mp

Throughout this section, let’s fix a prime p. As a measure space, the field Qp has its corresponding
L2-Hilbert space Hp, defined by

Hp
def
= L2 (Qp, ρp) (3)

We call Hp, the p-adic Hilbert space. i.e., all elements of Hp are the square ρp-integrable functions
on Qp. Remark that all elements of Hp are the functions approximated by simple functions∑

S∈σ(Qp)

tSχS

with tS ∈ C (under limit), generated by characteristic functions χX

χX(x) =

{
1 if x ∈ X
0 otherwise

for all x ∈ Qp. So, one can understand each element f of Hp as an expression,

f =
∑

S∈σ(Qp)

tSχS (a finite or infinite sum)

The inner product, denoted by <,>p, on Hp is naturally defined by

< f1, f2 >p
def
=

∫
Qp

f1f2dρp

for all f1, f2 ∈ Hp, having the corresponding norm ‖.‖p on Hp,

‖f‖p
def
=
√
< f, f >p =

√∫
Qp

|f |2 dρp

for all f ∈ Hp. Thus, if f =
∑

S∈σ(Qp)

tSχS in Hp, then∫
Qp

fdρp =
∑

X∈σ(Qp)

tXρp(X)

Now, let L∞(Qp, ρp) be the L∞-Banach space, consisting of all essentially bounded functions on Qp.

Let’s now fix a function
h ∈ L∞ (Qp, ρp)

Similar to Hp-case, one can / may understand h as the approximation of simple functions, since

hf ∈ Hp, for all f ∈ Hp (4)

Moreover, one can define the vector multiplication on L∞(Qp, ρp) by the usual functional
multiplication. Then it is well-defined because h1, h2 ∈ L∞(Qp, ρp), then h1h2 ∈ L∞(Qp, ρp), too.
I.e., it becomes a well-defined von Neumann algebra over C. We denote this von Neumann algebra
by Mp. i.e.,

Mp
def
= L∞(Qp, ρp)

More precisely, all elements of Mp are understood as multiplication operators on Hp, by Equation (4).
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Definition 3.1. The von Neumann subalgebras Mp = L∞ (Qp, ρp) acting on Hp are called the p-adic
von Neumann algebras, for all primes p.

By locally compactness, and Hausdorff property of Qp, for any x ∈ Qp, there exist a ∈ Q, and n ∈ Z,
such that x ∈ a + pnUp (e.g., [21]). Therefore, we obtain the following result.

Proposition 3.1. Let χS be a characteristic function for S ∈ σ(Qp). Then there exist N ∈ N ∪ {∞},
and k1, ..., kN ∈ Z, r1, ..., rN ∈ (0, 1] in R, such that

∫
Qp

χSdρp =
N∑
j=1

rj

(
1

pkj
− 1

pkj+1

)
(5)

Proof. The detailed proof of Equation (5) can be found in [8].

The above Formula (5) characterizes the identically distributedness under the integral in Mp.

3.2. p-Prime W ∗-Probability Spaces (Mp, ϕp)

In this section, on the p-adic von Neumann algebras Mp = L∞(Qp, ρp) we define canonical linear
functionals ϕp, and establish corresponding W ∗-probability spaces (Mp, ϕp). Throughout this section,
we fix a prime p, and corresponding p-adic von Neumann algebra Mp, acting on the p-adic Hilbert space
Hp = L2(Qp, ρp).

Define a linear functional
ϕp : Mp → C

on the p-adic von Neumann algebra Mp by the integration,

ϕp(h)
def
=

∫
Qp

hdρp, for all h ∈ Qp (6)

Then the pair (Mp, ϕp) forms a well-defined W ∗-probability space in the sense of Section 2.2.

Definition 3.2. The W ∗-probability space (Mp, ϕp) of a p-adic von Neumann algebra Mp and a linear
functionals ϕp of Equation (6) is called the p-prime W ∗-probability spaces, for all primes p.

We concentrate on studying free-distributional data of characteristic functions χS, for S ∈ σ(Qp),

or simple functions
m∑
k=1

tkχSk
, with tk ∈ C, Sk ∈ σ(Qp)

for m ∈ N.

Proposition 3.2. Let S ∈ σ(Qp), and let χS ∈ (Mp, ϕp). Then

ϕp (χnS) =
N∑
j=1

rj

(
1

pkj
− 1

pkj+1

)
(7)

for some N ∈ N ∪ {∞}, where rj ∈ [0, 1] in R, kj ∈ Z, for j = 1, ..., N, for all n ∈ N.
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Proof. The Formula (7) is proven by Equation (5). The detailed proof can be found in [8,21].

The above Formula (7) shows not only free-moment computation for χS , but also the identically
free-distributedness of {χkS}∞k=1 in (Mp, ϕp), too.

More generally, one can obtain the following joint free moment computation formula.

Theorem 3.3. Let Sj ∈ σ(Qp), and let χSj
∈ (Mp, ϕp), for j = 1, ..., n, for n ∈ N. Let k1, ..., kn ∈ N,

and s1, ..., sn ∈ {1, ∗}. Then

ϕp
(
χk1s1S1

χk2s2S2
· · · χknsnSn

)
= ϕp

(
χ n
∩

i=1
Si

)
(8)

So, if the ρp-measurable subset S =
n
∩
i=1
Si and its corresponding free random variable χS satisfies

Equation (7), then

ϕp
(
χk1s1S1

χk2s2S2
· · · χknsnSn

)
=

N∑
j=1

rj

(
1

pkj
− 1

pkj + 1

)
(9)

Proof. The proofs of Equations (8) and (9) are by Equation (7) under linearity. See [8,21] for more
details.

4. Free Probability on A Determined by Primes

Let A be the arithmetic algebra consisting of all arithmetic functions under the usual functional
addition and convolution. In [9–12], we define the point-evaluation linear functionals gp on A,
determined by fixed primes p. As before, throughout this section, we fix a prime p.

Define a linear functional gp : A→ C by

gp(f) = f(p), for all f ∈ A (10)

as the point evaluation at p. It is a well-defined linear functional on A, inducing a (pure-algebraic)
free probability space (A, gp).

Definition 4.1. The pure-algebraic free probability space (A, gp) is said to be the arithmetic p-prime
probability space.

For convenience, we denote the n-th convolution

f ∗ · · · · · · ∗f︸ ︷︷ ︸
n-times

by f (n), for all n ∈ N.
For f1, f2 ∈ A, one can get that

gp (f1 ∗ f2) = f1(1)f2(p) + f1(p)f2(1)

= f1(1)gp(f2) + gp(f1)f2(1)
(11)



Mathematics 2015, 3 1109

Therefore, we can verify that the free-distributional data on A (for a fixed prime p) is determined by
quantities

{f(1), f(p) : f ∈ A}

(See [9])

Proposition 4.1. (See [9,10]) Let (A, gp) be the arithmetic p-prime probability space (A, gp).

gp
(
f (n)

)
= nf(1)n−1gp(f), for all n ∈ N, andf ∈ A (12)

For f1, ..., fn ∈ (A, gp), for n ∈ N, we have

gp

(
n

Π
j=1

fj

)
=

n∑
j=1

gp(fj)

(
Π

l 6=j∈{1,...,n}
fl(1)

)
(13)

For f1, ..., fn ∈ (A, gp), for n ∈ N, we have

k(p)
n (f1, ..., fn) =

∑
π∈NC(n)

(
Π
V ∈π

(∑
j∈V

gp(fj)

(
Π

l∈V \{j}
fl(1)

)
µ
(
0|V |, 1|V |

)))
(14)

where k(p)
n (...) means the free cumulant in terms of gp in the sense of Section 2.2.

The above Formulas (12)–(14) provide ways to consider free-distributional data on A, for a fixed
prime p. Again, they demonstrate that the quantities {f(1), f(p)}f∈A determine free distributions of
arithmetic functions in (A, gp). Also, the Formulas (13) and (14) provide equivalent free-distributional
data for f1, ..., fn (See Section 2.2, and [1]), under Möbius inversion (in the sense of Section 2.2).

By [9], we can define an equivalence relationRp on A by

f1Rpf2
def⇐⇒ (f1(1), f1(p)) = (f2(1), f2(p)) (15)

as pairs in the 2-dimensional C-vector space C2.

Construct now a quotient algebra A/Rp naturally. i.e., it is a set

{[f ]Rp : f ∈ A} (16)

where
[f ]Rp = {h ∈ A : fRph}, for all f ∈ A

Without loss of generality, we keep writing [f ]Rp simply by f in A/Rp.

We obtain the following classification theorem.

Theorem 4.2. (See [9]) Let (A, gp) be the arithmetic p-prime probability space. Then

A = t
(t1, t2)∈C2

[t1, t2] (17)

set-theoretically, where t means the disjoint union and
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[t1, t2] = {f ∈ A : f(1) = t1, f(p) = t2} (18)

for all (t1, t2) ∈ C2.

Clearly, one can inherit the linear functional gp on A to a linear functional, also denoted by gp, on
A/Rp, defined by

gp (f) = gp
(
[f ]Rp

)
= f(p) (19)

for all f = [f ]Rp ∈ A/Rp. Then, under the linear functional gp of Equation (19), the pair (A/Rp, gp)

forms a pure-algebraic free probability space, too.
As in [11,12], we put a suitable topology onA/Rp. By Equations (17) and (19), whenever we choose

an element f ∈ A/Rp, it is represented as a pair

(f(1), f(p)) of C2

Now, let’s define an indefinite inner product [, ] on C2 by

[(t1, t2), (s1, s2)] = t1s2 + t2s1 (20)

for all (t1, t2), (s1, s2) ∈ C2, and define the corresponding norm ‖.‖ by

‖(t1, t2)‖ =
√
|[(t1, t2), (t1, t2)]| =

√∣∣2 Ret1t2
∣∣ (21)

for all (t1, t2) ∈ C2, where |.| in the second equality means the modulus on C, and |.| in the third equality
means the absolute value on R.

Then the pair (C2, ‖.‖) is a well-defined Banach space, denoted by C2
A0
.

Notice that we may / can understand this Banach space C2
A0

as the 2-dimensional C-algebra C⊕2,

equipped with [, ] of Equation (22) and ‖.‖ of Equation (23), with its multiplication,

(t1, t2)(s1, s2) = (t1s1, t1s2 + t2s1) (22)

for all (t1, t2), (s1, s2) ∈C⊕2
A0
. The multiplication Equation (22) is a well-defined vector-multiplication

on C⊕2, by [11,12].
Notation. We denote such an algebra C⊕2 equipped with vector-multiplication Equation (22), with [, ]

of Equation (20) and ‖.‖ of Equation (21), by C2.

Define now a norm ‖.‖p on the quotient algebra A/Rp by

‖f‖p = ‖(f(1), f(p))‖ =

√∣∣∣2 Re
(
f(1)f(p)

)∣∣∣ (23)

for all f ∈ A/Rp, where ‖.‖ is the norm Equation (21) on C2.
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Then, under this norm ‖.‖p of Equation (23), the quotient algebraA/Rp is understood as a topological
space, moreover, embedded in the 2-dimensional C-algebra

C2 homeo
= C2

where homeo
= means “being homeomorphic.” i.e., C2 is a Banach algebra.

Theorem 4.3. The normed quotient algebra A/Rp = (A/Rp, ‖.‖p) is Banach-isomorphic to C2.

One can define a morphism

F : A/Rp → C2

by

F (f)
def
= (f(1), f(p)), for all f ∈ A/Rp. (24)

Then it is surjective, by Equation (17). And, again by Equation (17), it is injective. i.e., if

(f1(1), f1(p)) 6= (f2(1), f2(p)) in C⊕2

then f1 6= f2 inA/Rp, as equivalent classes in the sense of Equation (16). So, it is injective, too. i.e., F of
Equation (24) is a bijective morphism.

Now, let f1, f2 ∈ A/Rp, and t1, t2 ∈ C. Then

F (t1f1 + t2f2)

= ((t1f1 + t2f2)(1), (t1f1 + t2f2)(p))

= (t1f1(1), t1f1(p)) + (t2f2(1), t2f2(p))

= t1 (f1(1), f1(p)) + t2 (f2(1), f2(p))

= t1F (f1) + t2F (f2)

(25)

The identity Equation (25) guarantees the linearity of F.
Also, F satisfies that, for all f1, f2 ∈ A/Rp,

F (f1 ∗ f2) = (f1(1)f2(1), f1(1)f2(p) + f1(p)f2(1))

by Equation (11)
= (f1(1), f1(p))(f2(1), f2(p))

by the multiplication Equation (22) on

C⊕2
A0

= F (f1)F (f2) (26)

Thus, the morphism F is multiplicative, by Equation (26). So, by Equations (25) and (26),
the bijective morphism F is an algebra-isomorphism from A/Rp onto C2.

Furthermore, one has that
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‖F (f)‖ = ‖(f(1), f(p)‖ =

√∣∣∣2 Ref(1)f(p)
∣∣∣ = ‖f‖p (27)

for all f ∈ A/Rp. The relation Equation (27) shows that the algebra-isomorphism F is isometric.
i.e., it is a Banach-algebra isomorphism from A/Rp onto C2. It shows that the normed-algebra A/Rp is
isometrically isomorphic to the Banach algebra C2.

The above topological-algebraic characterization is motivated both by the set-theoretic classification
in [9] and by the Krein-space representations in [11,12].

Definition 4.2. We denote the Banach algebraA/Rp by Ap, and we call Ap, the p-prime Banach algebra.
Moreover, Ap is characterized by

Ap
Banach

= C2 (28)

by the above theorem.

Define now a linear functional π2 on C2 by

π2 ((t1, t2)) = t2, for all (t1, t2) ∈ C2 (29)

as a natural projection on C2. Then the pair (C2, π2) forms a Banach probability space (e.g., [12]).
Recall that two arbitrary free probability spaces (A1, ϕ1) and (A2, ϕ2) are said to be equivalent

(in the sense of Voiculescu), if (i) there exists an isomorphism h from A1 onto A2; and (ii) h satisfies that

ϕ2 (h(a)) = ϕ1(a), for all a ∈ A1

If A1 and A2 are topological algebras (or, topological ∗-algebras), then h of the condition (i) and
(ii) should be continuous (respectively, both continuous and preserving ∗-relation, h(a∗) = h(a)∗ in A2,

for all a ∈ A1, where (∗) here means adjoint).

Theorem 4.4. The Banach probability spaces (Ap, gp) and (C2, π2) are equivalent, i.e.,

(Ap, gp)
equivalent

= (C2, π2) (30)

Proof. By Equation (28) and by the above theorem, there exists a Banach-algebra isomorphism F of
Equation (24) from Ap onto C2. For any f ∈ Ap, we obtain that

π2 (F (f)) = π2 ((f(1), f(p))) = f(p) = gp(f)

for all f ∈ Ap.

The above equivalence Equation (30) shows that the study of free probability on Ap (or on A), for a
fixed prime p, is to investigate that on C2 under π2.

In [11,12], indeed, we showed that each element f ∈ Ap is understood as a Krein space operator Θf

on the Krein space C2
Ao
,
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Θf =

(
f(1) 0

f(p) f(1)

)
(31)

and
C2 Banach-∗

= C [{Θf : f ∈ Ap}]

Note here that

Θf1Θf2 = Θf1∗f2onC2
Ao
, for all f1, f2 ∈ Ap (32)

and

Θ∗f = Θf∗onC2
Ao
, for all f ∈ Ap (33)

(See [11,12]).

5. Euler Subalgebras Φp of p-Prime Banach Algebras Ap

In this section, we consider a certain subalgebra of our p-prime Banach algebra Ap, for a fixed prime p.
In Section 4, we showed that the Banach probability space (Ap, gp) is well-determined under quotient,
and it is equivalent to the 2-dimensional Banach probability space (C2, π2).

Let’s fix the Euler totient function φ in Ap (i.e., understand φ = [φ]Rp). Define now the subalgebra Φp

of Ap by the Banach subalgebra generated by φ. i.e.,

Φp
def
= C∗[{φ}] = C∗ [{φ}]

‖.‖pinAp (34)

where C∗[X] means that the subalgebra generated by X under (+) and (∗) in Ap, and Y
‖.‖p means the

‖.‖p-norm-closure of Y , where ‖.‖p is in the sense of Equation (25). Thus, by Equation (34), we have

Φp =

{
n∑
k=0

tkφ
(k)

∣∣∣∣∣ n ∈ N, tk ∈ C,
with identity, φ(0) = 1Ap

}
where 1Ap = 1A/Rp, where 1A is the identity element of A.

Definition 5.1. We call the subalgebra Φp of the p-prime Banach algebra Ap, the (p-prime) Euler
subalgebra of Ap.

Since (Ap, gp) and (C2, π2) are equivalent by Equation (30), under the subspace topology, the Euler
subalgebra Φp is a Banach subalgebra of C2.

Also, one can consider the adjoint (∗) on Φp as a unary operation on Φp such that(
n∑
k=0

tkφ
(k)

)∗
def
=

n∑
k=0

tkφ
(k) ∗

where z means the conjugate of z, for all z ∈ C. Note that, in fact,
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φ(k) ∗(m) = φ(k)(m), for all m ∈ N

for all k ∈ N 0 = N ∪ {0}, since φ (N) ⊆ N in R, i.e.,

φ(k) ∗ = φ(k), for all k ∈ N0

It shows that the adjoint (∗) is well-defined on Φp, and hence, the Euler subalgebra Φp is understood
as a Banach ∗-algebra. Remark that Φp is a ∗-subalgebra of the finite-dimensional algebra C2.

So, this Banach ∗-algebra Φp can be understood as a C∗-algebra or a von Neumann algebra, too, because
all topologies on an arbitrary finite-dimensional space are equivalent from each other.

Assumption. From now on, we understand our Euler subalgebra Φp as a von Neumann algebra acting
on C2

A0
.

Definition 5.2. The W ∗-probability space (Φp, gp) is called the (p-prime) Euler W ∗-probability space.

Observe that, for any n ∈ N, we have in general that

gp
(
φ(n)

)
= nφ(1)n−1φ(p)

by Equation (12). By the very definition of the Euler totient function φ,

φ(1) = 1, and φ(p) = p

(
1− 1

p

)
and hence, one can get that

gp(φ
(n)) = nφ(p) = np

(
1− 1

p

)
.

Therefore, one has that

gp
(
φ(n)

)
= np

(
1− 1

p

)
, for all n ∈ N (35)

The above Formula (35) not only provides a recursive formula to compute n-th free moments of φ,
but also shows that our linear functional gp is additive on Φp, in the sense that

gp
(
φ(n)

)
= gp(φ) + · · ·+ gp(φ)︸ ︷︷ ︸

n-times

= ngp(φ)

for all n ∈ N.
By applying Equation (35), we obtain the following general free-moment formula.

Theorem 5.1. Let T ∈ (Φp, gp) be a free random variable,

T =
N∑
j=1

tjφ
(nj), with tj ∈ C, nj ∈ N ∪ {0}

Then the n-th free moments of T are determined by



Mathematics 2015, 3 1115

gp
(
T (n)

)
= (gp (φ))

 ∑
(j1,...,jn)∈{1,...,N}n

(
n

Π
i=1
tji

)
(Σn

i=1nji)



= p

(
1− 1

p

) ∑
(j1,...,jn)∈{1,...,N}n

(
n

Π
i=1
tji

)
(Σn

i=1nji)


(36)

where T (n) = T∗ · · · ∗ T in Φp, for all n ∈ N.

Proof. The detailed proof is found in [9].

The above Formula (36) characterizes the free-distributional data on Φp. Also, the Formula (36) with
Formula (35) shows the free-momental data for T ∈ (Φp, gp) are determined by certain scalar-multiples of

gp(φ) = p

(
1− 1

p

)
The following corollary is the direct consequence of Formulas (35) and (36).
By Formula (36), we obtain the following proposition.

Proposition 5.2. For any n ∈ N, we have that

gp
(
φ(n)

)
= npk+1

(
1

pk
− 1

pk+1

)
(37)

for all k ∈ Z.

6. Free-Distributional Data on (Mp, ϕp) and (Φp, gp)

In this section, we consider identically free-distributedness on our two distinct free probability spaces
(Mp, ϕp) and (Φp, gp). By Sections 3–5, one can realize that

ϕp
(
χpkUp

)
=

1

pk
− 1

pk+1
=

1

npk+1
gp
(
φ(n)

)
for all k ∈ Z, and n ∈ N.

Proposition 6.1. (See [21]) Let S ∈ σ(Qp) and χS ∈ (Mp, ϕp). Then there exist N ∈ N ∪ {∞},
rj ∈ [0, 1] in R, and kj ∈ Z, for j = 1, ..., N, such that

gp (χnS) =
1

m

N∑
j=1

rj
pkj+1

gp
(
φ(m)

)
(38)

for all n, m ∈ N.

As the converse of Equation (38), one can have the following proposition, too.
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Proposition 6.2. (See [21]) For all m ∈ N, we have that

gp
(
φ(m)

)
= mpk+1ϕp

(
χ n
pkUp

)
(39)

for all n ∈ N.

Therefore, by Equations (38) and (39), we obtain the following theorem.

Theorem 6.3. Let T =
∑N

j=1 tj φ
(kj) ∈ (Φp, gp). Then there exist s1, ..., sN ∈ C, and

h =
N∑
j=1

sjχpkjUp
∈ (Mp, ϕp)

such that T and h are identically free-distributed, in the sense that

gp(T
(n)) = ϕp (hn) , for all n ∈ N (40)

Proof. Let T be given as above in (Φp, gp). Then, by Equations (38) and (39), T and

h =
N∑
j=1

sjχpkjUp

with
sj = tjmjp

kj+1 ∈ C, for all j = 1, ..., N

satisfy
gp(T ) = ϕp(h)

Also, for any n ∈ N,

gp(T
(n)) = ϕp(h

n)

by Equations (36) and (37). Therefore, two free random variables T ∈ (Φp, gp) and h ∈ (Mp, ϕp) are
identically free-distributed.

By the identically free-distributedness Equation (40), we obtain the following theorem, by Equation (38).

Theorem 6.4. Let h =
∑N

j=1 tj χSj
∈ (Mp, ϕp), with tj ∈ C, for N ∈ N. Then there exists T ∈ (Φp, gp)

such that h and T are identically free-distributed in the sense that

ϕp(h
n) = gp(T

(n)), for all n ∈ N (41)

Proof. Let h be given as above in (Mp, ϕp). Then, for each summand χSk
, there exist Nk ∈ N ∪ {∞},

rk:j ∈ [0, 1] in R, and kk:j ∈ Z, for j = 1, ..., Nk, such that χSk
and

hk =

Nk∑
j=1

rk:jχpkk:jUp
∈ (Mp, ϕp) (42)

are identically distributed in the sense of Equation (7), for k = 1, ..., Nk, for k = 1, ..., N.
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And each χ
p
kk:jUp

in the right-hand side of Equation (42) is identically free-distributed with
1

p
kk:j

φ ∈ (Φp, gp), by Equation (39). So, for hk of Equation (42) and

Tk =

Nk∑
j=1

rk:j

pkk:j
φ ∈ (Φp, gp) (43)

are identically free-distributed, by Equation (39). Equivalently, Tk and χSk
are identically free-distributed,

again by Equation (39), for all k = 1, ..., N. Thus, one can determine a free random variable,

T =
N∑
k=1

tkTk in (Φp, gp) (44)

where Tk are in the sense of Equation (43), such that

ϕp(h) = gp (T )

By Equations (36) and (37), we have

ϕp(h
n) = gp(T

(n)), for all n ∈ N

Therefore, there exists T ∈ (Φp, gp), such that h and T are identically free-distributed.

7. p-Adic W ∗-Dynamical Systems

Let’s now establish W ∗-dynamical systems on a fixed von Neumann algebra M, by acting the
σ-algebra σ(Qp) of the p-adic number field Qp. Throughout this section, we fix a von Neumann
subalgebra M acting on a Hilbert space H, and a prime p.

7.1. p-Adic Semigroup W ∗-Dynamical Systems

Now, let M be a fixed von Neumann algebra in the operator algebra B(H) on a Hilbert space H, and
Qp, a fixed p-adic number field, and let Mp = L∞(Qp, ρp) be the p-adic von Neumann algebra.

LetHp be the tensor product Hilbert space Hp ⊗H of the p-adic Hilbert space Hp = L2(Qp, ρp), and
the Hilbert space H where M acts, where ⊗ means the Hilbertian tensor product. i.e.,

Hp = Hp ⊗H

Define an action α of the σ-algebra σ(Qp) of Qp acting on M “in B(Hp)” by

α(S)(m)
def
= χSmχ

∗
S = χSmχS (45)

for all S ∈ σ(Qp), and m ∈M, in B(Hp), by understanding

χS = χS ⊗ 1M , and m = 1Mp ⊗m in B(Hp)
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where 1Qp is the identity map χQp on Qp, and 1M is the identity element of M . i.e., one can understand
α(S)(m) as compressions of m (on Hp), with respect to projections χS on Hp. Then α is an action on
M satisfying

alpha(S1 ∩ S2)(m) = χS1∩S2mχS1∩S2

= χS1χS2mχS1χS2 = χS1χS2mχS2χS1

= χS1 (α(S2)(m))χS1 = α(S1) (α(S2)(m))

= (α(S1) ◦ α(S2))(m)

for all m ∈M, and S1, S2 ∈ σ(Qp), i.e.,

α(S1 ∩ S2) = α(S1) ◦ α(S2), for all S1, S2 ∈ σ(Qp) (46)

Observe now that the algebraic structure (σ(Qp), ∩) forms a semigroup. Indeed, the intersection ∩ is
well-defined on σ(Qp), and it is associative,

S1 ∩ (S2 ∩ S3) = (S1 ∩ S2) ∩ S3

for Sj ∈ σ(Qp), for all j = 1, 2, 3. Moreover, this semigroup σ(Qp) contains Qp, acting as the
semigroup-identity satisfying that

S ∩Qp = S = Qp ∩ S

for all S ∈ σ(Qp), and hence, this semigroup σ(Qp) forms a monoid with its identity Qp.

Lemma 7.1. The action α of σ(Qp) in the sense of Equation (45) acting on a von Neumann algebra M
is a monoid action, and hence, the triple (M, σ(Qp), α) forms a monoid dynamical system.

Proof. The action α of Equation (45) is indeed a well-defined action acting on M , by Equation (46).
And, by the above discussion, σ(Qp) = (σ(Qp), ∩) forms a semigroup with the identity Qp. Moreover,

α(Qp)m = m, for all m ∈M

So, the triple (M, σ(Qp), α) forms a well-defined monoid dynamical system.

Recall that all elements f of the p-adic von Neumann algebra Mp is generated by the σ-algebra
σ(Qp) of Qp, in the sense that all elements f ∈Mp has its expression,

∑
S∈Supp(f)

tSχS. So, the action α

of Equation (45) can be extended to a linear morphism, also denoted by α, from Mp into B(Hp), acting
on M, with

alpha(f)(m) = α

( ∑
S∈Supp(f)

tSχS

)
(m)

oversetdef=
∑

S∈Supp(f)

tSα(S)(m) =
∑

S∈Supp(f)

tSχSmχS

(47)

for all f ∈Mp.
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Proposition 7.2. Let Mp be the p-prime von Neumann algebra, and letM be a von Neumann subalgebra
of B(H). Then there exists an action α of Mp acting on M in B(Hp).

Proof. It is proven by Equations (45) and (47).

Definition 7.1. Let σ(Qp) be the σ-algebra of the p-adic number field Qp, understood as a monoid
(σ(Qp), ∩), and let α be the monoid action of σ(Qp) on a von Neumann algebra M in the sense
of Equation (45). Then monoid dynamical system (M, σ(Qp), α) is called the p-adic(-monoidal)
W ∗-dynamical system. For a p-adic W ∗-dynamical system, define the crossed product algebra

Mp
def
= M ×α σ(Qp) (48)

by the von Neumann subalgebra of B(Hp) generated by M and χ (σ(Qp)) , satisfying Equation (47).
The von Neumann subalgebraMp of B(Hp) is called the p-adic dynamical W ∗-algebra induced by the
p-adic W ∗-dynamical system (M, σ(Qp), α).

Note that, all elements of the p-adic dynamical W ∗-algebraMp = M ×α σ(Qp) have their expressions,∑
S∈σQp)

mSχS, with mS ∈M

Define the support Supp(T ) of a fixed element T =
∑

S∈σ(Qp)

mS χS ofMp by

Supp(T )
def
= {S ∈ α(Qp) : mS 6= 0M} (49)

Now, let m1χS1 , m2χS2 ∈Mp, with m1, m2 ∈M, S1, S2 ∈ σ(Qp). Then

(m1χS1)(m2χS2) = m1χS1m2χS1χS2

= m1χS1m2χ
2
S1
χS2 = m1χS1m2χS1χS1χS2

since χS = 1M ⊗ χS (in B(Hp)) are projections (χ2
S = χS = χ∗S), for all S ∈ σ(Qp)

= m1αS1(m2)χS1χS2 = m1αS1(m2)χS1∩S2

Notation. For convenience, if there is no confusion, we denote αS(m) by mS, for all S ∈ σ(Qp),

and m ∈M.

I.e., we have

(m1χS1)(m2χS2) = m1m
S1
2 χS1∩S2 (50)

for mk χSk
∈Mp, for k = 1, 2.

Inductive to Equation (50), one has that

N

Π
j=1

(mjχSj
) = m1m

S1
2 m

S1∩S2
3 ...m

S1∩...∩SN−1

N χS1∩...∩SN

=

(
N

Π
j=1

m

j−1
∩

i=0
Si

j

)(
χ N
∩

j=1
Sj

) (51)
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for all N ∈ N. Also, we obtain that

(mχS)∗ = χSm
∗χSχS = (m∗)SχS (52)

for all m χS ∈Mp, with m ∈M, and S ∈ σ(Qp).

So, let

Tk =
∑

Sk∈Supp(Tk)

mSk
χSk
∈Mp, for k = 1, 2

where Supp(Tk) is in the sense of Equation (49). Then

T1T2 =
∑

(S1,S2)∈Supp(T1)×Supp(T2)

mS1χS1mS2χS2

=
∑

(S1,S2)∈Supp(T1)×Supp(T2)

mS1m
S1
S2
χS1∩S2

(53)

by Equation (51).
Also, if T =

∑
S∈Supp(T )

mSχS inMp, then

T ∗ =
∑

S∈Supp(T )

(m∗S)SχS (54)

by Equation (52).
By Equations (53) and (54), one can have that if

Tk =
∑

Sk∈Supp(Tk)

mSk
χSk
∈Mp, for k = 1, ..., n

for n ∈ N, then

T r11 T
r2
2 · · · T rnn =

n

Π
j=1

 ∑
Sj∈Supp(Tj)

[m
rj
Sj

]SjχSj


where

[m
rj
Sj

]Sj
def
=

{
mSj

if rj = 1

(m∗Sj
)Sj if rj = ∗

(55)

for j = 1, ..., n

=
∑

(S1,...,Sn)∈
n
Π

j=1
Supp(Tj)

(
n

Π
j=1

(
[m

rj
Sj

]SjχSj

))

=
∑

(S1,...,Sn)∈
n
Π

j=1
Supp(Tj)

((
n

Π
j=1

(
[m

rj
Sj

]Sj

)(j−1
∩

i=1
Si

))(
χ n
∩

j=1
Sj

))
, for all (r1, ..., rn) ∈ {1, ∗}n.

Lemma 7.3. Let Tk =
∑

Sk∈Supp(Tk)

mSk
χSk

be elements of the p-adic semigroup W ∗-algebraMp = M

×α σ(Qp) in B(Hp), for k = 1, ..., n, for n ∈ N. Then
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n

Π
j=1
T
rj
j =

∑
(S1,...,Sn)∈

n
Π

j=1
Supp(Tj)

((
n

Π
j=1

(
[m

rj
Sj

]Sj

)(j−1
∩

i=1
Si

))(
χ n
∩

j=1
Sj

))
(56)

for all r1, ..., rn ∈ {1, ∗}, where [m
rj
Sj

]Sj are in the sense of Equation (55).

The proof of the above lemma is by discussions of the very above paragraphs.

7.2. Structure Theorem of M ×α σ(Qp)

Let Mp = M ×α σ(Qp) be the p-adic W ∗-algebra induced by the p-adic W ∗-dynamical system
Q(M, p) = (M, σ(Qp), α). In this section, we consider a structure theorem for this crossed product von
Neumann algebraMp.

First, define the usual tensor product W ∗-subalgebra

M0 = M ⊗C Mp of B(Hp)

where Mp = L∞(Qp, ρp) is the p-prime von Neumann algebra in the sense of Section 7.1, and where
⊗C is the von Neumann algebraic tensor product over C. By definition, clearly, one can verify thatMp

is a W ∗-subalgebra ofM0 in B(Hp), i.e.,

Mp

Subalgebra
⊆ M0

Now, define the “conditional” tensor product W ∗-algebra

Mp
0 = M ⊗α Mp

induced by an action α of Mp acting on M (in the sense of Equation (48)), by a W ∗-subalgebra ofM0

dictated by the α-relations,

(m1 ⊗ χS1)(m2 ⊗ χS2) = (m1m
S1
2 )⊗ χS1χS2 (57)

and

(m⊗ χS)∗ = (m∗)S ⊗ χ∗S (58)

for all m1, m2, m ∈ M, and S1, S2, S ∈ σ(Qp). i.e., the W ∗-subalgebraMp
0 ofM0 satisfying the

α-relations, expressed by Equations (57) and (58), is the conditional tensor product W ∗-algebra M ⊗α
Mp.

Theorem 7.4. (See [8]) Let Mp = M ×α σ(Qp) be the p-adic W ∗-algebra induced by the p-adic
W ∗-dynamical systemQ(M, p), and letMp

0 =M ⊗α Mp be the conditional tensor productW ∗-algebra
ofM and the p-prime von Neumann algebra Mp satisfying the α-relations Equations (57) and (58). Then
these von Neumann algebrasMp andMp

0 are ∗-isomorphic in B(Hp), i.e.,

Mp = M ×α σ(Qp)
∗-iso
= M ⊗α Mp =Mp

0 (59)
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in B(Hp).

The above characterization Equation (59) shows that our p-adic dynamical W ∗-algebraMp = M ×α
σ(Qp) is ∗-isomorphic to the conditional tensor product W ∗-algebraMp

0 = M ⊗α Mp. So, from now
on, we identifyMp withMp

0.

8. Free Probability on p-Adic Dynamical W ∗-Algebras

In this section, we consider free probability on the p-adic dynamical W ∗-algebra

Mp = M ×α σ(Qp)

induced by the p-adic W ∗-dynamical system (M, σ(Qp), α).

By Equation (59), the von Neumann subalgebraMp is ∗-isomorphic to the conditional tensor product
W ∗-algebraMp

0 = M ⊗α Mp. So, throughout this section, we understandMp andMp
0 alternatively.

First, we assume that a fixed von Neumann algebra M is equipped with a well-defined linear
functional ψ on it. i.e., the pair (M, ψ) is a W ∗-probability space. Moreover, assume that the linear
functional ψ is unital on M, in the sense that

ψ(1M) = 1

for the identity element 1M of M.

By understandingMp asMp
0, we obtain a well-defined conditional expectation

Ep :Mp
0
∗-iso
= Mp →Mp (60)

where

Mp
def
= M ⊗α C [{χS : S ∈ σ(Qp), S ⊆ Up}]

where Up is the unit circle of Qp, satisfying that

Ep(mχS) = Ep(m⊗ χS)
def
= mχS∩Up

for all m ∈M, and S ∈ σ(Qp).

Remark that Mp of Equation (60) is indeed a well-determined W ∗-subalgebra of Mp (and hence,
that ofMp =Mp

0), because

Mp = χUpMpχUp

is the compressed W ∗-subalgebra of Mp.

Define now a morphism

Fp : Mp →Mp (61)

by a linear transformation satisfying that
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Fp (mχS) = m
(
rSχUp

)
for all mχS ∈Mp, where rS ∈ [0, 1] satisfies that∫

Qp

χSdρp = rS

∫
Qp

χUpdρp = rS

(
1− 1

p

)
(62)

by Equation (5). Of course, the morphism Fp can be directly defined by a linear morphism satisfying

Fp (mχS) = mχS∩Up

Then, by the identically-distributedness, there exists rS ∈ R, such that∫
Qp

χS∩Updρp = rS

∫
Qp

χUpdρp

and then define a linear functional

γ : Mp → C

by a linear functional onMp, satisfying that, for all m ∈M, and S ∈ σ(Qp),

γ
def
=

(
ψ ⊗

∫
Qp

• dρp

)
◦ Fp (63)

i.e., a linear functional satisfying that

γ (m ⊗ χS)
def
= ψ(m)

∫
Qp

(
rSχUp

)
dρp

= rSψ(m)
(

1− 1
p

)
where rS ∈ [0, 1] satisfies Equation (62).

And then define a linear functional

γp :Mp
∗-iso
= M0

p → C

by
γp = γ ◦ Ep (64)

where γ and Ep are in the sense of Equations (63) and (60), respectively. i.e., for all m ∈ M,

and S ∈ σ(Qp),

γp (m χS) = γ (Ep(m χS))

= γ
(
m χS∩Up)

)
= ψ(m)

∫
Qp

(
rS χUp

)
dρp

= rSψ(m)
(

1− 1
p

)
for some rS ∈ [0, 1], satisfying Equation (62). Then the pair (Mp, γp) is a W ∗-probability space.

Definition 8.1. The pair (Mp, γp) is called the p-adic dynamical W ∗-probability space.

The following lemma is obtained by the straightforward computations.
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Lemma 8.1. Let mχS be a free random variable in the p-adic dynamical W ∗-probability space
(Mp, γp), with m ∈M, and S ∈ σ(Qp). Then

γp ((mχS)n) = rSψ
(
m(mS)n−1

)(
1− 1

p

)
(65)

for all n ∈ N, where rS ∈ [0, 1] satisfies Equation (62).

Proof. The proof of Equation (65) is from straightforward computations, by Equations (51)
and (56).

More general to Equation (65), we obtain the following lemma.

Lemma 8.2. (See [8]) Let m1χS1 , ..., mnχSn be free random variables in the p-adic dynamical
W ∗-probability space (Mp, γp), with mk ∈ M, Sk ∈ σ(Qp), for k = 1, ..., n, for n ∈ N. Then there
exists r0 ∈ [0, 1], such that

γp

(
n

Π
j=1

mjχSj

)
= r0

(
ψ

(
N

Π
j=1

m

j−1
∩

i=0
Si

j

))(
1− 1

p

)
(66)

By Equations (65) and (66), we obtain the following free-distributional data of free random variables
of (Mp, γp).

Theorem 8.3. (See [8]) Let (Mp, γp) be the p-adic dynamical W ∗-probability space, and let

Tk =
∑

Sk∈Supp(Tk)

mSk
χSk

, for k = 1, ..., n

be free random variables in (Mp, γp), for n ∈ N. Then

γp

(
n

Π
j=1

T
rj
j

)
=

∑
(S1,...,Sn)∈

n
Π

j=1
Supp(Tj)

r(S1,...,Sn)

(
ψ

(
n

Π
j=1

(
[m

rj
Sj

]Sj

)(j−1
∩

i=1
Si

)))(
1− 1

p

)
(67)

where [m
rj
Sj

]Sj are in the sense of Equation (55), and r1, ..., rn ∈ {1, ∗}, and where r(S1,...,Sn) ∈ [0, 1]

satisfy Equation (62), for all (S1, ..., Sn).

Let (Mp, γp) be the p-adic dynamicalW ∗-probability space, and letm1χS1 , ...,mnχSn be free random
variables in it, for n ∈ N, where m1, ..., mn ∈M, and S1, ..., Sn ∈ σ(Qp). Then, we have

γp

(
n

Π
j=1

(
mjχSj

)rj) = γp

(
n

Π
j=1

[m
rj
j ]Sj χ n

∩
j=1

Sj

)
where [m

rj
j ]Sj are in the sense of Equation (55)

= r0

(
ψ

(
n

Π
j=1

(
[m

rj
j ]Sj

)n−1
∩

j=1
Sj

))(
1− 1

p

)
(68)

by Equation (67), where r0 ∈ [0, 1] satisfies Equation (62).
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So, one can obtain that

kn ((m1χS1)
r1 , ..., (mnχSn)rn) =

∑
π∈NC(n)

(γp)π
(
[mr1

1 ]S1χS1 , ..., [mrn
n ]SnχSn

)
µ(π, 1n)

=
∑

π∈NC(n)

(
Π
V ∈π

(γp)V
(
[mr1

1 ]S1χS1 , ..., [mrn
n ]SnχSn

)
µ
(
0|V |, 1|V |

))
by the Möbius inversion (See Section 2.2)

=
∑

π∈NC(n)

(
Π

V=(i1,...,ik)∈π
γp

(
[m

ri1
i1

]Si1χSi1
· · · [m

rik
ik

]SikχSik

)
µ (0k, 1k)

)

=
∑

π∈NC(n)

(
Π

V=(i1,...,ik)∈π

(
rV

(
ψ

(
k

Π
t=1

(
[m

rit
it

]Sit

)k−1
∩

t=1
Sit

))(
1− 1

p

))
µ (0k, 1k)

) (69)

by Equation (68), where rV ∈ [0, 1] satisfy Equation (62).
By Equation (69), we obtain the following inner free structure of the p-adic dynamical W ∗-algebra

Mp, with respect to γp.

Proposition 8.4. (See [8]) Let m1χS, and m2χS be free random variables in the p-adic dynamical
W ∗-probability space (Mp, γp), with m1, m2 ∈ M, and S ∈ σ(Qp) \ {∅}. Also, assume that S is not
measure-zero in σ(Qp). Then {m1, m

S
1 } and {m2, m

S
2 } are free in the W ∗-probability space (M, ψ),

if and only if m1χS and m2χS are free in (Mp, γp).

It is not difficult to check that if S ∩ Up = ∅, then the family

{mχS : m ∈M}

and
{mχY : m ∈M,Y ⊆ Upinσ(Qp)}

are free in (Mp, γp).

Proposition 8.5. Let S ∈ σ(Qp) such that S ∩ Up = ∅. Then the subsets

{mχS : m ∈M}

and
{mχY : m ∈M,Y ⊆ Upinσ(Qp)}

are free in (Mp, γp).

Proof. Let m1 χS and m2 χUp ∈ Mp, with m1, m2 ∈ M, and S ∈ σ(Qp). Assume that S ∩ Up is
empty. Since S ∩ Up = ∅, all mixed cumulants of m1χS and m2χUp have rV = 0, for some V ∈ π in
Equation (69), for all π ∈NC(n). Therefore, one obtains the following inner freeness condition of (Mp,

γp).

Motivated by the above proposition, we obtain the following general result.
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Theorem 8.6. Let S1 6= S2 ∈ σ(Qp) such that S1 ∩ S2 = ∅. Then the subsets {mχS1 : m ∈ M} and
{aχS2 : a ∈M} are free in (Mp, γp), i.e.,

S1 ∩ S2 = ∅ (70)

=⇒
{mχS1 : m ∈M}and{aχS2 : a ∈M} are free in (Mp, γp)

Proof. The proof is a little modification of the proof of the above proposition. Indeed, we can check that

S1 ∩ S2 = ∅ =⇒ (S1 ∩ Up) ∩ (S1 ∩ Up) = ∅

So, we can apply the above proposition.

9. Euler Subalgebras Φp on Certain Dynamical W ∗ -Probability Spaces

Throughout this section, fix a prime p, and let (Φp, gp) be the Euler probability space in the sense of
Section 5. Also, as in Sections 7 and 8, we fix an arbitrary W ∗-probability space (M, ψ), where M is a
von Neumann algebra in B(H). In particular, we will fix a unital linear functional ψ on M by

ψ(m)
def
= [m(1H), 1H ]H , for all m ∈M (71)

where [, ]H is the inner product of the Hilbert space H, where M acts, and 1H means the identity
element (or a vacuum vector) of H, satisfying

ξ1H = ξ = 1Hξ, for all ξ ∈ H

(i.e., we restrict our interests to the cases where M is a certain von Neumann algebra acting on H,

having its identity element 1H .)
In this section, we construct certain W ∗-dynamical systems induced by the Euler subalgebra Φp.

Recall that the close relations between (Φp, gp) and (Mp, gp) in Section 6.
As we have discussed in Section 4, each element f = [f ]Rp of Ap is understood as a Krein-space

operator Θf on the Krein space C2
Ao

(See Equation (33)),

Θf =

(
f(1) 0

f(p) f(1)

)
(72)

Recall that the Krein-space operators Θf satisfy Equations (32) and (33) on C2
Ao
.

Note that, if K is an arbitrary Krein space equipped with its indefinite inner product [, ], and H is an
arbitrary Hilbert space equipped with its (positive-definite) inner product <,>, the tensor product space
K⊗H becomes again a Krein space with its indefinite inner product [[, ]], defined by

[[a1 ⊗ b1, a2 ⊗ b2]] = ([a1, a1]) (< b1, b2 >) (73)

for all a1, a2 ∈ K, and b1, b2 ∈ H. Clearly, the inner product [[, ]] on K ⊗ H is indefinite, by the
indefiniteness of [, ] on K.
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Define now a Krein space

KH = C2
Ao
⊗H (74)

and construct the tensor product Banach ∗-algebra

Φp(M)
def
= Φp ⊗C M (75)

acting on KH of Equation (74). Note that, since Φp is a Banach ∗-algebra (on C2
Ao

), and M is a von
Neumann algebra (on H), the topological ∗-algebra Φp(M) is again a Banach ∗-algebra acting on KH ,

under product topology.

Definition 9.1. The Banach ∗-algebra Φp(M) of Equation (75) acting on the Krein space KH of
Equation (74) is called the M -(tensor-)Euler (Banach ∗-)algebra.

Let Φ p(M) = Φp⊗C M be the M -Euler algebra acting on the Krein space KH = C2
Ao
⊗H, having its

indefinite inner product [, ]p,H in the sense of Equation (73),

[f1 ⊗ x1, f2 ⊗ x2]p,H = ([f1, f2]p) ([x1, x2]H) (76)

for all fj ⊗ xj ∈ KH , for j = 1, 2, where [, ]p is the indefinite inner product on C2
Ao
, introduced

in [12], such that
[f1, f2]p

def
= gp (f1 ∗ f ∗2 ) , for all f1, f2 ∈ A

and where [, ]H is the inner product on the Hilbert space H, where M is acting.
Note that the Krein space KH has its identity vector

1p,M = 1C2
Ao
⊗ 1H (77)

where, in particular,
1C2

Ao
= (0, 1) = 1Ap

(See Section 2.3). Now, define a linear functional ψp,M on Φp(M) by the linear morphism
satisfying that

ψp:M (f ⊗m)
def
= [(Θf ⊗m) (1p,M), 1p,M ]p,H (78)

for all f ⊗m ∈ Φp(M), where 1p,M in Equation (78) is the identity vector of KH in the sense of Equation (77).

Observe the definition Equation (78) more in detail. For T = f ⊗m ∈ Φp(M),

ψp,M (T ) = [T (1p,M), 1p,M ]p,H
=
[
(Θf ⊗m)(1Ap ⊗ 1M), (1Ap ⊗ 1M)

]
p,H

by Equation (77)
=
[
Θf

(
1Ap

)
⊗m(1M),

(
1Ap ⊗ 1M

)]
p,H

=
[
f ⊗m(1M), 1Ap ⊗ 1M

]
p,H

=
(
[f, 1Ap ]p

)
([m(1M), 1M ]H)

=
(
gp

(
f ∗ 1∗Ap

))
(ψ(m)) = (gp(f)) (ψ(m))
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= f(p)ψ(m) (79)

Proposition 9.1. Let f ⊗m be an element of the M -Euler algebra Φp(M), for f ∈ Φp and m ∈ (M, ψ),

and let ψp,M be the linear functional in the sense of Equation (78) on Φp(M). Then

ψp,M(f ⊗m) = f(p)ψ(m) (80)

Proof. The proof of the Formula (80) is directly from Formula (79).

By Equations (79) and (80), one has that, for n ∈ N,

ψp,M
(
φ(n) ⊗m

)
= φ(n)(p)ψ(m)

= nφ(p)ψ(m) = np
(

1− 1
p

)
ψ(m)

for all m ∈M, since
φ(n)(p) = gp

(
φ(n)

)
= nφ(1)n−1φ(p) = nφ(p)

by Equation (12), for all n ∈ N.

Corollary 9.2. Let φ(n) ⊗m ∈ Φp(M), for n ∈ N. Then

ψp,M
(
φ(n) ⊗m

)
= np

(
1− 1

p

)
ψ(m) (81)

Definition 9.2. Let Φp(M) be the M -Euler algebra and let ψp,M be the linear functional on Φp(M)

in the sense of Equation (78). Then the Banach ∗-probability space (Φp(M), ψp,M) is called the
(Krein-space-representational) M -Euler (Banach-∗-)probability space.

By Equations (80) and (81) and the results of Section 6, we can find the relations between the
free probability on p-adic dynamical W ∗-probability spaces and the free probability on the M -Euler
probability spaces.

Theorem 9.3. Let (M, ψ) be an arbitrary W ∗-probability space in B(H), where ψ is the linear
functional on M in the sense of Equation (71), and assume that H has its identity element 1H .

Let (Φp(M), ψp,M) be the M -Euler probability space. Let f ⊗ m be an arbitrary free random
variable of (Φp(M), ψp,M) . Then there exists a free random variable T of the p-adic dynamical
W ∗-probability space

Mp = (M ×α σ(Qp), γp)

in the sense of Definition 8.1, such that

ψp,M(f ⊗m) = γp(T ) (82)

and the converse also holds true.
More precisely, if φ(n) ⊗m ∈ (Φp(M), ψp,M) , then there exists α (Up) (nm) ∈ (Mp, γp) , such that
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ψp,M
(
φ(n) ⊗m

)
= np

(
1− 1

p

)
ψ(m)

= γp
(
α
(
p−1Up

)
(nm)

) (83)

for all n ∈ N, and m ∈ (M, ψ). And the converse also holds true.

Proof. We will prove the relation Equation (83) first. Recall first that, by Equations (40) and (41),
if f ∈ (Mp, ϕp), then there exists h ∈ (Φp, gp), such that

ϕp(f) = gp(h)

and conversely, if h ∈ (Φp, gp), then there exists f ∈ (Mp, ϕp), such that

gp(h) = ϕp(f)

In particular, by Section 6, one has that

ϕp
(
χUp

)
=

∫
Qp

χUpdρp = 1− 1

p
= p−1 (p− 1) = p−1φ(p) (84)

by Equations (38) and (39).
So, if φ(n) ⊗m ∈ (Φp(M), ψp,M) , for n ∈ N, and m ∈ (M, ψ), then

ψp,M
(
φ(n) ⊗m

)
= p

(
1− 1

p

)
ψ(nm)

by Equation (81)
= γp

(
α(p−1Up)(nm)

)
by Equations (82), (83) and (84). Therefore, the relation Equation (83) holds true.

By Equation (83), and by the facts that (i) Φp is generated by {φ(n)}, and (ii) Mp is generated
by {χpkUp

}k∈Z, the relation Equation (82) holds true (under tensor-product structures under product
topology), by Equations (40) and (41).

The above characterization Equation (82) (with Equation (83)) characterizes the relation between
free probability on our M -Euler probability spaces (Φp(M), ψp,M) and free probability on our p-adic
dynamical W ∗-probability spaces (Mp, γp) , for fixed W ∗-probability spaces (M, ψ), where ψ is in the
sense of Equation (71).

Theorem 9.4. Let α(S)(m) = χSmχ
∗
S ∈ (Mp, γp), for S ∈ σ(Qp) and m ∈ (M, ψ), where ψ is in the

sense of Equation (71). Then there exist r0 ∈ R, such that

γp (α(S)(m)) = ψp,M (r0(φ⊗m)) (85)

for some φ ⊗m ∈ (Φp(M), ψp,M) .

More generally, if T ∈ (Mp, γp) , then there exists h ∈ (Φp(M), ψp,M) , such that

γp (T ) = ψp,M (h) (86)
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Proof. Recall that, if S ∈ σ(Qp), then there exist N ∈ N ∪ {∞}, and r1, ..., rN ∈ (0, 1] in R, and k1, ...,
kN ∈ Z, such that∫

Qp
χSdρp = ρp(S) =

∑N
j=1 rj

(
1

pkj
− 1

pkj+1

)
=
∑N

j=1 rjp
−kj
(

1− 1
p

)
=
∑N

j=1 rjp
−kj−1p

(
1− 1

p

)
=
∑N

j=1 rjp
−(kj+1)φ(p)

(87)

by Equations (40) and (41).
Observe now that, for α(S)(m) ∈ (Mp, γp) ,

γp (α(S)(m)) = (ψ(m))

(
N∑
j=1

rjp
−(kj+1)φ(p)

)
(88)

by Equation (87).
The Formula (88) shows that there exists r0 ∈ R, such that

γp (α(S)(m)) = (r0φ(p)) (ψ(m))

= r0 (gp(φ)ψ(m)) = r0ψp,M (φ⊗m)

where, in particular,

r0 =
N∑
j=1

rjp
−(kj+1)

where N, rj and kj are determined by Equation (87) and where r0 satisfies Equation (88).
By the Formula (84), the relation Equation (86) holds under linearity and topology.

The characterization Equation (84) (resp., Equation (86)) is in fact equivalent to Equation (83)
(resp., Equation (82)), providing equivalent relation between free probability on p-adic dynamical
W ∗-probability spaces and free probability on M -Euler probability spaces, whenever a fixed linear
functional ψ on M is in the sense of Equation (71).

In Section 10 below, we study special cases where a fixed von Neumann algebra M is a group von
Neumann algebra, and ψ is the canonical trace on M .

10. Application Over Group Von Neumann Algebras

In Section 9, we showed the connection between free probability on p-adic dynamicalW ∗-probability
spaces (Mp, γp), and free probability on M -Euler probability spaces (Φp(M), ψp,M) for fixed
W ∗-probability spaces (M, ψ), where, in particular, ψ is a linear functional in the sense of Equation (71)
on M.

LetG be a discrete group and letMG be the canonical group von Neumann algebra acting on the group
Hilbert space HG = l2(G), the l2-space generated by G, under the left-regular unitary representation
(HG, u), where u is the unitary action of G on HG, defined by
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(u(g)) (h)
denote

= ug(h)
def
= gh, for all h ∈ HG

satisfying

ug1ug2 = ug1g2 , andu
∗
g = ug−1 (89)

where g1g2 means the group product in G and g−1 means the group-inverse of g, for all g1, g2, g ∈ G.
So, indeed, each ug induces a unitary on HG,

u∗gug = ug−1ug = ug−1g = ueG
= 1HG

= ugg−1 = ugug−1

= ugu
∗
g

for all g ∈ G, where eG means the group-identity of G, and 1HG
means the identity element of HG.

Remark that the group Hilbert space HG has its orthonormal basis {ξg : g ∈ G} satisfying that

ξg1ξg2 = ξg1g2 , for all g1, g2 ∈ G

with the Hilbert-space identity element ξeG = 1HG
.

The inner product <,>G on HG satisfies

< ξg1 , ξg2 >G= δg1,g2 , for all g1, g2 ∈ G

where δ means the Kronecker delta.
The group von Neumann algebra MG has its canonical trace trG defined by

trG

(∑
g∈G

tgug

)
def
= teG

for all
∑
g∈G

tg ug ∈MG, with tg ∈ C.

The trace trG is a well-determined linear functional on MG, moreover, it satisfies

trG(a1a2) = trG(a2a1), for all a1, a2 ∈MG

and
trG(ueG) = 1

Definition 10.1. The W ∗-probability space (MG, trG) is called the (canonical) group W ∗-probability
space of G.

Remark that the trace trG is understood as

trG(a) =< aξeG , ξeG >G

where ξeG is the identity element 1HG
of HG.
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It shows that the trace trG of a given group W ∗-probability space (MG, trG) satisfies the condition
Equation (71) naturally. So, one can construct the MG-Euler probability space (Φp(MG), ψp,MG

) in the
sense of Definition 9.1. For convenience, we will denote

Φp(MG)
denote

= Φp,G and ψp,MG

denote
= ψp,G

We concentrate on computing free moments of generating elements φ(n)⊗ug of Φp,G in terms of ψp,G,
for all n ∈ N, g ∈ G. Again, for convenience, we denote

φ(n)
g

denote
= φ(n) ⊗ ug, for all n ∈ N, g ∈ G (90)

in (Φp,G, ψp,G).

Observe that
ψp,G

(
φ(n)
g

)
=
(
φ(n)(p)

)
(trG(ug))

by Equation (80)

= np

(
1− 1

p

)
trG(ug)

by Equation (81)

= δg,eGnp

(
1− 1

p

)
for all n ∈ N, g ∈ G. i.e.,

ψp,G
(
φ(n)
g

)
= δg,eGnp

(
1− 1

p

)
(91)

for all n ∈ N, g ∈ G.
Motivated by the above observation, we obtain the following proposition.

Proposition 10.1. Let φ(n)
g be the generating free random variables of the MG-Euler probability space

(Φp,G, ψp,G) in the sense of Equation (90), where MG is the group von Neumann algebra of a group G,
for all n ∈ N, g ∈ G. Then

ψp,G

((
φ(n)
g

)k)
= δgk,eGnkp

(
1− 1

p

)
(92)

for all k ∈ N.

Proof. Let n ∈ N, g ∈ G, and φ(n)
g , a corresponding generating element of (Φp,G, ψp,G) in the sense of

Equation (90). Then

ψp,G

((
φ

(n)
g

)k)
= ψp,G

((
φ(n) ⊗ ug

)k)
= ψp,G

φ(n) ∗ · · · · ∗φ(n)︸ ︷︷ ︸
k-times

⊗
ug · · · · · ug︸ ︷︷ ︸

k-times


= ψp,G

(
φ(nk) ⊗ ugk

)
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by Equation (89)

= ψp,G

(
φ

(nk)

gk

)
= δgk,eGnkp

(
1− 1

p

)
by Equation (91).

The free-moment computation Equation (92) provides the free-distributional data of generating
elements φ(n)

g of (Φp,G, ψp,G) .

By Equations (91) and (92), we obtain the following generalized result.

Theorem 10.2. Let φ(nj)
gj be distinct generating elements of theMG-Euler probability space (Φp,G, ψp,G)

of a group G, in the sense of Equation (90), for j = 1, ..., N, for N ∈ N. Then

ψp,G

(
N

Π
j=1

φ(nj)
gj

)
=

(
δ N

Π
j=1

gj , eG

)(
p

N∑
j=1

nj

)(
1− 1

p

)
(93)

Proof. Observe that

ψp,G

(
N

Π
j=1

φ
(nj)
gj

)
= ψp,G

((
φ(n1) ∗ · · · ∗ φ(nN )

)
⊗ (ug1 · · · ugN )

)
= ψp,G

(
φ(ΣN

j=1nj) ⊗ u N
Π

j=1
gj

)
= ψp,G

φ(ΣN
j=1nj)(
N
Π

j=1
gj

)


= δ N
Π

j=1
gj , eG

(
p
∑N

j=1 nj

)(
1− 1

p

)
by Equation (91).

Let φ(nj)
gj be given as in the above theorem in (Φp,G, ψp,G), for j = 1, ..., N, and let kp,Gn (...) means

the free cumulant in terms of ψp,G obtained by the Möbius inversion in the sense of Section 2.2. Then

kp,GN

(
φ

(n1)
g1 , φ

(n2)
g2 , ..., φ(nN )

gN

)
=

∑
π∈NC(N)

(
Π
V ∈π

ψp,G

(
Π
j∈V

φ
(nj)
gj

))
µ(π, 1N)

=
∑

π∈NC(N)

(
Π
V ∈π

((
δ Π
j∈V

gj , eG

)(
p
∑
j∈V

nj

)(
1− 1

p

)))
µ(π, 1N)

by Equation (93)

=
∑

π∈NC(N)

δπ
∑
π

(
p

(
1− 1

p

))|π|
µ(π, 1N)

where |π| means the number of blocks in the partition π, for all π ∈ NC(N), and where

δπ = Π
V ∈π

(
δ Π
j∈V

gj , eG

)
, for all π ∈ NC(N) (94)

and ∑
π

= Π
V ∈π

(∑
j∈V

nj

)
, for all π ∈ NC(N)
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Proposition 10.3. Let φ(nj)
gj be generating elements of (Φp,G, ψp,G) , for j = 1, ..., N, for N ∈ N. Then

kp,GN
(
φ(n1)
g1

, ..., φ(nN )
gN

)
=

∑
π∈NC(N)

δπ
∑
π

(
p(1− 1

p
)

)|π|
µ(π, 1N) (95)

where δπ and
∑

π are in the sense of Equation (94), for all π ∈ NC(N), for all N ∈ N.

In the Formula (95), note that

∑
π

= Π
V ∈π

(∑
j∈V

nj

)
≥ 1, and

(
p

(
1− 1

p

))|π|
≥ 1 (96)

since nj ∈ N, for all j = 1, ..., N, and since V 6= ∅, for all V ∈ π, for all π ∈ NC(N), for N ∈ N.
Now, we define positive quantities θπ by

θπ
def
=
∑
π

(
p(1− 1

p
)

)|π|
≥ 1 (97)

for all π ∈ NC(N), for all N ∈ N, where
∑

π is determined by Equation (95), satisfying
Equation (96).

Then the Formula (95) can be re-written by

kp,GN
(
φ(n1)
g1

, ..., φ(nN )
gN

)
=

∑
π∈NC(n)

δπθπµ(π, 1N) (98)

by Equation (97).
Now, let φ(n1)

g1 and φ
(n2)
g2 be fixed two distinct generating free random variables in the MG-Euler

probability space (Φp,G, ψp,G) for a group G, as in Equation (90). Then, for any “mixed” n-tuples

(i1, ..., in) ∈ {1, 2}n, for n ∈ N \ {1}, we have the mixed free cumulants of φ(n1)
g1 ,

(
φ

(n1)
g1

)∗
, φ

(n1)
g2 and(

φ
(n2)
g2

)∗
as follows,

kp,Gn

(
φ

(ni1
)

g
ri1
i1

, ..., φ(nin )

g
rin
in

)
=

∑
π∈NC({i1,...,in})

δπθπµ(π, 1n) (99)

by Equations (95) and (98), for (ri1 , ..., rin) ∈ {1, −1}n, where δπ are in the sense of Equation (94),
and θπ are in the sense of Equation (97), for all π ∈ NC(n). Remark that

(
φ(n)
g

)∗
=
(
φ(n) ⊗ ug

)∗
= φ(n)∗ ⊗ ug−1 = φ(n) ⊗ ug−1 = φ

(n)

g−1

for all n ∈ N, g ∈ G. So, the mixed free cumulants of

{φ(n1)
g1

,
(
φ(n1)
g1

)∗
, φ(n1)

g2

(
φ(n2)
g2

)∗}
are indeed determined by Equation (99).

Consider further that, if noncrossing partitions π1 and π2 have different numbers of blocks in
NC(n), then

θπ1 6= θπ2 in N
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by the inequality of Equation (97).
So, to make the sum Equation (99) be vanishing, in general,

δπ = 0, orδπθπ = 1, for all π ∈ NC(n) (100)

by Equation (99). Indeed, if δπ = 0, for all π ∈ NC(n), then definitely, the right-hand side of
Equation (99) vanishes. And if δπθπ = 1, then the right-hand side of Equation (99) becomes

∑
π∈NC(n)

µ(π, 1n) = 0

However, note that, by Equations (96) and (97),

θπ > 1, in general, whenever n > 2, in Equation (99) (101a)

and hence, in general,

δπθπ 6= 1 (101b)

Moreover, by the very definition,

θπ1 6= θπ2 ⇐⇒ π1 6= π2 (102)

By Equations (101a) and (101b) the condition Equation (100) can be re-written by that “in general,”
δπ = 0. i.e., to vanish the Formula (99), we in general have to have δπ = 0. Recall, by Equation (94), that

δπ = Π
V ∈π

δ
Π

ij∈V
g
ri1
ij

, eG
, in Equation (99)

for all π ∈ NC(n). So, to satisfy δπ = 0, for all π ∈ NC(n), for all n ∈ N \ {1}

δ m
Π

j=1
g
rij
ij

, eG
= 0

for all m ∈ N \ {1}, for all mixed m-tuples (i1, ..., im) ∈ {1, 2}m and (ri1 , ..., rim) ∈ {1, −1}m,
equivalently,

m

Π
j=1
g
rij
ij
6= eG in G

where (i1, ..., im) ∈ {1, 2}, and (ri1 , ..., rim) ∈ {1, −1} are “mixed,” for m ∈ N \ {1}.
By the above observation, one can get the following refined result of Equation (95), equivalently

Equation (99).

Proposition 10.4. Let Tj = φ
(nj)
gj ∈ (Φp,G, ψp,G) be in the sense of Equation (90), for j = 1, ..., N, for

N ∈ N. Then

kkp,GN (T1, ..., TN) =


∑

π∈NC(T1,...,TN )

θπµ(π, 1N) if N is even

0 if N is odd

(103)
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where

NC(T1, ..., TN) = {π ∈ NC(N) |δπ 6= 0}

whenever N is even.

Proof. The proof is done by Equations (95), (99) and (100).

Moreover, by Equation (103), we obtain the following corollary.

Corollary 10.5. Let Tj = φ
(nj)
gj ∈ (Φp,G, ψp,G) be in the sense of Equation (90), for j = 1, 2, and let

(Si1 , ..., Si2n) be a “mixed” 2n-tuple of {T1, T
∗
1 , T2, T

∗
2 }. Then

kp,G2n (Si1 , ..., Si2n) =
∑

π∈NC(Si1
, ..., Si2n

)

θπµ(π, 12n) (104)

where θπ are in the sense of Equation (97), and

NC(Si1 , ..., Si2n) =

π ∈ NCE({i1, ..., i2n})

∣∣∣∣∣∣∣∣∣
∀V ∈ π, V contains the

same number of T1 and T ∗1 ,
“or” the same number of

T2 and T ∗2 in it


where

NCE(2n)
def
= {π ∈ NC(2n) : ∀V ∈ π, |V | ∈ 2N}

Proof. The proof of Equation (104) is from Equation (103).

The above Formulas Equations (93), (95), (103) and (104) provide equivalent joint free-distributional
data for free random variables Tj = φ

(nj)
gj and T ∗j , for j = 1, ..., n, for n ∈ N.

Observation The Formulas (93), (95), (103) and (104) also provide equivalent free-distributional
data of certain free random variables for p-adic dynamical W ∗-algebras by Sections 6–9.
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