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1. Introduction

While in standard probability spaces, the random variables are functions (measurable with respect
to a prescribed o-algebra), and hence their analysis entails only abelian algebras of functions.
By contrast, in free probability, one studies (both) noncommutative (and commutative) random variables
(on algebras) in terms of fixed linear functionals. In the classical case, independence is fundamental,
and we get the notion of products of probability spaces. The analogous concept in the noncommutative
setting is freeness and free products. Freeness (or free independence) is then studied in connected with
free products. The free probability theory was pioneered by D. Voiculescu (e.g., [1,2]) and motivated
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by a question in von Neumann algebra (alias ¥ *-algebra) theory, the free-group factors isomorphism
problem (e.g., [2,3]). There has been a recent renewed interest in analysis on free probability spaces,
especially in connection with free random processes (e.g., [4,5])

In this paper, we consider connections between the two independent free-probabilistic models induced
from number-theoretic objects, (i) free probability spaces (91,, ¢,) of the von Neumann algebras
2N, generated by p-adic number fields Q, and the corresponding integrations ¢, on 9, (e.g., [6—8])
and (ii) free probability spaces (A, g,) of the algebra A consisting of all arithmetic functions, equipped
with the usual functional addition (+) and the convolution (x), and the point-evaluation linear functionals
gp on A, for all primes p (e.g., [9-12]). And we apply such relations to study ¥ *-dynamical systems
induced by Q, (e.g., [9]).

In particular, for the later models (ii), we construct free-probabilistic sub-structures (P, g,) of
(A, g,) (under suitable quotient) for primes p. Here, ®,, is an subalgebra of .4 (under quotient) generated
by the Euler totient function ¢ € A, defined by

kE<n
,n)=1

{kGN
forall n € N.

The main purpose of this paper is to show the free probability on W *-dynamical systems induced by

1
gcd

def

¢(n) =

= IA

Q, is related to the free probability on the corresponding 11/ *-dynamical systems acted by ®,,. Our results
not only relate the calculus on Q, with the free probability on @, (Also, see [9]), but also provide better
tools for studying non-Archimedean p-adic (or Adelic) dynamical systems.

We considered how primes (or prime numbers) act on operator algebras, in particular, on von
Neumann algebras. The relations between primes and operator algebra theory have been studied in
various different approaches. For instance, in [11], we studied how primes act “on” certain von Neumann
algebras generated by p-adic and Adelic measure spaces. Also, the primes as operators in certain von
Neumann algebras, have been studied in [8].

The main results deal with explicit computations for our free-dynamical systems in Sections 5 and 6,
and structure theorems in Sections 8-10. The first four sections deal with some preliminaries
(free probability systems generated by arithmetic functions, and their prime components), which we
need in the proofs of main results (Theorems 5.1, 6.3, 8.6, 9.3, 9.4, and 10.2).

We address-and-summarize the main theorems, (i) in a given free probability space, either global,
or one of the prime factors, how do we identify mutually free sub-systems? See, for example, Theorem 8.6;
and (i1) how do our global systems factor in terms of the prime free probability spaces? See especially
Theorem 9.3; and (iii) how do we apply the above results from (i) and (i1), see Theorem 10.2.

Independently, in [9,10], we have studied primes as linear functionals acting on arithmetic functions.
i.e., each prime p induces a free-probabilistic structure (A, g,) on arithmetic functions A. In such
a case, one can understand arithmetic functions as Krein-space operators, via certain representations
(See [11,12)).

These studies are all motivated by well-known number-theoretic results (e.g., [13—17]) with help of
free probability techniques (e.g., [8,11,12]).

In modern number theory and its application, p-adic analysis provides an important tool for studying

geometry at small distance (e.g., [18]). it is not only interested in various mathematical fields but also
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in related scientific fields (e.g., [11,12,15,19]). The p-adic number fields Q, and the Adele ring Ag play
key roles in modern number theory, analytic number theory, L-function theory, and algebraic geometry
(e.g., [9,19,20]).

In earlier papers [11,12], the authors studied harmonic analysis of arithmetic functions, leading
to free probability spaces (A, g,) indexed by the prime numbers p. In [21], we considered von
Neumann algebras L>°(Q,) induced by p-adic number fields QQ,, and realized the connection between
non-Archimedean calculus on L>°(Q,,) and free probability on (.4, g,), liked via Euler totient function ¢.
The purpose of the present paper is to enlarge such connections between them, and apply such
connections to non-Archimedean p-adic or Adelic dynamical systems.

In [8], the first-named author constructed ¥ *-dynamical systems induced by Q,,, by understanding the
o-algebra 0(Q,) as a semigroup (c(Q,), N) under set-intersection N. By acting this semigroup o(Q,)
on an arbitrary von Neumann algebra M via a semigroup-action «, one can establish a I//*-dynamical
system (0(Q,), M, «). Then the corresponding crossed product algebra M x, o(Q,) is constructed and
it is *-isomorphic to the conditional tensor product algebra M ®, L>(Q,). The free probability on such
von Neumann algebras was studied in [8].

In [21], the author and Jorgensen considered the connection between calculus (in particular,
integration) on L>°(Q,) and free probability on ®, (inherited from the free probability on A under
the linear functional g,). We realized that, for any f € L>(Q,), there exists h € ®, (under quotient),
such that

fdpp = gp(h)
Q

and vice versa.

We here apply the results of [21] to the study of W *-dynamical systems.

In Section 2, we introduce basic concepts for the paper. In Sections 3—-6, we briefly consider main
results of [8]. The main results of [21] are reviewed in Sections 7 and 8. In Sections 9 and 10,
we re-construct free probability on the W *-dynamical systems induced by @Q,, in terms of /' *-dynamical

systems induced by ®,,.

2. Definitions and Background

For related themes from W *-Dynamical Systems, see [22]. For useful themes from harmonic analysis
of number fields, both commutative and noncommutative, see [23-26]. Some related themes from
mathematical physics are found in [17,27,28].

In this section, we introduce basic definitions and backgrounds of the paper.

2.1. p-Adic Number Fields Q,,

Throughout this section, let p be a fixed prime, and let Q, be the p-adic number field for p. This set
Q, is by definition the completion of the rational numbers (Q with respect to the p-adic norm
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for g = pk% € Q, for some k € Z. Remark here that the norm |.|p satisfies that

’ql + q2|p S ma’X{|q1|p ? |q2|p}

and hence, it is non-Archimedean. The topology for QQ, is induced by the non-Archimedean metric d,
induced by the p-adic norm |.|,

dp(QlaQ2) = |Q1 - QQ’p

forall 1, g € Q
Under topology, @, is locally compact and totally disconnected as a topological space, and contains
a maximal compact subring,

Z,={reQ: ||, <1)

We call Z,, the unit disk of Q,, and all elements of Z,, are said to be the p-adic integers in Q,,. The unit
disk Z,, as an algebraic object, is a discrete valuation ring, in the sense that: it is a principal ideal domain
with a unique non-zero prime ideal (generated by p). The ideal (p) is also a maximal ideal, and hence,
the quotient

Z,/(p) = L[y

forms a field, called the residue field of Z,. Similarly, one can verify that
7, (") "L Z/p*Z, for k € N

Using powers of the ideal (p), we obtain a particularly nice description for the topology of Q,. It has

neighborhood bases of zero consisting of the compact open (additive) subgroups
P2, ={pfr .z €Z,}, forkeZ

In fact, set-theoretically, one has

= Uphz
Q ez P

In other words, if we consider Q,, as an additive group, then it is locally profinite.

Recall that an arbitrary group is called profinite, if it is both locally profinite and compact. So, the unit
disk Z, of Q, is profinite, since Q, is locally profinite and Z, is compact in Q,,.

Recall also that any profinite group can be realized as the inverse limit of finite groups. Since Z,, is
compact and has a neighborhood base of zero consisting of compact open subgroups obtained by taking
k to be a natural number above, there exists an isomorphism ¢,

¢ Ly = lim (2, / (p)) = lim (Z / p"Z)
such that
p(z) = (zmod(p*))ren

for all z € Z,,. This inverse limit runs over finite groups since
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Zy/(p*) = Z/p"Z
are finite groups, for any k£ € N.

For a fixed prime p, note that the unit disk Z, of Q, is then a compact group with the induced
(+)-operation on Q,, passed to the projective limit. Hence, Z, has a unique normalized Haar measure
Pp. satisfying

pp(Lp) =1
and
pp(x +5) = pp(S + x) = pp(A)
for all Borel subsets S C Z,,, and x € Z,. Here,

r+S={r+a:a€S}

where (+) is the p-adic addition on Z,, (inherited from that on Q,).
One can check that the dual character group 7, of Z.,,

Z,= Up*Z
P kLeJNp
and it is an injective limit of the group inducing
p—k’Z N p—(k-i-l)Z
So, there is an associated Fourier transform
IS LQ(Zpapp> — f € l2(Z;)

such that
for = | <easraidn)

ZP
for all £ € Z;. Moreover, we have

> [fie) = [ 1ran

¢ezs

The boundary U, of the unit disk Z,, is defined by
Up = Zy \ PZy
We call U, the unit circle of Q.

Under the Haar measure p, on Q,, we have

1
pp (a+*Z,) = p, (V"Z,) = o
and
py (a+p"U,) = p, (p"U,) SR (1—1>
» P » P) Tk T e »

for all a € Q,, and for all k¥ € Z, where

p"X = {pFz : x € X}, for all subsets X of Q,
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2.2. Free Probability

In this section, we briefly introduce free probability. Free probability is one of a main branch
of operator algebra theory, establishing noncommutative probability theory on noncommutative
(and hence, on commutative) algebras (e.g., pure algebraic algebras, topological algebras, topological
x-algebras, efc.).

Let 2 be an arbitrary algebra over the complex numbers C, and let ¢/ : 2l — C be a linear functional
on 2. Then the pair (2, 1) is called a free probability space (over C). All operators a € (2, ¢)) are
called free random variables. Remark that free probability spaces are dependent upon the choice of
linear functionals.

Let ay, ..., as be a free random variable in a (2, ¢), for s € N. The free moments of ay, ..., as are

determined by the quantities
w(ail .. .CL,L'n)

for all (i1, ..., i) € {1, ..., s}", foralln € N
and the free cumulants k,(a;,, ..., a;,) of ai, ..., as is determined by the Mébius inversion,

kn(iy, wmai,) = > glaiy, . a;,)pu(r,1y,)
TeNC(n)

= > (H v (@i, s i)t (O, 1V))
TENC(n) \VET

for all (i1, ..., i) € {1, ..., s}", for all n € N, where 1,.(...) means the partition-depending moments, and

Yy (...) means the block-depending moment, for example, if
mo = {(1,5,7),(2,3,4),(6)} in NC(7)
with three blocks (1, 5, 7), (2, 3, 4), and (6), then

Uro (@', s all) = vYasmall, ... a )bz (al, .., a e (all, ..., a7

= Ylai; i ai) )P(ag;aija;} ) agg)
Here, the set NC'(n) means the noncrossing partition set over {1, ..., n}, which is a lattice with the

inclusion <, such that
0<r&LvweoaBer st., VCB

where V' € 0 or B € m means that V' is a block of 0, respectively, B is a block of m, and C means
the usual set inclusion, having its minimal element 0,, = {(1), (2), ..., (n)}, and its maximal element
L, ={(1,...n)}

Especially, a partition-depending free moment . (a, ..., a) is determined by

Ue(a,...;a) = I 9 (a\V|)

Ver

where |V/| means the cardinality of V.
Also, p is the Mobius functional from NC x NC'into C, where NC' = OL<J)1 NC(n). ie., it satisfies that

n=

w(m,0) =0, forall m > dinNC(n)
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and
(0, 1,,) = (_1)71710”71’ and Z p(m, 1,) =0
)

TeNC(n

o1 (21 @k
AR P U A B A AT

means the k-th Catalan numbers, for all k € N. Notice that since each NC'(n) is a well-defined lattice,

for all n € N, where

if 1 < 0 are given in NC'(n), one can decide the “interval”
[m,0] = {0 € NC(n):7m < <0}
and it is always lattice-isomorphic to
[7,0] = NC(1)" x NC(2)* x ... x NCO(n)*»

for some ki, ..., k, € N, where NC(I)** means “I blocks of 7 generates &, blocks of 0,” for k; € {0, 1,
..., n}, for all n € N. By the multiplicativity of ;. on NC(n), for all n € N, if an interval [, 8] in NC(n)
satisfies the above set-product relation, then we have

plm,0) = IL (05, 1;)"

(For details, see [11,12]).
By the very definition of free cumulants, one can get the following equivalent M6bius inversion,

w (ailaiQ ain) = Z kﬂ- (ail, veey CLin)

TeNC(n)

where k. (a;,, ..., a;, ) means the partition-depending free cumulant, for all (a;,, ..., a;,) € {aq, ..., as}",
for n € N, where a4, ..., a5 € (A, ©), for s € N. Under the same example,

mo = {(1,5,7),(2,3,4),(6)} in NC(7)
we have

kﬂo (Cbl‘l, ceey (li7) = ]{?(17577) (ail, ceey ai7) k)(27374) (ail, veey (li7) ]{?(6) (ai1> ceey CLZ‘7)
= k3 (ai17 Qi ai7) k?) (CLZ‘2, Qig, ai4) 3} (aiG)

In fact, the free moments of free random variables and the free cumulants of them provide equivalent
free distributional data. For example, if a free random variable a in (2, v) is a self-adjoint operator
in the von Neumann algebra 2( in the sense that a* = a, then both free moments {t/(a")}>°, and free
cumulants {k,(a, ..., a)}°°, give its spectral distributional data.

However, their uses are different case-by-case. For instance, to study the free distribution of fixed free
random variables, the computation and investigation of free moments is better, and to study the freeness
of distinct free random variables in the structures, the computation and observation of free cumulants is
better (See [12]).
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Definition 2.1. We say two subalgebras A, and As of U are free in (A, 1), if all “mixed” free cumulants
of Ay and A vanish.. Similarly, two subsets X1 and X5 of 2 are free in (2, ), if two subalgebras A,
and A,y, generated by X, and X5 respectively, are free in (2, V). Two free random variables =1 and x-
are free in (2, ), if {z1} and {x2} are free in (2, ).

Suppose A; and A, are free subalgebras in (2, ¢/). Then the subalgebra A generated both by these
free subalgebras A; and A, is denoted by

denote
A= Al *C A2

Inductively, assume that 2 is generated by its family {A;},cn of subalgebras, and suppose the
subalgebras A; are free from each other in (2, ©), for i € A. Then we call 2, the free product algebra of
{A;}ien (With respect to 1), i.e.,

Ql - *(C AZ
1€EA

is the free product algebra of { A4;};ca (with respect to ).

In the above text, we concentrated on the cases where (A, 1) is a “pure-algebraic” free probability
space. Of course, one can take A as a topological algebra, for instance, A can be a Banach algebra.
In such a case, ¢ is usually taken as a “bounded (or continuous)” linear functional (under topology).

Similarly, A can be taken as a x-algebra, where (x) means here the adjoint on A, satisfying that

a*™ = a, foralla € A
(a1 + ag)* = GT + CL;

(a102)" = ajaj
for all ay, as € A. Then we put an additional condition on 1), called the (x)-relation on 1),
Y(a*) =1(a), foralla € A

where Z means the conjugate of z, for all z € C.

Finally, the algebra A can be taken as a topological *-algebra, for example, a C*-algebra or a von
Neumann algebra. Then usually we take a linear functional 9 satisfying both the boundedness and the
(*)-relation on it.

In the following, to distinguish the differences, we will use the following terms.

(i) If A is a Banach algebra and if ¢ is bounded, then (A, 1) is said to be a Banach probability space.
(ii) If Ais a x-algebra and if 1 satisfies the (x)-relation, then (A, 1) is called a x-probability space.
(iii) If A is a C*-algebra and if ¢ is bounded with (x)-relation, then (A, ¢) is a C*-probability space.
(iv) If A is a von Neumann algebra and if ¢ is bounded with (x)-relation, then (A, ) is a
W*-probability space.
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2.3. The Arithmetic Algebra A

In this section, we introduce an algebra A, consisting of all arithmetic functions. Recall that an

arithmetic function f is nothing but a C-valued function whose domain is N. i.e.,
A={f:N— C: fisafunction}

set-theoretically. It is easy to check that A forms a vector space over C. Indeed, the functional addition
(+) is well-defined on A, since f + h is a well-defined arithmetic function whenever f and h are
arithmetic functions, and the scalar product is well-defined on A, because r f is a well-defined arithmetic
function whenever f is an arithmetic function and r € C.

Moreover, one can define the convolution (x) on .4 by

fram Y p@n(5) = Y fdh(d)

d|n dy1,d2€N s.t., n=d1da

for all n € N, for all f, h € A, where “d | n” means “d is a divisor of n,” or “d divides n,” or “n is
divisible by d,” for d, n € N.
Then f % h € A, too. Also, we have that

fix(fot+ fa)=fixfat fixfs

and

(it fa)*xfa=fixfa+ faxfs
for all f17 f27 f3 GA'

Thus, equipped with this vector multiplication (x) on .4, the vector space .A forms an algebra over C.
Definition 2.2. The algebra A = (A, +, x) over C is called the arithmetic algebra.

This algebra A has its (4)-identity 0 4, the arithmetic function,
04(n) =0, foralln € N

and the (x)-identity 1 4, the arithmetic function,

1A(n):{ 1 ifn=1

0 otherwise

for all n € N.
Note the difference between the constant arithmetic function 1 and the (x)-identity 1 4,

I(n) =1, foralln € N
It is not difficult to check that, in fact, the algebra .4 is commutative under (%), i.e.,

fxh=hxf forall f,he A
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2.4. The Euler Totient Function ¢

In this section, we consider a special element, the Euler totient function ¢ of the arithmetic algebra A.

<k<
ken| ISEsSm®
ged(k, n) =1

where ged(ny, ny) means the greatest common divisor of ny and ns, for all ny, ny € N. This function ¢

Let ¢ be an arithmetic function,

def

¢(n) =

is a well-defined arithmetic function, as an element of A.
Definition 2.3. The above arithmetic function ¢ is called the Euler totient function in A.

The Euler totient function ¢ is so famous, important, and applicable in both classical and modern
number theory that we cannot help emphasizing the importance of this function not only in mathematics
but also in other scientific areas (e.g., [4,5,22,23,29]).

For any fixed prime p, and k& € N, one can have ¢(1) = 1, and

o(p*) = p* —p*t =p" (1 - %)

in particular, with ¢(p) = p — 1.
Recall that an arithmetic function f is multiplicative, if

fnm) = f(n)f(m), whenever ged(n,m) =1

for all n, m € N.
The Euler totient function ¢ is multiplicative by definition. Thus, we have that

1
o ) n (1)
p:prime, p|n p:prime, p|n P

for all n € N, whenever n is prime-factorized by 1|T pkr, with ¢(1) = 1.
pln
Furthermore, the arithmetic function ¢ satisfies the following functional equation in general,

ged(n, m)

¢(nm) = ¢(n)¢(m)m

for all n, m € N.

The above Formula generalizes the multiplicativity of ¢. So, one can have that

) 2¢(m) if miseven
¢@”w__{ é(m)  if m is odd

for all m € N.
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We also obtain that

for all n, k € N.
Recall the Mobius inversion on A,

h=fxl< f=hxp

where y is the arithmetic Mobius function (different from the Mobius functional in the incidence algebra
in Section 2.2), i.e.,

0 otherwise

—1)%M ifw(n) =Q(n
m):{(” fu(n) = Qn)

for all n € N, where
w(n) = the number of “distinct” prime, as factors of n

and

2(n) = the number prime factors of n

foralln € N.
It is well-known that

p=1lxp<=1=0¢px*p.

3. Free Probability on Von Neumann Algebras L>°(Q,)

Let’s establish von Neumann algebras 91, induced by the p-adic number fields Q,, for primes p.
Since @, is an unbounded Haar-measured non-Archimedean Banach field, for each fixed prime p,
we naturally obtain the corresponding von Neumann algebra L>°(Q, ), induced by a Haar-measure space

Qp = (Qp> J(Qp)a pp) (D

where ¢(Q,) means the o-algebra of QQ,, consisting of all p,-measurable subsets of Q,,.
Then there exists a natural linear functional, denoted by ¢,, on the von Neumann algebra 91,
satisfying that
ep (xs) = / Xsdpp = pp(5) 2)

forall S € 0(Q,), where x5 means the characteristic function of S.
Le., one has a well-defined 1//*-probability space (90,, ¢, ), in terms of the integration ¢,.
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3.1. p-Adic Von Neumann Algebras I,

Throughout this section, let’s fix a prime p. As a measure space, the field Q, has its corresponding
L*-Hilbert space H,, defined by

def

H, = L? (va Pp) (3)

We call H,, the p-adic Hilbert space. i.e., all elements of I, are the square p,-integrable functions
on Q,. Remark that all elements of I, are the functions approximated by simple functions

Z tsXs
Sea(Qp)

with tg € C (under limit), generated by characteristic functions x x

(z) 1 ifzeX
x’ _—
XX 0 otherwise

for all x € Q,. So, one can understand each element f of , as an expression,
f= Z tsxs (a finite or infinite sum)

Seo(Qp)

The inner product, denoted by <, >,,, on H,, is naturally defined by
def -
< fi,fo>p= J1fadpy
Qp

forall fi, fo € H), having the corresponding norm ||.[|,, on H,,

191, L VEE T == [ 111 dn

P

forall f € H,. Thus,if f= >  tgxsin H,, then

Sea(Qp)
/Qfdppz > txpp(X)

Xeo(Qp)

Now, let L>(Q,, p,) be the L>*-Banach space, consisting of all essentially bounded functions on Q,,.
Let’s now fix a function

h € L= (Qy, pp)

Similar to [,-case, one can / may understand / as the approximation of simple functions, since

hf € H,, forall f € H, 4)

Moreover, one can define the vector multiplication on L>°(Q,, p,) by the usual functional
multiplication. Then it is well-defined because hi, hy € L>*(Q,, p,), then hihy € L>®(Q,, p,), too.
Le., it becomes a well-defined von Neumann algebra over C. We denote this von Neumann algebra
by 9, i.e.,

def oo
M, = L=(Qy, pp)

More precisely, all elements of 91, are understood as multiplication operators on /1, by Equation (4).
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Definition 3.1. The von Neumann subalgebras M, = L> (Q,, p,) acting on H, are called the p-adic
von Neumann algebras, for all primes p.

By locally compactness, and Hausdorff property of Q,,, for any = € Q,, there exista € Q, and n € Z,
such that x € a + p"U, (e.g., [21]). Therefore, we obtain the following result.

Proposition 3.1. Let x g be a characteristic function for S € o(Q,,). Then there exist N € N U {oo},
and ki, ..., ky € Z,r1, ..., v € (0, 1] in R, such that

al 1 1
[, st = 30 (= ) @

Qp j=1

Proof. The detailed proof of Equation (5) can be found in [8]. [

The above Formula (5) characterizes the identically distributedness under the integral in 91,,.

3.2. p-Prime W*-Probability Spaces (MM, ¢,)

In this section, on the p-adic von Neumann algebras 9, = L>(Q,, p,) we define canonical linear
functionals ¢,, and establish corresponding W *-probability spaces (91,, ¢,). Throughout this section,
we fix a prime p, and corresponding p-adic von Neumann algebra 21,,, acting on the p-adic Hilbert space
H, = L*(Qy, pp)-

Define a linear functional

wp M, = C

on the p-adic von Neumann algebra 91, by the integration,

() / hdp,, forall h € Q, ©)

P

Then the pair (91, ,,) forms a well-defined 11/*-probability space in the sense of Section 2.2.

Definition 3.2. The W*-probability space (MM, ©,) of a p-adic von Neumann algebra MM, and a linear
Sfunctionals o, of Equation (6) is called the p-prime W*-probability spaces, for all primes p.

We concentrate on studying free-distributional data of characteristic functions g, for S € o(Q,),

or simple functions

> tixs,, withty € C, S, € 0(Q,)

k=1
for m € N.

Proposition 3.2. Let S € 0(Q,), and let xs € (M, p,). Then

N 1 1
ep (X3) = er (E - pij) (7

J=1

forsome N € NU {oo}, wherer; € [0,1] inR, k; € Z, for j =1, ..., N, foralln € N.
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Proof. The Formula (7) is proven by Equation (5). The detailed proof can be found in [8,21]. [

The above Formula (7) shows not only free-moment computation for xg, but also the identically
free-distributedness of {x%}32, in (M, ©,), too.
More generally, one can obtain the following joint free moment computation formula.

Theorem 3.3. Let S; € 0(Q,), and let x5, € (M, ), for j =1, .., n,forn € N. Let ki, ..., k,, € N,
and sy, ..., S, € {1, x}. Then

k‘151 k’2 EP) knsn

Pp (Xsl Xs, " XS, ) = ¥p (XE‘ Si) (8)

So, if the p,-measurable subset S = E\lSi and its corresponding free random variable Y s satisfies
Equation (7), then

1 1
kis kos knsn) _ -
Spgu(Xslllez2 XS, )_er (E_pkj—i—l) ©)

Jj=1

Proof. The proofs of Equations (8) and (9) are by Equation (7) under linearity. See [8,21] for more
details. [

4. Free Probability on .4 Determined by Primes

Let A be the arithmetic algebra consisting of all arithmetic functions under the usual functional
addition and convolution. In [9-12], we define the point-evaluation linear functionals g, on A,
determined by fixed primes p. As before, throughout this section, we fix a prime p.

Define a linear functional g, : A — C by

go(f) = f(p), forall f € A (10)
as the point evaluation at p. It is a well-defined linear functional on A, inducing a (pure-algebraic)

free probability space (A, g,).

Definition 4.1. The pure-algebraic free probability space (A, g,) is said to be the arithmetic p-prime
probability space.

For convenience, we denote the n-th convolution

n-times

by £, forall n € N.
For fi, fo € A, one can get that

gp (f1 % f2) = f1(1) fa(p) + fi(p) f2(1)

(1)
= [i(1)gp(f2) + gp (1) f2(1)
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Therefore, we can verify that the free-distributional data on A (for a fixed prime p) is determined by

quantities
{f(1), f(p): f € A}
(See [9])

Proposition 4.1. (See [9,10]) Let (A, g,) be the arithmetic p-prime probability space (A, gy).

9y (f™) =nf(1)" " g,(f), foralln € N,andf € A (12)
For fi, ..., fn € (A, gp), for n € N, we have

9 (J,H1 fj) = ;gp(fj) (l;éje{rll ..... n}fl(1)> "

For fi, ..., fn € (A, gp), for n € N, we have

KO (o f) = 3 (Vlgw (ngm) (L1 0] O 1|v)>> (14

TENC(n)
where k,(f ) (...) means the free cumulant in terms of g, in the sense of Section 2.2.

The above Formulas (12)—(14) provide ways to consider free-distributional data on A, for a fixed
prime p. Again, they demonstrate that the quantities {f(1), f(p)}sea determine free distributions of
arithmetic functions in (A, g,). Also, the Formulas (13) and (14) provide equivalent free-distributional
data for fi, ..., f,, (See Section 2.2, and [1]), under M&bius inversion (in the sense of Section 2.2).

By [9], we can define an equivalence relation R, on A by

ARy f2 £ (111, £i(p) = (f2(1), fo(p)) (15)

as pairs in the 2-dimensional C-vector space C2.

Construct now a quotient algebra A/R, naturally. i.e., it is a set

{lflr, : f € A} (16)
where
[flr, ={h € A: [R,h}, forall f e A
Without loss of generality, we keep writing [f]%, simply by f in A/R,,.

We obtain the following classification theorem.

Theorem 4.2. (See [9]) Let (A, g,) be the arithmetic p-prime probability space. Then

A == [ [tl,tg] (17)

(t1,t2)eC?

set-theoretically, where Ll means the disjoint union and



Mathematics 2015, 3 1110

[t ta] ={f € A= f(1) =11, f(p) = 12} (18)
forall (t1, ty) € C.
Clearly, one can inherit the linear functional g, on A to a linear functional, also denoted by g,, on

A/R,, defined by

9 () = 9p (IfIr,) = f(p) (19)

forall f = [f]g, € A/R,. Then, under the linear functional g, of Equation (19), the pair (A/R,, g,)
forms a pure-algebraic free probability space, too.

Asin [11,12], we put a suitable topology on .A/R,,. By Equations (17) and (19), whenever we choose
an element f € A/R,, it is represented as a pair

(f(1), f(p)) of C*

Now, let’s define an indefinite inner product [, | on C? by

[(t1,t2), (51, 52)] = t153 + to57 (20)

for all (1, ts), (s1, s2) € C?, and define the corresponding norm ||.|| by

1t t2)ll = VIt 1), (s t2)]] = \/[2Retife] 2D

for all (1, to) € C?, where |.| in the second equality means the modulus on C, and |.| in the third equality
means the absolute value on R.

Then the pair (C?, ||.||) is a well-defined Banach space, denoted by C? .

Notice that we may / can understand this Banach space C? , as the 2-dimensional C-algebra Cc®2,

equipped with [, ] of Equation (22) and ||.|| of Equation (23), with its multiplication,

(t1,t2)(s1,82) = (t181, t152 +t251) (22)
forall (t1, t2), (s1, s2) € C§2. The multiplication Equation (22) is a well-defined vector-multiplication
on C#2, by [11,12].
Notation. We denote such an algebra C*? equipped with vector-multiplication Equation (22), with |, |
of Equation (20) and ||.|| of Equation (21), by €.

Define now a norm ||.||,, on the quotient algebra A/R,, by

11, = I F@)Il = \/ 2Re (F()T0))| 23)

for all f € A/R,, where ||.|| is the norm Equation (21) on C.
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Then, under this norm |[|.[|, of Equation (23), the quotient algebra .A/R,, is understood as a topological
space, moreover, embedded in the 2-dimensional C-algebra

homeo
€2 AL (C2
homeo L+ P 9 -
where = means “being homeomorphic.” i.e., € is a Banach algebra.

Theorem 4.3. The normed quotient algebra A/R,, = (A/Ry, ||.||,,) is Banach-isomorphic to €.

One can define a morphism

F:A/R, — €

def

F(f) = (f(1), f(p), forall f € A/R,. (24)

Then it is surjective, by Equation (17). And, again by Equation (17), it is injective. i.e., if

(f1(1), f1(p)) # (f2(1), f2(p)) in C*2

then f1 # foin A/R,, as equivalent classes in the sense of Equation (16). So, it is injective, too. i.e., I’ of
Equation (24) is a bijective morphism.
Now, let fi, fo € A/R,, and t;, t; € C. Then

F(tifi +taf2)
= ((tofr + t2f2)(
= (t1./1(1), t1fa(
=t (f1(1), filp
=4 F(f1) +tF

1), (tufi +t2f2)(p))

p)) + (t2f2(1), t2f2(p)) (25)
) +t2(f2(1), fa(p))

f2)

The identity Equation (25) guarantees the linearity of F.
Also, F satisfies that, for all f1, f» € A/R,,

—~ —

F(fix f2) = (A1) AQ0), A1) )+ fi(p)f2(1))

by Equation (11)
= (f1(1), f1(p))(f2(1), fa(p))

by the multiplication Equation (22) on

CY = F(f)F(f2) (26)

Thus, the morphism F' is multiplicative, by Equation (26). So, by Equations (25) and (26),
the bijective morphism F is an algebra-isomorphism from .4/R,, onto €.
Furthermore, one has that
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IFOI = 16, S0 =/ |2Res 7G| = 1171, @

for all f € A/R,. The relation Equation (27) shows that the algebra-isomorphism F' is isometric.
i.e., it is a Banach-algebra isomorphism from .4/R, onto €2. It shows that the normed-algebra A/R, is
isometrically isomorphic to the Banach algebra ¢2.

The above topological-algebraic characterization is motivated both by the set-theoretic classification
in [9] and by the Krein-space representations in [11,12].

Definition 4.2. We denote the Banach algebra AR, by 2,,, and we call U,,, the p-prime Banach algebra.
Moreover, 2L, is characterized by
2, M= ¢ (28)
by the above theorem.

Define now a linear functional 75 on €2 by

Uy ((tl, t2)) = tg, for all (tl,tg) € Q:Q (29)

as a natural projection on C2. Then the pair (€2, 7,) forms a Banach probability space (e.g., [12]).
Recall that two arbitrary free probability spaces (A1, 1) and (As, ¢o) are said to be equivalent
(in the sense of Voiculescu), if (i) there exists an isomorphism h from A; onto A,; and (ii) h satisfies that

2 (h(a)) = ¢1(a), forall a € A,

If A, and A, are topological algebras (or, topological x-algebras), then h of the condition (i) and
(ii) should be continuous (respectively, both continuous and preserving *-relation, A(a*) = h(a)* in A,
for all a € Ay, where (x) here means adjoint).

Theorem 4.4. The Banach probability spaces (,, g,) and (€%, 73) are equivalent, i.e.,

(A, gp) (€2, ) (30)

Proof. By Equation (28) and by the above theorem, there exists a Banach-algebra isomorphism £’ of
Equation (24) from 2l,, onto €2. For any f € 2L,, we obtain that

forall f e, [

The above equivalence Equation (30) shows that the study of free probability on 2, (or on A), for a
fixed prime p, is to investigate that on €2 under 7.
In [11,12], indeed, we showed that each element f € I, is understood as a Krein space operator O ¢

on the Krein space C? ,
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N
@f_<f(p) f(1)> D

¢ M C{Oy S € )]

and

Note here that

0,04, = Oy.p,0onC% | forall fi, fo €2, (32)

and

O} = Op.0onC? , forall f € A, (33)
(See [11,12]).

5. Euler Subalgebras ®, of p-Prime Banach Algebras 2,

In this section, we consider a certain subalgebra of our p-prime Banach algebra 2, for a fixed prime p.
In Section 4, we showed that the Banach probability space (2, g,) is well-determined under quotient,
and it is equivalent to the 2-dimensional Banach probability space (€2, ).

Let’s fix the Euler totient function ¢ in 21, (i.e., understand ¢ = [$]x,,). Define now the subalgebra @,
of 2, by the Banach subalgebra generated by ¢. i.e.,

®, " C.[{g}] = C. [{o}] "rin2t, (34)

where C,[X]| means that the subalgebra generated by X under (+) and (x) in 2l,,, and ?H'Hp means the
|.||,-norm-closure of Y, where ||.||,, is in the sense of Equation (25). Thus, by Equation (34), we have

o, = {Z tk¢(k)
k=0

where 1o, = 14 /R, where 1 4 is the identity element of A.

neN, t, eC,
with identity, ¢ = 1

Definition 5.1. We call the subalgebra ®, of the p-prime Banach algebra A, the (p-prime) Euler
subalgebra of 2,,.

Since (2,, g,) and (€2, 1) are equivalent by Equation (30), under the subspace topology, the Euler
subalgebra @, is a Banach subalgebra of ¢2.
Also, one can consider the adjoint (*) on ®,, as a unary operation on ®,, such that

n e U .
<Z tk¢(k)) N T
k=0 k=0

where Z means the conjugate of z, for all z € C. Note that, in fact,
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¢ *(m) = ¢® (m), forall m € N
forall k € Ng=NU {0}, since ¢ (N) CNinR, ie.,
P =" forall k € N

It shows that the adjoint (*) is well-defined on ®,,, and hence, the Euler subalgebra ®,, is understood
as a Banach *-algebra. Remark that @, is a *-subalgebra of the finite-dimensional algebra €.
So, this Banach x-algebra ®,, can be understood as a C*-algebra or a von Neumann algebra, too, because
all topologies on an arbitrary finite-dimensional space are equivalent from each other.

Assumption. From now on, we understand our Euler subalgebra ®,, as a von Neumann algebra acting

on C? .
Definition 5.2. The W*-probability space (®,, g,) is called the (p-prime) Euler W*-probability space.

Observe that, for any n € N, we have in general that

gp (8™) = ne(1)" " o(p)

by Equation (12). By the very definition of the Euler totient function ¢,

6(1) = 1, and 6(p) = p (1 - }9)

and hence, one can get that

1
gp(¢"™) = ng(p) = np (1 - z_?) -
Therefore, one has that
() _ 1
gp (¢™) =np 1—2—9 , foralln € N (35)

The above Formula (35) not only provides a recursive formula to compute n-th free moments of ¢,
but also shows that our linear functional g, is additive on ®,, in the sense that

p (¢(n)) = gp(¢) et gp(ﬁbl = ng,;(qﬁ)

Vv
n-times

forall n € N.

By applying Equation (35), we obtain the following general free-moment formula.
Theorem 5.1. Let T' € (®,, g,,) be a free random variable,
N
T = th¢(nj), with t]’ S C,TLJ' e NU {O}
j=1

Then the n-th free moments of 'I' are determined by
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(36)
1
(-0 =
b (J15esdn) €{L;-1,
where T = Tx - - - x T in ®,, for all n € N.

Proof. The detailed proof is found in [9]. [

The above Formula (36) characterizes the free-distributional data on ®,,. Also, the Formula (36) with

Formula (35) shows the free-momental data for 7" € (®,, g,) are determined by certain scalar-multiples of

9p(0) =p (1 - %)

The following corollary is the direct consequence of Formulas (35) and (36).
By Formula (36), we obtain the following proposition.

Proposition 5.2. For any n € N, we have that

1 1
9p (¢) = np**! (E - pk:+1) (37

forall k € 7.

6. Free-Distributional Data on (91, ¢,) and (®,, g,)

In this section, we consider identically free-distributedness on our two distinct free probability spaces
(M, ¢,) and (P, g,). By Sections 3-5, one can realize that

1 1 1

Yp (kaUp) = ﬁ o pk+1 = ng (¢(n))

forall k € Z,and n € N.

Proposition 6.1. (See [21]) Let S € o(Q,) and xs € (M,, v,). Then there exist N € N U {oo},
r; €[0,1]inR, and k; € Z, for j = 1, ..., N, such that
1L 7y
9 (X8) = = > =250 (0) (38)
m = ph
forall n, m € N.

As the converse of Equation (38), one can have the following proposition, too.
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Proposition 6.2. (See [21]) For all m € N, we have that

9 (6) = mp* g, (k) 59
foralln € N.

Therefore, by Equations (38) and (39), we obtain the following theorem.

Theorem 6.3. Let T' = Zjvzl t; o) € (®,, g,). Then there exist si, ..., sy € C, and

N
h = Z 5iXpriv, € (M, 0p)
j=1

such that T' and h are identically free-distributed, in the sense that

gp(T™) = @, (k™) , foralln € N (40)

Proof. Let T be given as above in (®,, g,). Then, by Equations (38) and (39), 7" and

N
h = ZSjkajUp
=1
with
s; = t;m;p T € C, forall j =1,..., N

satisfy
9p(T) = ¢p(h)

Also, for any n € N,

gp(T(n)) = pp(h")

by Equations (36) and (37). Therefore, two free random variables T € (®,, g,) and h € (9, p,) are
identically free-distributed. [

By the identically free-distributedness Equation (40), we obtain the following theorem, by Equation (38).

Theorem 6.4. Let h = Zj\; ti xs; € (M, @p), witht; € C, for N € N. Then there exists T € (®,,, g,)
such that h and 'T' are identically free-distributed in the sense that

©p(h") = g,(T™), foralln € N (41)

Proof. Let h be given as above in (91, ¢, ). Then, for each summand xg, , there exist N, € N U {oo},
re; € [0, 1] in R, and ky.; € Z, for j = 1, ..., Ny, such that x, and

Ng

hk - Z rk:jkak:jUp € (mpa 901)) (42)

J=1

are identically distributed in the sense of Equation (7), for k =1, ..., Ny, fork =1, ..., N.
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And each Xpbesr, in the right-hand side of Equation (42) is identically free-distributed with
Iﬁ ¢ € (®,, g,), by Equation (39). So, for h;, of Equation (42) and

Ny

1= o (@) )

J=1

are identically free-distributed, by Equation (39). Equivalently, 7}, and g, are identically free-distributed,
again by Equation (39), for all £ = 1, ..., N. Thus, one can determine a free random variable,

N

T = 4Ty in (®,,g,) (44)
k=1

where T}, are in the sense of Equation (43), such that
ep(h) = gp (T)
By Equations (36) and (37), we have
0 (h") = g,(T™), foralln € N

Therefore, there exists 7' € (®,, g, ), such that h and 7" are identically free-distributed. [

7. p-Adic W*-Dynamical Systems

Let’s now establish W*-dynamical systems on a fixed von Neumann algebra M, by acting the
o-algebra o(Q,) of the p-adic number field QQ,. Throughout this section, we fix a von Neumann
subalgebra M acting on a Hilbert space H, and a prime p.

7.1. p-Adic Semigroup W*-Dynamical Systems

Now, let M be a fixed von Neumann algebra in the operator algebra B(H ) on a Hilbert space H, and
Q,, a fixed p-adic number field, and let M, = L>=(Q,, p,) be the p-adic von Neumann algebra.

Let H,, be the tensor product Hilbert space H, @ H of the p-adic Hilbert space H, = L*(Q,, p,), and
the Hilbert space H where M acts, where ® means the Hilbertian tensor product. i.e.,

H,=H,® H

Define an action « of the o-algebra 0(Q,) of Q, acting on M “in B(H,)” by

de %
a($)(m) < yemys = xsmys (45)
forall S € 0(Q,), and m € M, in B(H,), by understanding

Xs = Xs @ 1y, and m = 1oy, ® min B(H,)
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where 1q, is the identity map xg, on Q,, and 1, is the identity element of M. i.e., one can understand
a(S)(m) as compressions of m (on #,), with respect to projections ys on ,. Then « is an action on
M satisfying

alpha(S1 N Sz)(Mm) = Xs,ns,MXS1NS,
= XS1 XS TX 51 XSy = XS1 XS2TMX Sz X S
= Xs; (a(52)(m)) xs, = (1) ((S2)(m))
= (a(S1) 0 a(S2))(m)

forallm € M, and S, Sy € 0(Q,), i.e.,

a(S1 N Sz) = a(Sy) oa(Sy), forall 51,5, € 0(Q,) (46)

Observe now that the algebraic structure (0(Q),), N) forms a semigroup. Indeed, the intersection N is
well-defined on o(Q,), and it is associative,

Sl N (SQ mS:),) - (Sl ﬁSg) mS;g

for S; € 0(Q,), for all j = 1, 2, 3. Moreover, this semigroup ¢(Q,) contains Q,, acting as the
semigroup-identity satisfying that

SNQ,=5=Q,NS

for all S € 0(Q,), and hence, this semigroup ¢ (Q),) forms a monoid with its identity Q,.

Lemma 7.1. The action o of 0(Q),) in the sense of Equation (45) acting on a von Neumann algebra M

is a monoid action, and hence, the triple (M, 0(Q,), «) forms a monoid dynamical system.

Proof. The action « of Equation (45) is indeed a well-defined action acting on M, by Equation (46).
And, by the above discussion, 0(Q,,) = (¢(Q,), N) forms a semigroup with the identity Q. Moreover,

a(Q,)m =m, forallm € M
So, the triple (M, 0(Q,), ) forms a well-defined monoid dynamical system. [

Recall that all elements f of the p-adic von Neumann algebra 901, is generated by the o-algebra

o(Q,) of Q,, in the sense that all elements f € 9, has its expression, >  tgxs. So, the action «
SeSupp(f)
of Equation (45) can be extended to a linear morphism, also denoted by «, from 91, into B(#,), acting

on M, with

alpha(f)(m) = « Y. tsxs | (m)
SeSupp(f) @7

oversetdef= > tga(S)(m)= > tsxsmxs
SeSupp(f) SeSupp(f)

forall f € 9,
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Proposition 7.2. Let M, be the p-prime von Neumann algebra, and let M be a von Neumann subalgebra
of B(H). Then there exists an action o of M, acting on M in B(H,,).

Proof. It is proven by Equations (45) and (47). [

Definition 7.1. Let 0(Q),) be the c-algebra of the p-adic number field Q,, understood as a monoid
(0(Qyp), N), and let « be the monoid action of 0(Q,) on a von Neumann algebra M in the sense
of Equation (45). Then monoid dynamical system (M, 0(Q,), o) is called the p-adic(-monoidal)

W*-dynamical system. For a p-adic W*-dynamical system, define the crossed product algebra

M, = M x, 0(Q,) (48)

by the von Neumann subalgebra of B(H,,) generated by M and x (0(Q,)) , satisfying Equation (47).
The von Neumann subalgebra M,, of B(H,,) is called the p-adic dynamical W*-algebra induced by the
p-adic W*-dynamical system (M, 0(Q,), o).

Note that, all elements of the p-adic dynamical W*-algebra M, = M x, o(Q,) have their expressions,
Z mgsXs, Withmg € M
SeoQyp)

Define the support Supp(T') of a fixed element 7' = > mg xs of M, by
Sea(Qp)

Supp(T) < {S € a(Q,) : ms # 0y} (49)

Now, let myxs,, maxs, € M,, withmy, ms € M, Sy, S5 € 0(Q,). Then

(mixs,)(maxs,) = mMiXs,MaXs, Xs,
= m1XSlm2X§1XSQ = M1 X5, MM2X 51 XS1XS2

since xs = 1y ® s (in B(H,)) are projections (x& = xs = x%), forall S € 0(Q,)

= myiag, (m2>XS1 XSy, = Mg, (m2>XS1052

Notation. For convenience, if there is no confusion, we denote ag(m) by m?®, for all S € o(Q,),
and m € M.
Le., we have

(mixs, ) (Maxs,) = mams' Xs,ns, (50)

for my, xs, € M,, fork =1, 2.
Inductive to Equation (50), one has that

_ S1,.S1NSs SiN...NSy_1
(ijSj) = M1My Mg My XS10..NSx

==

J=1

(1)
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for all N € N. Also, we obtain that

(mxs)* = xsm*xsxs = (m*)°xs (52)
for all m xs € M,, withm € M, and S € 0(Q,).
So, let
Tho= Y, mgxs, €M, fork=1,2
Sy €Supp(Ty)

where Supp(T}) is in the sense of Equation (49). Then

TlTQ = Z ms; Xs1Msy X S
(S1,52)€Supp(T1) % Supp(T?) ) (53)
- Z mS1mS;XS1IﬁISz
(S1,52)€Supp(T1) % Supp(T?)
by Equation (51).
Also,if T'= > mgxs in M,, then
SeSupp(T)
"= > (m)°xs (54)
SeSupp(T)
by Equation (52).
By Equations (53) and (54), one can have that if
T, = Z mg,Xs, € My, fork=1,...,n
Sk €Supp(Tk)
for n € N, then
T re . Tn _ = 75185,
17T, "= jl;ll Z [msjj] TXs;
S;€Supp(Ty)
where
riig. def | Mg ifr;=1
my S; 4 55
s { (my )% ifr; == )
foryj=1,...n
= > (-H1 ([mg]SszJ)
(S1yemes Sn)Ejl;IISupp(Tj)
n - (75152)
= > ‘1_11 ([mSJJ]SJ) =1 (X . S_) ,forall (rq, ..., m,) € {1, *x}".
(S1,e-ss Sn)ejlillswp(Tj) ” =1
Lemma 7.3. Let T}, = > mg,xs, be elements of the p-adic semigroup W*-algebra M, = M

Sk€Supp(Tk)

Xq 0(Qp) in B(H,), for k =1, ..., n, for n € N. Then
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jﬁlT;]’ _ 3 <<jﬁ1 ([mgg ]sj> (iiﬁsi)) (Xﬁ Sj)) (56)

forallry, ..., m, € {1, x}, where [mgj]sﬂ' are in the sense of Equation (55).

The proof of the above lemma is by discussions of the very above paragraphs.

7.2. Structure Theorem of M X, c(Q,)

Let M, = M X, 0(Q,) be the p-adic W *-algebra induced by the p-adic W *-dynamical system
Q(M, p) = (M, 0(Q,), o). In this section, we consider a structure theorem for this crossed product von
Neumann algebra M,,.

First, define the usual tensor product WW*-subalgebra

My = M @¢ M, of B(H,)

where 9, = L>(Q,, p,) is the p-prime von Neumann algebra in the sense of Section 7.1, and where
®c is the von Neumann algebraic tensor product over C. By definition, clearly, one can verify that M,
is a W*-subalgebra of M in B(H,), i.e.,

Subalgebra

P g MO

Now, define the “conditional” tensor product W*-algebra

0 =M @M,

induced by an action o of 91, acting on M (in the sense of Equation (48)), by a W *-subalgebra of M
dictated by the a-relations,

(M1 ® xs,)(ma @ Xs,) = (Mam3') ® xs,Xs, (57)

and

(m®xs)" = (m")* ® X (58)
for all my, mg, m € M, and Sy, Sy, S € 0(Q,). i.e., the W*-subalgebra M of M satisfying the

a-relations, expressed by Equations (57) and (58), is the conditional tensor product W *-algebra M ®,,
m,.

Theorem 7.4. (See [8]) Let M, = M x, o(Q,) be the p-adic W*-algebra induced by the p-adic
W*-dynamical system Q(M, p), and let M{ = M ®, M, be the conditional tensor product W*-algebra
of M and the p-prime von Neumann algebra IR, satisfying the a-relations Equations (57) and (58). Then

these von Neumann algebras M,, and M{, are x-isomorphic in B(H,), i.e.,

MPZMXaU(@p) *£0M®a gﬁp:Mg (59)
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in B(H,).

The above characterization Equation (59) shows that our p-adic dynamical W*-algebra M, = M x,,
0(Q,) is *-isomorphic to the conditional tensor product W *-algebra M{ = M ®, I,. So, from now
on, we identify M,, with M.

8. Free Probability on p-Adic Dynamical 1V *-Algebras

In this section, we consider free probability on the p-adic dynamical W *-algebra

M, =M X, 0(Q,)
induced by the p-adic W*-dynamical system (M, 0(Q,), ).

By Equation (59), the von Neumann subalgebra M, is *-isomorphic to the conditional tensor product
W*-algebra M5 = M ®, 9, So, throughout this section, we understand M, and Mj, alternatively.

First, we assume that a fixed von Neumann algebra M is equipped with a well-defined linear
functional v on it. i.e., the pair (M, 1) is a W*-probability space. Moreover, assume that the linear
functional v is unital on M, in the sense that

Y(la) =1

for the identity element 1,; of M.

By understanding M,, as M§, we obtain a well-defined conditional expectation

E,: M52 M, — M, (60)

where

de
M, Y M 8. C[{xs: S €0(Qy), S U
where U, is the unit circle of Q,, satisfying that

de
Ey(mxs) = Ey(m @ xs) < mxsu,

forallm e M, and S € 0(Q,).
Remark that M, of Equation (60) is indeed a well-determined 17 *-subalgebra of )i, (and hence,
that of M, = M¢), because

Mp = XUpgﬁpXUp
is the compressed 1/ *-subalgebra of 91,,.

Define now a morphism

Fy: M, = M, (61)

by a linear transformation satisfying that
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E, (mys) =m (TSXUP)

for all mxg € M,, where rg € [0, 1] satisfies that

1
/ Xsdp, = Ts/ Xv,dpp =Ts (1 - —) (62)
Q Q p

P P

by Equation (5). Of course, the morphism £, can be directly defined by a linear morphism satisfying

Fp (mXS) = mXSﬂUp

Then, by the identically-distributedness, there exists g € R, such that

/XSmUpdpp:TS/ Xu,dpp
Q

D D

and then define a linear functional

v:M,—=C

by a linear functional on M,,, satisfying that, for all m € M, and S € 0(Q,),

v e <¢®/@

i.e., a linear functional satisfying that

° dpp) ol (63)

p

y(m @ xs) Zm) [y, (rsxw,) dp,

= rs¢(m) (1 - %)

where rg € [0, 1] satisfies Equation (62).
And then define a linear functional

T My E M = C
by
Tp =70° Ep (64)

where v and F, are in the sense of Equations (63) and (60), respectively. i.e., for all m € M,
and S € 0(Q,),
Yo (mxs) =7 (Ey(mxs))
=7 (m XSﬂUp)) = 1h(m) pr (7’5 XUp) dpy
= rsp(m) (1 - %)

for some rg € [0, 1], satisfying Equation (62). Then the pair (M, ,) is a W*-probability space.
Definition 8.1. The pair (M, ,) is called the p-adic dynamical W*-probability space.

The following lemma is obtained by the straightforward computations.
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Lemma 8.1. Let mygs be a free random variable in the p-adic dynamical W*-probability space
(My, ), withm € M, and S € o(Q,). Then

1
3o (xs)) = (mm®y ) (1= 1) (©5)
foralln € N, where rg € |0, 1] satisfies Equation (62).

Proof. The proof of Equation (65) is from straightforward computations, by Equations (51)
and (56). [J

More general to Equation (65), we obtain the following lemma.

Lemma 8.2. (See [8]) Let mixs,, ... MnXs, be free random variables in the p-adic dynamical
W*-probability space (M,, 7,), with my, € M, S, € 0(Q,), for k =1, ..., n, for n € N. Then there
exists ry € [0, 1], such that

n N s, 1
Mo (jgl ijsj) =ro{v| I m;~ (1 - 5) (66)

By Equations (65) and (66), we obtain the following free-distributional data of free random variables
of (M, 7).

Theorem 8.3. (See [8]) Let (M, v,,) be the p-adic dynamical W *-probability space, and let

Ty = Z mg,Xs,, fork=1,...,n
Sk €Supp(Ty)

be free random variables in (M, ,), for n € N. Then

() T (a1 w

satisfy Equation (62), for all (S, ..., Sp)-

Let (M,, v,) be the p-adic dynamical W *-probability space, and let m; x g, , ..., M, X s, be free random
variables in it, for n € N, where my, ..., m,, € M, and Sy, ..., S, € 0(Q,). Then, we have

n T Ti1S,
Yp (]1;[1 (ijS]) J) = (j:1[mj7] ! X_FLHSJ)
j=
T'j]S

;|77 are in the sense of Equation (55)

s

where [m

by Equation (67), where 1 € [0, 1] satisfies Equation (62).
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So, one can obtain that

kn ((maxs,)™, o (maxs,)™) = > () (M7 X1, oo [mIr]%xs, ) p(, 1)
TeNC(n)
= > (JE(WJV(Wﬂq&X&a~wWﬂﬂ&X&Jﬂ(mW>1W0>
TeNC(n) 4

by the Mobius inversion (See Section 2.2)

L <[mZ1]S”XSi1 [m:,i’“lsiwsik)u(%, 1k)>

= 2 11 ry (@ ﬁ([m”t]sit)iiisw (1_1> (O, 11)
—WENC’(n) V=(i1,....ix)ET v t=1 it ») | H\Yk, Lk

by Equation (68), where 7y, € [0, 1] satisfy Equation (62).

(69)

By Equation (69), we obtain the following inner free structure of the p-adic dynamical 1/ *-algebra
M, with respect to ,,.

Proposition 8.4. (See [8]) Let mixs, and myxs be free random variables in the p-adic dynamical
W*-probability space (M, 7,), with my, ms € M, and S € o(Q,) \ {@}. Also, assume that S is not
measure-zero in 0(Q,). Then {my, m7} and {my, m3} are free in the W*-probability space (M, 1),
if and only if myxs and max s are free in (M, 7,).

It is not difficult to check that if S N U, = &, then the family

{mxs:m e M}

and
{mxy :m e MY C Uyino(Q,)}

are free in (M, ,).

Proposition 8.5. Ler S € 0(Q,) such that S N U, = @. Then the subsets

{mxs:m e M}
and
{mxy :m € M,Y C Uyino(Q,)}
are free in (M,, 7).
Proof. Let m; x5 and my xy, € M,, with m;, my € M, and S € 0(Q,). Assume that S N U, is

empty. Since S N U, = &, all mixed cumulants of m;xs and myxy, have ry = 0, for some V' € 7 in
Equation (69), for all 7 € NC'(n). Therefore, one obtains the following inner freeness condition of (M,,,

V). O

Motivated by the above proposition, we obtain the following general result.
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Theorem 8.6. Let Sy # Sy € 0(Q,) such that Sy N Sy = &. Then the subsets {mxs, : m € M} and
{axs, : a € M} are free in (M, v,), i.e.,

S1NSy=0 (70)

{mxs, : m € M}and{axs, : a € M} are free in (M,,v,)

Proof. The proof is a little modification of the proof of the above proposition. Indeed, we can check that

Slﬂ52:®:>(51ﬂUp)ﬂ(SlﬂUp):®

So, we can apply the above proposition. [

9. Euler Subalgebras ®, on Certain Dynamical 17" -Probability Spaces

Throughout this section, fix a prime p, and let (®,, g,) be the Euler probability space in the sense of
Section 5. Also, as in Sections 7 and 8, we fix an arbitrary W *-probability space (M, 1)), where M is a
von Neumann algebra in B(H ). In particular, we will fix a unital linear functional ¢) on M by

w(m) = [m(1ly), 1gly, forallm € M (71)

where [, | is the inner product of the Hilbert space H, where M acts, and 15 means the identity

element (or a vacuum vector) of H, satisfying
le = f = 1H£7 forallf eH

(i.e., we restrict our interests to the cases where M is a certain von Neumann algebra acting on H,
having its identity element 1;.)

In this section, we construct certain W *-dynamical systems induced by the Euler subalgebra @,
Recall that the close relations between (®,, g,) and (90, g,) in Section 6.

As we have discussed in Section 4, each element f = [f]z, of 2, is understood as a Krein-space
operator © on the Krein space (C?% (See Equation (33)),

RO
_<f(p> f(1)> 72

Recall that the Krein-space operators O ; satisfy Equations (32) and (33) on (CIQ%.
Note that, if £ is an arbitrary Krein space equipped with its indefinite inner product [, ], and H is an
arbitrary Hilbert space equipped with its (positive-definite) inner product <, >, the tensor product space

R ® H becomes again a Krein space with its indefinite inner product [[, ]|, defined by

[[a1 & bl, a9 & bg]] = ([(11, al]) (< bl, bg >) (73)

for all aj, as € K, and by, by € H. Clearly, the inner product [[,]] on K ® H is indefinite, by the
indefiniteness of |, | on 8.
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Define now a Krein space

Ap=C, o H (74)

and construct the tensor product Banach x-algebra

o,(M) Y &, 0c M (75)
acting on Ry of Equation (74). Note that, since ®, is a Banach x-algebra (on (C?%), and M is a von

Neumann algebra (on H), the topological x-algebra ®,()) is again a Banach x-algebra acting on Ry,
under product topology.

Definition 9.1. The Banach x-algebra ®,(M) of Equation (75) acting on the Krein space Ky of
Equation (74) is called the M -(tensor-)Euler (Banach x-)algebra.

Let & ,(M) = ®,®c M be the M-Euler algebra acting on the Krein space Ry = C% ® H, having its
indefinite inner product [, |,, ; in the sense of Equation (73),

[f1 @21, f2 @ Talpr = ([f1, folp) ([0, T2]m) (76)
for all f; ® x; € Ry, for j = 1, 2, where |, ], is the indefinite inner product on (C?%, introduced

in [12], such that
[f1,f2] = gp (fi*fy), forall fi, f € A

and where [, |y is the inner product on the Hilbert space H, where M is acting.
Note that the Krein space Sy has its identity vector

Ly =1z @ 1u (77)

where, in particular,
1@?4 =(0,1) = Ly,

o

(See Section 2.3). Now, define a linear functional 1, on ®,(M) by the linear morphism
satisfying that

Uyt (F @m) Z (O @ m) (Lya), Lpad], (78)

for all f ® m € ®,(M), where 1, 5, in Equation (78) is the identity vector of £ in the sense of Equation (77).
Observe the definition Equation (78) more in detail. For T' = f ® m € ®,(M),

Vp,m (T) = [T(1p7M)’ 1p,M]p7H

= [(©; ®@m)(1a, ® 1nr), (1o, ® 1nr)]
by Equation (77)
O (la,) @ m(lar), (la, ® 1ar)]
f@m(lar), 1mp®1M] H
(If: Loy ]p) ([Im(Anr), 1nd)r)
(a0 (£ + 15 )) (¥ (m)) = (g,(£) (¥(m))

=
=
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= f(p)y(m) (79)

Proposition 9.1. Let f ® m be an element of the M-Euler algebra ®,(M), for f € ®,and m € (M, 1)),
and let 1,y be the linear functional in the sense of Equation (78) on ®,(M). Then

U (f @ m) = f(p)(m) (80)
Proof. The proof of the Formula (80) is directly from Formula (79). [
By Equations (79) and (80), one has that, for n € N,

Yot (67 @ m) = 0 ()1 (m)
= no(p)v(m) = np (1= 1) w(m)

for all m € M, since

by Equation (12), for all n € N.

Corollary 9.2. Let ™ @ m € ®,(M), forn € N. Then

Upoar (0™ @ m) = np (1 - %) ¥(m) (81)

Definition 9.2. Let ®,(M) be the M-Euler algebra and let 1, \; be the linear functional on ®,(M)
in the sense of Equation (78). Then the Banach x-probability space (®,(M), 1) is called the
(Krein-space-representational) M -Euler (Banach-x-)probability space.

By Equations (80) and (81) and the results of Section 6, we can find the relations between the
free probability on p-adic dynamical WW*-probability spaces and the free probability on the M -Euler
probability spaces.

Theorem 9.3. Let (M, 1)) be an arbitrary W*-probability space in B(H), where 1 is the linear
Sfunctional on M in the sense of Equation (71), and assume that H has its identity element 1p.
Let (®,(M), ¥y ) be the M-Euler probability space. Let f @ m be an arbitrary free random
variable of (®,(M), ¥y ). Then there exists a free random variable T of the p-adic dynamical
W*-probability space

My = (M xqo a(Qp), V)

in the sense of Definition 8.1, such that

Ypur(f @m) = ,(T) (32)

and the converse also holds true.
More precisely, if '™ @ m € (®,(M), V1) , then there exists a (U,) (nm) € (M,, ~,) , such that
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Ypor (™ @ m) = np (1 — %) Y(m)
(83)

=% (04 (p_lUp) (nm))
foralln € N, and m € (M, ). And the converse also holds true.

Proof. We will prove the relation Equation (83) first. Recall first that, by Equations (40) and (41),
if f € (M, ,), then there exists h € (P, g,), such that

op(f) = gp(h)
and conversely, if h € (®,, g,), then there exists f € (9, ,), such that

9p(h) = op(f)

In particular, by Section 6, one has that

1
vp (xU,) = / Xy =1 == pt(p—1)=p lo(p) (84)

P

by Equations (38) and (39).
So, if 3™ @ m € (®,(M), ¥, ), forn € N, and m € (M, 1), then

par (0 @) = p (1) w(am)

by Equation (81)
= (a(p_lUp)(nm))
by Equations (82), (83) and (84). Therefore, the relation Equation (83) holds true.

By Equation (83), and by the facts that (i) ®, is generated by {¢™}, and (ii) M, is generated
by {X,+v, }rez, the relation Equation (82) holds true (under tensor-product structures under product
topology), by Equations (40) and (41). [

The above characterization Equation (82) (with Equation (83)) characterizes the relation between
free probability on our M-Euler probability spaces ($,(M), 1, 1) and free probability on our p-adic
dynamical W*-probability spaces (M, ,) , for fixed W*-probability spaces (), 1), where ¢ is in the

sense of Equation (71).

Theorem 9.4. Let a(S)(m) = xsmx§ € (Mp, 7p), for S € 0(Q,) and m € (M, ), where 1) is in the
sense of Equation (71). Then there exist ro € R, such that

T (a(S)(m)) = 1pu (ro(¢ © m)) (85)

for some ¢ @ m € (P,(M), Ypum) .
More generally, if T € (M, ~,), then there exists h € (P,(M), ), such that

W (T) = tpar (h) (86)
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Proof. Recall that, if S € 0(Q,), then there exist N € NU {oo}, and ry, ..., 7y € (0, 1] in R, and &4, ...,
kn € Z, such that

N
fQP xsdp, = pp(S) = Zj:l T'j (13%] - Zﬁ)
=S (1) = S (1) @)

= Zévzl rip~ "t e(p)
by Equations (40) and (41).
Observe now that, for «(S)(m) € (M,, 7,),

P ((S)(m)) = (1p(m)) (Z rjp‘“ff*”czs(p)) (88)

j=1
by Equation (87).
The Formula (88) shows that there exists 7y € R, such that

W (@(S)(m)) = (red(p)) (¥ (m))

=70 (gp($)1(m)) = rotpr (¢ @ m)

where, in particular,

N
rog = Zyﬂjp_(kj"’_l)
j=1

where N, r; and k; are determined by Equation (87) and where r( satisfies Equation (88).
By the Formula (84), the relation Equation (86) holds under linearity and topology. [l

The characterization Equation (84) (resp., Equation (86)) is in fact equivalent to Equation (83)
(resp., Equation (82)), providing equivalent relation between free probability on p-adic dynamical
W*-probability spaces and free probability on M-Euler probability spaces, whenever a fixed linear
functional ¥ on M is in the sense of Equation (71).

In Section 10 below, we study special cases where a fixed von Neumann algebra M is a group von

Neumann algebra, and ¢ is the canonical trace on M.

10. Application Over Group Von Neumann Algebras

In Section 9, we showed the connection between free probability on p-adic dynamical W*-probability
spaces (M,, 7,), and free probability on A/-Euler probability spaces (®,(M), 1, ) for fixed
W*-probability spaces (M, 1), where, in particular, ¢ is a linear functional in the sense of Equation (71)
on M.

Let GG be a discrete group and let M be the canonical group von Neumann algebra acting on the group
Hilbert space Hg = I*(@G), the [*-space generated by G, under the left-regular unitary representation
(Hg, u), where u is the unitary action of G on Hg, defined by
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(u(g)) (h) “22* uy(h) “ gh, forall h € Hg

satisfying

j— * p—
Ug, Ugy, = Ug, gy, aNdUy, = Ug—1 (89)

where g; g, means the group product in G and ¢g~! means the group-inverse of g, for all g1, g2, g € G.
So, indeed, each u, induces a unitary on H,

* — — —
UgUg = Ug—1Ug = Ug=1g = Ueg

=lp, = ugg-1 = ugig—

*

= ugug

for all g € GG, where e means the group-identity of GG, and 15, means the identity element of H,.
Remark that the group Hilbert space H; has its orthonormal basis {¢, : g € G} satisfying that

€g1€g2 = 591927 for all g1, 92 € G

with the Hilbert-space identity element &, = 1p

o
The inner product <, > on H satisfies
< &g &g >a=0g, g0, Torall 1,0, € G

where 0 means the Kronecker delta.

The group von Neumann algebra M has its canonical trace trg defined by

tra (Ztgug) “ ot

geG

forall ) t, u, € Mg, with t, € C.
geG
The trace tr¢ is a well-determined linear functional on M, moreover, it satisfies

trg(aiaz) = trg(agay), forall ai,ay € Mg

and

tra(te,) =1

Definition 10.1. The W*-probability space (Mg, tre) is called the (canonical) group WW*-probability
space of .

Remark that the trace ¢r¢ is understood as

tT(;<a> =< aéegufec >G

where £, is the identity element 15, of H.
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It shows that the trace trq of a given group W *-probability space (Mg, trq) satisfies the condition
Equation (71) naturally. So, one can construct the M -Euler probability space (®,(Ms), 1y a1, ) in the
sense of Definition 9.1. For convenience, we will denote

denote denote
P, (Mg) =" Qpcand prr, = Ypc

We concentrate on computing free moments of generating elements ¢ ®ug of ®, ¢ in terms of ¢, ¢,
forall n € N, g € G. Again, for convenience, we denote

¢§n) denote 4(n) ug, forallmn e N,g e G (90)
in (Cpng, wp,G)-
Observe that
Uoc (057) = (6 () (tre(uy))
by Equation (80)
1
=np|1-— —) tra(u
( D G( g)
by Equation (81)

1
= 0g.eMD <1 — ]—)>

1
Upc (65) = Sgeanp (1 — ];) (91)

foralln e N, g € G. ie.,

foralln e N, g € G.

Motivated by the above observation, we obtain the following proposition.

Proposition 10.1. Let ¢§”) be the generating free random variables of the Mc-Euler probability space
(®p.y Yp) in the sense of Equation (90), where M is the group von Neumann algebra of a group G,
foralln € N, g € G. Then

1
Yp.a <(¢§”))k) = Oyt kD (1 — ];) (92)
forall k € N.

Proof. Letn € N, g € GG, and qﬁ_f,"), a corresponding generating element of (®, ¢, ¥, ¢) in the sense of
Equation (90). Then

e ((cbé"))k) = i (0 @ u,)")

= wp,G ¢(n) koo e *(b(n) ® ug ..... ug
N -~ 7 \ /

k-times k-times

= ¥pa (0" @ ug)
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by Equation (89)

= Uy (057) = 80 combp (1 - }3)

The free-moment computation Equation (92) provides the free-distributional data of generating

elements ¢ of (., Upe).
By Equations (91) and (92), we obtain the following generalized result.

by Equation (91). [

Theorem 10.2. Let qbé?j ) be distinct generating elements of the M-Euler probability space (P, ¢, V)
of a group G, in the sense of Equation (90), for j =1, ..., N, for N € N. Then

(ny) S 1
e | | I o =, P2 (1= (93)

wp,G (Jljy[l ¢g(]7])) = zﬁp,G’ (((b(m) Koewe Xk ¢(nN)) ® (ugl e ugN))

Proof. Observe that

by Equation o1). O

Let gbg be given as in the above theorem in (@, ¢, ¥, ), for j = 1, ..., N, and let k#“(...) means

the free cumulant in terms of 1), ; obtained by the Mobius inversion in the sense of Section 2.2. Then
BE (05, o, o)) = % ( 0 40 (,H ¢§?]")) pim, 1)
TENC(N) Ver JjeEV

- wel\%(N) (Vlgﬂ <<6j?vgj’ eG) (pjezvnﬂ> (1 - 5))) pu(m, 1n)

ST D) e

TeENC(N) m

by Equation (93)

where || means the number of blocks in the partition 7, for all 7 € NC(N), and where

0, = II (5119 eG),foralleNC’(N) (94)

Ver JEV
and

Yy = §ig (an) , forall 7 € NC(N)

s JEV
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Proposition 10.3. Let qbé?j) be generating elements of (P, Vp ), for j=1,.., N, for N € N. Then

]
KL (ol . = > 4 Z( (1—-= ) w(m, 1y) (95)

TeENC(N) T
where 6 and ) are in the sense of Equation (94), for all m € NC(N), for all N € N.

In the Formula (95), note that

S () 2 (o(1-1)) 9%

jev

sincen; € N, forall j =1, ..., N,and since V # @, forall V € 7, forall m € NC(N), for N € N.
Now, we define positive quantities 6, by

)
defZ( 1——) > 1 (97)

for all 1 € NC(N), for all N € N, where > is determined by Equation (95), satisfying
Equation (96).
Then the Formula (95) can be re-written by

Sl (N = > 5 O, 1y) (98)

TeNC(n
by Equation (97).
Now, let qﬁml and ¢§22) be fixed two distinct generating free random variables in the Mg-Euler
probability space (@, ¢, ¥p.¢) for a group G, as in Equation (90). Then, for any “mixed” n-tuples
(i1, ..., in) € {1, 2}", forn € N \ {1}, we have the mixed free cumulants of ¢}, ( gﬁ“))* , o) and

( 522)> as follows,

G (i) (nin) | _
kP (gbg;ill L B ) = Z | 0,0, p1(m, 1) (99)
TeNC({i1,in})
by Equations (95) and (98), for (7;,, ..., 7;,,) € {1, —1}", where J, are in the sense of Equation (94),
and 6, are in the sense of Equation (97), for all 7 € NC'(n). Remark that
(8)" = (6 @ uy)" = ¢ @ uyr = ¢ @ ugs = o

foralln € N, g € GG. So, the mixed free cumulants of

{0, (85m)", o) (002) "}

are indeed determined by Equation (99).
Consider further that, if noncrossing partitions 7, and 75 have different numbers of blocks in
NC(n), then
O, # 0, in N
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by the inequality of Equation (97).
So, to make the sum Equation (99) be vanishing, in general,

0 =0,0r0,0, =1, forall m € NC(n) (100)

by Equation (99). Indeed, if §, = 0, for all 7 € NC(n), then definitely, the right-hand side of
Equation (99) vanishes. And if 0,0, = 1, then the right-hand side of Equation (99) becomes

Z p(m, 1) =0

TeNC(n)
However, note that, by Equations (96) and (97),

0. > 1, in general, whenever n > 2, in Equation (99) (101a)

and hence, in general,

00, #1 (101b)

Moreover, by the very definition,

O, # O, <= T # T (102)

By Equations (101a) and (101b) the condition Equation (100) can be re-written by that “in general,”
0r = 0. i.e., to vanish the Formula (99), we in general have to have §,, = 0. Recall, by Equation (94), that

or= 116 ST in Equation (99)

vem ijevyiy

for all m € NC(n). So, to satisfy 6, = 0, forall m € NC(n), foralln € N\ {1}

(s m Tij - O
jl;llgij ) €G

for all m € N \ {1}, for all mixed m-tuples (i1, ..., i,,) € {1, 2} and (r;,, ..., 75,) € {1, —1}™,

equivalently,

mor .
ngijj # eq in G
]:

where (i1, ..., i,,) € {1, 2}, and (r;,, ..., 75, ) € {1, —1} are “mixed,” form € N\ {1}.
By the above observation, one can get the following refined result of Equation (95), equivalently
Equation (99).

Proposition 10.4. Let T; = qbé?j) € (P, Up) be in the sense of Equation (90), for j =1, ..., N, for
N € N. Then
> Op(m, 1) if N is even
WENC(Tl ..... TN)

kk2C (T, ..., Ty) = (103)
0 if N is odd



Mathematics 2015, 3 1136

where

NC(Th, ..., Ty) = {r € NC(N) |5, £ 0}

whenever N is even.

Proof. The proof is done by Equations (95), (99) and (100). [

Moreover, by Equation (103), we obtain the following corollary.

Corollary 10.5. Let T; = _f,?j) € (9,6, ¥pa) be in the sense of Equation (90), for j = 1, 2, and let
(Siyy oo Siy,) be a “mixed” 2n-tuple of {T', T}, Ts, Ty }. Then

Bod (Siyy oo Si) = > Oapalm, 122) (104)
ﬁGNC(Sil s e S;

2271)

where 0 are in the sense of Equation (97), and

VYV € m, V contains the

b T, and T}

NC(Sis oo Sin) = 4 1 € NC({in, eoigyy) | 27 umber of Ty and 17,

or” the same number of
Ty and T in it

where

NCg(2n) “ {x € NC(2n) : WV € 1, |V]| € 2N}

Proof. The proof of Equation (104) is from Equation (103). [

The above Formulas Equations (93), (95), (103) and (104) provide equivalent joint free-distributional
data for free random variables T} = gbé?j ) and T}, forj=1,..,n,forneN.
Observation The Formulas (93), (95), (103) and (104) also provide equivalent free-distributional

data of certain free random variables for p-adic dynamical W*-algebras by Sections 6-9.
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