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1. Introduction and Summary

The lower Leech cohomology groups of monoids [1], denoted here by Hn
L(M,A), have been proven

useful for the classification of interesting monoidal structures. Thus, abelian-group co-extensions
of monoids are classified by means of Leech two-cohomology classes [1] (§2.4.9), whereas Leech
three-cohomology classes classify monoidal abelian groupoids (M,⊗) [2] (Theorem 4.2), that is
(Brandt) groupoids M, whose vertex groups AutM(x) are all abelian, endowed with a monoidal
structure by a tensor functor ⊗ : M×M → M, a unit object I and coherent associativity and unit
constraints a : (x⊗ y)⊗ z ∼= x⊗ (y ⊗ z), and l : I⊗ x ∼= x and r : x⊗ I ∼= x [3,4].

On commutative monoids, nevertheless, Leech cohomology groups do not properly take into account
their commutativity, in contrast to what happens with Grillet’s symmetric cohomology groups [5–8],
which we denote byHn

s (M,A). For instance, symmetric two-cohomology classes classify abelian-group
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commutative co-extensions of commutative monoids [8] (§V.4), whereas symmetric three-cohomology
classes classify strictly symmetric monoidal abelian groupoids (M,⊗, c) [9] (Theorem 3.1), that is
monoidal abelian groupoids (M,⊗), as above, but now endowed with coherent symmetry constraints
cx,y : x⊗ y ∼= y ⊗ x, satisfying cx,y ◦ cy,x = idx⊗y and cx,x = idx⊗x [3,4,10,11].

To some extent, however, Grillet’s symmetric cohomology theory at degrees greater than two seems to
be a little too “strict” (for example, when M = G is any abelian group, its symmetric three-cohomology
groups H3

s (G,A) are all zero). Therefore, in this paper, we present a different approach for a
cohomology theory of commutative monoids, which is inspired in the (first-level) cohomology of abelian
groups by Eilenberg and Mac Lane [12–15] and based on the cohomology theory of simplicial sets by
Gabriel and Zisman [16] (Appendix II).

In the same manner that every monoid M , regarded as a constant simplicial monoid, has associated
a classifying simplicial set WM [17] satisfying that, for any Leech system of coefficients A on M ,
Hn

L(M,A) = Hn(WM,A) [2] (§4.1.1), when the monoid M is commutative, it also has associated an
iterated classifying simplicial set W (WM). Gabriel–Zisman’s cohomology groups of this simplicial set
are used to define, for any Grillet system of coefficients A on M (or, equivalently, any abelian group
object in the comma category of commutative monoids over M ), the commutative cohomology groups
of M , denoted Hn

c (M,A), by

Hn
c (M,A) = Hn+1(W

2
M,A).

For instance, when M = G is an abelian group, as the simplicial set W
2
G is an Eilenberg–Mac Lane

minimal complex K(G, 2), for any abelian group A (regarded as a constant coefficient system on G), the
commutative cohomology groups Hn

c (G,A) are precisely the Eilenberg–Mac Lane cohomology groups
of the abelian group G with coefficients in A [12–15] (also denoted by Hn

ab(G,A) in [18,19]).
In this paper, we are mainly interested in the lower cohomology groupsHn

c (M,A), for n ≤ 3. Hence,
in Section 2, most of our work is dedicated to showing how these commutative cohomology groups
can be defined “concretely” by manageable and computable commutative cocycles, such as Grillet did
for the cohomology groups Hn

s (M,A) by using symmetric cocycles. Thus, for any Grillet system
of coefficients A on a commutative monoid M , we exhibit a four-truncated complex of commutative
cochains C•c (M,A), such that

Hn
c (M,A) ∼= HnC•c (M,A), n ≤ 3,

whose construction is based on the construction of the reduced complexes A(G, 2) by Eilenberg
and Mac Lane [17] to compute the (co)homology groups of the spaces K(G, 2). Furthermore, the
existence of a cochain complex monomorphism C•s (M,A) ↪→ C•c (M,A), where the first is Grillet’s
four-truncated complex of symmetric cochains, easily allows one to state the relationships among the
symmetric, commutative and Leech low-dimensional cohomology groups of commutative monoids (see
Theorem 3.5):

H1
s (M,A) ∼= H1

c (M,A) ∼= H1
L(M,A),

H2
s (M,A) ∼= H2

c (M,A) ↪→ H2
L(M,A),

H3
s (M,A) ↪→ H3

c (M,A)→ H3
L(M,A),
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where, in general, the inclusions H2
c (M,A) ↪→ H2

L(M,A) and H3
s (M,A) ↪→ H3

c (M,A) are strict,
whereas the homomorphism H3

c (M,A)→ H3
L(M,A) is neither injective nor surjective.

For n = 1, 2, because of the the isomorphisms Hn
s (M,A) ∼= Hn

c (M,A), there is nothing new to
say about how to interpret these latter ones: elements of H1

c (M,A) are derivations, and elements of
H2

c (M,A) are iso-classes of (abelian-group) commutative monoid co-extensions.
Then, in Section 4 of the paper, we focus our attention on the commutative cohomology groups

H3
c (M,A), to whose elements we give a natural interpretation in terms of equivalence classes of

braided monoidal abelian groupoids (M,⊗, c), that is monoidal abelian groupoids (M,⊗) endowed
with coherent and natural isomorphisms (the braidings) cx,y : x ⊗ y ∼= y ⊗ x [19], defined as
for strictly-symmetric abelian monoids, but now not necessarily satisfying the symmetry condition
cx,y ◦ cy,x = idx⊗y nor the strictness condition cx,x = idx⊗x. The result, which was in fact our
main motivation to seek the cohomology theory we present, can be summarized as follows (see
Theorem 4.5 for details): stating that two triples (M,A, k) and (M ′,A′, k′), where k ∈ H3

c (M,A)

and k′ ∈ H3
c (M ′,A′), are isomorphic whenever there are isomorphisms i : M ∼= M ′ and ψ : A ∼= A′i,

such that ψ−1
∗ i∗k′ = k, then

“There is a one-to-one correspondence between equivalence classes of braided monoidal
abelian groupoids (M,⊗, c) and iso-classes of triples (M,A, k), with k ∈ H3

c (M,A).”

This classification theorem, which extends that given by Joyal and Street in [19] (§3) for braided
categorical groups, leads to bijections

H3
c (M,A) ∼= Ext2

c(M,A)

expressing a natural interpretation of commutative three-cohomology classes as equivalence classes of
certain commutative two-dimensional co-extensions of M by A.

2. Preliminaries on Cohomology of Monoids and Simplicial Sets

This section aims to make this paper as self-contained as possible; hence, at the same time as fixing
notations and terminology, we also review some necessary aspects and results about the cohomology of
monoids and simplicial sets used throughout the paper. However, the material in this preliminary section
is perfectly standard by now, so the expert reader may skip most of it.

2.1. Grillet Cohomology of Commutative Monoids: Symmetric Cocycles

The category of commutative monoids is monadic (or tripleable) over the category of sets [20], and
so, it is natural to specialize Barr–Beck cotriple cohomology [21] to define a cohomology theory for
commutative monoids. This was done in the 1990s by Grillet, to whose papers [5–7] and book [8]
(Chapters XII, XIII, XIV) we refer the reader interested in a detailed study of these symmetric
cohomology groups for commutative monoids M , which we denote here by Hn

s (M,A). For the needs
of this paper, it suffices to point out the following basic facts about how to compute them.

For any given commutative monoid M , the coefficients for its cohomology, that is the abelian group
objects in the comma category of commutative monoids over M , are provided by abelian group valued
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functors on the Leech category HM . This is the category with object setM and arrow setM×M , where
(a, b) : a → ab; the composition is given by (ab, c)(a, b) = (a, bc), and the identity of an object a is
(a, 1). An abelian group valued functor,A : HM → Ab, thus consists of abelian groupsAa, a ∈M and
homomorphisms b∗ : Aa → Aab, a, b ∈ M , such that, for any a, b, c ∈ M , b∗c∗ = (bc)∗ : Aa → Aabc,
and for any a ∈ M , 1∗ = idAa . To compute the lower cohomology groups Hn

s (M,A), there is a
truncated cochain complex

C•s (M,A) : 0→ C1
s (M,A)

∂−→ C2
s (M,A)

∂−→ C3
s (M,A)

∂−→ C4
s (M,A),

called the complex of (normalized on 1 ∈ M ) symmetric cochains on M with values in A, which is
defined as follows:

A symmetric one-cochain, f ∈ C1
s (M,A), is a function f : M →

⊔
a∈M Aa with f(a) ∈ Aa, such

that f(1) = 0.

A symmetric two-cochain, g ∈ C2
s (M,A), is a function g : M2 →

⊔
a∈M Aa, with g(a, b) ∈ Aab,

such that

g(a, b) = g(b, a), g(a, 1) = 0.

A symmetric three-cochain, h ∈ C3
s (M,A), is a function h : M3 →

⊔
a∈M Aa with h(a, b, c) ∈ Aabc,

such that

h(a, b, c) + h(c, b, a) = 0, h(a, b, c) + h(b, c, a) + h(c, a, b) = 0, h(a, b, 1) = 0.

A symmetric four-cochain, t ∈ C4
s (M,A), is a function t : M4 →

⊔
a∈M Aa with t(a, b, c, d) ∈ Aabcd,

such that

t(a, b, b, a) = 0, t(d, c, b, a) + t(a, b, c, d) = 0, t(a, b, c, 1) = 0

t(a, b, c, d)− t(b, c, d, a) + t(c, d, a, b)− t(d, a, b, c) = 0,

t(a, b, c, d)− t(b, a, c, d) + t(b, c, a, d)− t(b, c, d, a) = 0.

Under pointwise addition, these symmetric n-cochains constitute the abelian groups Cn
s (M,A),

1 ≤ n ≤ 4. The coboundary homomorphisms are defined by
(∂1f)(a, b) = −a∗f(b) + f(ab)− b∗f(a),

(∂2g)(a, b, c) = −a∗g(b, c) + g(ab, c)− g(a, bc) + c∗g(a, b),

(∂3h)(a, b, c, d) = −a∗h(b, c, d) + h(ab, c, d)− h(a, bc, d) + h(a, b, cd)− d∗h(a, b, c).

The groups

Zn
s (M,A) = Ker

(
∂n : Cn

s (M,A)→ Cn+1
s (M,A)

)
,

Bn
s (M,A) = Im

(
∂n−1 : Cn−1

s (M,A)→ Cn
s (M,A)

)
,

are respectively called the groups of symmetric n-cocycles and symmetric n-coboundaries on M with
values in A. By [7] (Theorems 1.3 and 2.11), there are natural isomorphisms

Hn
s (M,A) ∼= Zn

s (M,A)/Bn
s (M,A), n = 1, 2, 3. (1)
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2.2. Cohomology of Categories and Simplicial Sets: Leech Cohomology of Monoids

If C is any small category, the category of abelian group valued functorsA : C→ Ab is abelian, and
it has enough injective and projective objects. There is a “global sections” functor given by

A 7→ lim←−C(A) =
{

(au) ∈
∏

u∈ObCAu | σ∗au = av for every σ : u→ v in C
}
,

where we write A(u) = Au and σ∗a for A(σ)(a). Then, we can form the right derived functors of lim←−C.
These are the cohomology groups of the category C with coefficients in A,

Hn(C,A) = (Rnlim←−C)(A),

studied by Roos [22], among other authors.

Example 2.1 (Leech cohomology of monoids). Any monoid M gives rise to a category DM , whose
set of objects is M and set of arrows M ×M ×M , with (a, b, c) : b → abc. Composition is given by
(d, abc, e)(a, b, c) = (da, b, ce), and the identity morphism of any object a is (1, a, 1). If we say that an
abelian group valued functorA : DM → Ab carries the morphism (a, b, c) to the group homomorphism
a∗c
∗ : Ab → Aabc, then we see that such a functor is a system of data consisting of abelian groups Aa,

a ∈M , and homomorphisms Ab
a∗−→ Aab

b∗←− Aa, a, b ∈M , such that, for any a, b, c ∈M ,

(ab)∗ = a∗b∗ : Ac → Aabc, c∗a∗ = a∗c
∗ : Ab → Aabc, c∗b∗ = (bc)∗ : Aa → Aabc,

and for any a ∈ M , 1∗ = idAa = 1∗ : Aa → Aa. Leech cohomology groups of a monoid M with
coefficients in an abelian group valued functor A : DM → Ab [1], denoted here by Hn

L(M,A), are
defined to be those of its associated category DM , that is,

Hn
L(M,A) = Hn(DM,A).

Let us remark that the category of monoids is monadic over the category of sets. In [23], Wells proves
that, for any monoid M , a functor A : DM → Ab can be identified with an abelian group object in
the comma category of monoids over M and that, with a dimension shift, both the Barr–Beck cotriple
cohomology theory [21] and the Leech cohomology theory of monoids are the same.

The cohomology theory of small categories is in itself a basis for other cohomology theories, in
particular for the cohomology theory of simplicial sets with twisted coefficients defined by Gabriel
and Zisman in [16]. Briefly, recall that the simplicial category, ∆, consists of the finite ordered sets
[n] = {0, 1, . . . , n}, n ≥ 0, with weakly order-preserving maps between them, and that the category
of simplicial sets is the category of functors X : ∆op → Set, where Set is the category of sets, with
morphisms the natural transformations. The category ∆ is generated by the injections di : [n− 1]→ [n]

(cofaces), which omit the i-th element, and the surjections si : [n + 1] → [n] (codegeneracies), which
repeat the i-th element, 0 ≤ i ≤ n, subject to the well-known cosimplicial identities: djdi = didj−1
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if i < j, etc. (see [20]). Hence, in order to define a simplicial set, it suffices to give the sets of its
n-simplices Xn = X([n]) together with maps

di = (di)∗ : Xn → Xn−1, 0 ≤ i ≤ n (the face maps),

si = (si)∗ : Xn → Xn+1, 0 ≤ i ≤ n (the degeneracy maps),
(2)

satisfying the well-known basic simplicial identities: didj = dj−1di if i < j, etc. The category of
simplices of a simplicial set X , ∆/X , has as objects the pairs (x, n) with x ∈ Xn, and a morphism
(α, x) : (α∗x,m) → (x, n) consists of a map α : [m] → [n] in ∆ together with a simplex x ∈ Xn. A
coefficient system on X is a functor A : ∆/X → Ab, and the cohomology groups of the simplicial set
X with coefficients in A are, by definition,

Hn(X,A) = Hn(∆/X,A).

We point out below two useful facts. The first of them is an easy consequence of being the maps di,
sj and the cosimplicial identities a set of generators and relations for ∆, and the second one is the dual
of Theorem 4.2 in [16] (Appendix II) and takes into account the normalization theorem.

Fact 2.2. Let X be a simplicial set. In order to define a functor π : ∆/X → C, it suffices to give objects
πx ∈ C, x ∈ Xn, n ≥ 0, together with morphisms:

πdix
π(di,x) // πx πsix,

π(si,x)oo x ∈ Xn, 0 ≤ i ≤ n,

satisfying the equations

π(dj, x)π(di, djx) = π(di, x)π(dj−1, dix) : πdidjx→ πx, i < j,

π(sj, x)π(di, sjx) = π(di, x)π(sj−1, dix) : πdisjx→ πx, i < j,

π(si, x)π(di, six) = idπx = π(si, x)π(di+1, six) : πdisix→ πx,

π(sj, x)π(di, sjx) = π(di−1, x)π(sj, di−1x) : πdisjx→ πx, i > j + 1,

π(sj, x)π(si, sjx) = π(si, x)π(sj+1, six) : πsisjx→ πx, i ≤ j.

If A : ∆/X → Ab is any coefficient system on a simplicial set X , then, for any simplex x ∈ Xn,
we denote by Ax the abelian group A(x) and by (α, x)∗ : Aα∗x → Ax the homomorphism A(α, x)

associated with any morphism (α, x) in ∆/X .

Fact 2.3. Let A : ∆/X → Ab be a coefficient system on a simplicial set X . A n-cochain of X with
coefficients in A is a map λ : Xn →

⊔
x∈Xn
Ax, such that λ(x) ∈ Ax for each x ∈ Xn. Thus,

∏
x∈Xn
Ax

is the abelian group of such n-cochains. As n ≥ 0 varies, these define a cosimplicial abelian group
∆→ Ab, [n] 7→

∏
x∈Xn
Ax, whose cosimplicial operators

∏
x∈Xn−1

Ax
di∗ //

∏
x∈Xn

Ax
∏

x∈Xn+1

Ax,
si∗oo

0 ≤ i ≤ n, are respectively given by the formulas



Mathematics 2015, 3 1007

di∗(λ)(x) = (di, x)∗(λ(dix)), si∗(λ)(x) = (si, x)∗(λ(six)).

Then, if

C•(X,A) : 0→ C0(X,A)→ · · · → Cn(X,A)
∂→ Cn+1(X,A)→ · · ·

denotes its associated normalized cochain complex, where

Cn(X,A) =
n−1⋂
i=0

ker(si∗ :
∏

x∈Xn
Ax →

∏
x∈Xn−1

Ax),

is the abelian group of normalized n-cochains, with coboundary ∂ =
∑

(−1)idi∗; there is a natural
isomorphism

Hn(X,A) ∼= Hn(C•(X,A)).

Many cohomology theories for algebraic systems find fundament in the cohomology of simplicial
sets; in particular, Leech cohomology theory for monoids, as we explain below. Previously, recall that a
simplicial monoid is a contravariant functor from the simplicial category to the category of monoids,
X : ∆op → Mon. Thus, each Xn is a monoid and the face and degeneracy operators in (2) are
homomorphisms. Every simplicial monoid X has associated a classifying simplicial set

WX : ∆op → Set, (3)

which is defined as follows (this is WX in [17]): (WX)0 = {1}, the unitary set, and

(WX)n+1 = Xn ×Xn−1 × · · · ×X0.

Write the elements of (WX)n+1 in the form (xn, . . . , x0). The face and degeneracy maps are defined
by s0(1) = (1), by di(x0) = 1, i = 0, 1 and for n > 0 by

d0(xn, . . . , x0) = (xn−1, . . . , x0),

di+1(xn, . . . , x0) = (dixn, . . . , d1xn−i+1, d0xn−i · xn−i−1, xn−i−2, . . . , x0), i < n,

dn+1(xn, . . . , x0) = (dnxn, . . . , d1x1),

s0(xn, . . . , x0) = (1, xn, . . . , x0),

si+1(xn, . . . , x0) = (sixn, . . . , s0xn−i, 1, xn−i−1, . . . , x0), i < n,

sn+1(xn, . . . , x0) = (snxn, . . . , s0x0, 1).

For example, given any monoid M , let M : ∆op →Mon denote the constant M simplicial monoid,
that is the simplicial monoid given by Mn = M , n ≥ 0, and by letting each di and si on Mn be the
identity map on M . Then, the W -construction on it produces the so-called classifying simplicial set of
the monoid

WM : ∆op → Set, [n] 7→Mn, (4)
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whose face and degeneracy maps are given by the familiar formulas

di(a1, . . . , an) =


(a2, . . . , an) i = 0,

(a1, . . . , ai−1, aiai+1, ai+2, . . . , an) 0 < i < n,

(a1, . . . , an−1) i = n,

si(a1, . . . , an) = (a1, . . . , ai−1, 1, ai, . . . , an) 0 ≤ i ≤ n.

There is a functor π : ∆/WM → DM , such that π(a1, . . . , an) = a1 · · · an, and

π(di, (a1, . . . , an)) =


(a1, a2 · · · an, 1) : a2 · · · an → a1 · · · an, i = 0,

id : a1 · · · an → a1 · · · an, 0 < i < n,

(1, a1 · · · an−1, an) : a1 · · · an−1 → a1 · · · an, i = n,

π(si, (a1, . . . , an)) = id : a1 · · · an → a1 · · · an, 0 ≤ i ≤ n.

Then, by composition with π, any functor A : DM → Ab defines a coefficient system on WM ,
also denoted by A : ∆/WM → Ab, and therefore, the cohomology groups Hn(WM,A) are defined.
By Fact 2.3, these cohomology groups can be computed from the cochain complex C•(WM,A), which
is given in degree n > 0 by

Cn(WM,A) =
{
λ ∈

∏
(a1,...,an)∈Mn

Aa1···an | λ(a1, . . . , an) = 0 whenever some ai = 1
}

and C0(WM,A) = A1. The coboundary ∂n : Cn(WM,A) → Cn+1(WM,A) is given, for n = 0, by
(∂0λ)(a) = a∗λ− a∗λ, while, for n > 0,

(∂nλ)(a1, . . . , an+1) = (a1)∗λ(a2, . . . , an) +
n∑
i=1

(−1)iλ(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1(an+1)∗λ(a1, . . . , an).

As Leech proved in [1] (Chapter II, 2.3, 2-9) that the cohomology groups Hn
L(M,A) can be just

computed as those of this cochain complex C•(WM,A), it follows that there are natural isomorphisms

Hn
L(M,A) ∼= Hn(WM,A).

3. A Cohomology Theory for Commutative Monoids

Let us return now to the case whereM is a commutative monoid. Under this hypothesis, the simplicial
setWM in (4) is again a simplicial monoid, with the product monoid structure on eachMn. We can then
perform the W -construction (3) on it, which gives the simplicial set (actually, a commutative simplicial
monoid)

W
2
M : ∆op → Set,

whose set of n-simplices is
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(W
2
M)n =

{
{1} i = 0, 1,

Mn−1×Mn−2 × · · · ×M i ≥ 2.

Writing an n+ 1-simplex x of W
2
M in the form

x =
(
xkj
)
1≤j≤k≤n = ((xn1 , . . . , x

n
n), . . . , (x2

1, x
2
2), x1

1), (5)

where each (xk1, . . . , x
k
k) ∈Mk is a k-simplex ofWM , its faces and degeneracies are respectively defined

by di(x) =
(
yml
)

and si(x) =
(
zvu
)
, where

yml =



xml m<n−i,

xm+1
l+1 x

m
l m=n−i,

xm+1
l m>n−i, l<m−n+i,

xm+1
l xm+1

l+1 m>n−i, l=m−n+i,

xm+1
l+1 m>n−i, l>m−n+i,

zvu =



xvu v≤n−i,

1 v=n−i+1,

xv−1
u v>n−i+1, u<v−n+i−1,

1 v>n−i+1, u=v−n+i−1,

xv−1
u−1 v>n−i+1, u>v−n+i−1.

Recall now, from Subsection 2.1, that abelian group valued functors on the Leech category HM
provide the coefficients for Grillet’s cohomology groups of a commutative monoidM . There is a functor
π : ∆/W

2
M → HM , which, taking into account Fact 2.2, is determined by πx =

∏
xkj , for each

n + 1-simplex x =
(
xkj
)
1≤j≤k≤n of W

2
M as in (5), where the product

∏
xkj is in the monoid M over all

0 ≤ j ≤ k ≤ n, together with the homomorphisms

π(di, x) =


(πd0x, x

n
1x

n
2 · · ·xnn) : πd0x→ πx, i = 0,

(πdix, x
n+1−i
1 ) : πdix→ πx, 0 < i ≤ n,

(πdn+1x, x
n
nx

n−1
n−1 · · · x1

1) : πdn+1x→ πx, i = n+ 1,

π(si, x) = id : πsix = πx→ πx, 0 ≤ i ≤ n.

Therefore, by composition with π, any functor A : HM → Ab gives rise to a coefficient system on
the simplicial set W

2
M , equally denoted by

A : ∆/W
2
M → Ab,

whence the cohomology groups of W
2
M with coefficients inA are defined. Note that these cohomology

groups are trivial at dimensions zero and one. Then, making a dimensional shift, we state the
following definition.

Definition 3.1. LetM be a commutative monoid. For any abelian group valued functorA : HM → Ab,
the commutative cohomology groups of M with coefficients in A, denoted Hn

c (M,A), are defined by

Hn
c (M,A) = Hn+1(W

2
M,A), n ≥ 1.

Example 3.2. Let M = G be an abelian group. Then, the simplicial set W
2
G is an Eilenberg–Mac

Lane minimal complex K(G, 2) [17,24] (Theorem 17.4), [24] (Theorem 23.2). For any abelian
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group A, regarded as a constant functor A : HG → Ab, the commutative cohomology groups
Hn

c (G,A) = Hn+1(K(G, 2), A) define the first level or abelian Eilenberg–Mac Lane cohomology theory
of the abelian group G [12–15,17] (these are denoted also by Hn

ab(G,A) in [18,19] and by Hn
1 (G,A)

in [25]). Although these cohomology groups arise from algebraic topology, they come with algebraic
interest. Briefly, recall that there are natural isomorphisms [26] (26.1), (26.3), (26.4))

H1
c (G,A) ∼= Hom(G,A), H2

c (G,A) ∼= Ext(G,A), H3
c (G,A) ∼= Quad(G,A),

where Hom(G,A) is the group of homomorphisms from G to A, Ext(G,A) is the group of abelian
group extensions of G by A and Quad(G,A) is the abelian group of quadratic maps from G to A,
that is functions q : G → A, such that f(x, y) = q(x + y) − q(x) − q(y) is a bilinear function
of x, y ∈ G. A precise classification theorem for braided categorical groups [19] (Definition 3.1)in
terms of cohomology classes k ∈ H3

c (G,A) was proven by Joyal and Street in [19] (Theorem 3.3) (see
Corollary 4.6 for an approach here to that issue).

Let us stress that, among the Extn groups in the category of abelian groups, only Ext0(G,A) ∼=
H1

c (G,A) and Ext1(G,A) ∼= H2
c (G,A) are relevant, since all groups Extn(G,A) vanish for n ≥ 2.

However, for example, it holds that H3
c (Z/2Z,Z/2Z) ∼= Z/2Z 6= 0.

In this paper, we are only interested in the cohomology groups Hn
c (M,A) for n ≤ 3. Both for

theoretical and computational interests, it is appropriate to have a more manageable cochain complex
thanC•(W

2
M,A) to compute the lower commutative cohomology groupsHn

c (M,A), such as Grillet did
for computing the cohomology groupsHn

s (M,A) by means of symmetric cochains (see Subsection 2.1).
We shall exhibit below such a (truncated) complex, denoted by

C•c (M,A) : 0→ C1
c (M,A)

∂1−→ C2
c (M,A)

∂2−→ C3
c (M,A)

∂3−→ C4
c (M,A), (6)

and referred to as the complex of (normalized) commutative cochains on M with values in A.
The construction of this complex is heavily inspired by that given by Eilenberg and Mac Lane of
the complexes A(G, 2) [17] for computing the (co)homology groups of the spaces K(G, 2), and it is
as follows:

A commutative one-cochain f ∈ C1
c (M,A) is a function f : M →

⊔
a∈M Aa with f(a) ∈ Aa, such

that f(1) = 0.

A commutative two-cochain g ∈ C2
c (M,A) is a function g : M2 →

⊔
a∈M Aa with g(a, b) ∈ Aab,

such that g(a, b) = 0 if a or b are equal to one.

A commutative three-cochain (h, µ) ∈ C2
c (M,A) is a pair of functions

h : M3 →
⊔
a∈M Aa, µ : M2 →

⊔
a∈M Aa

with h(a, b, c) ∈ Aabc and µ(a, b) ∈ Aab, such that h(a, b, c) = 0 whenever some of a, b or c are equal to
one and µ(a, b) = 0 if a or b are equal to one.

A commutative four-cochain (t, γ, δ) ∈ C2
c (M,A) is a triple of functions

t : M4 →
⊔
a∈M Aa, γ, δ : M3 →

⊔
a∈M Aa
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with t(a, b, c, d) ∈ Aabcd and γ(a, b, c), δ(a, b, c) ∈ Aabc, such that t(a, b, c, d) = 0 whenever some of
a, b, c or d are equal to one and γ(a, b, c) = 0 = δ(a, b, c) if some of a, b, or c are equal to one.

Under pointwise addition, these commutative n-cochains form the abelian groups Cn
c (M,A) in (6),

1 ≤ n ≤ 4. The coboundary homomorphisms are defined by

∂1f = g, where
g(a, b) = −a∗f(b) + f(ab)− b∗f(a),

∂2g = (h, µ), where

h(a, b, c) = −a∗g(b, c) + g(ab, c)− g(a, bc) + c∗g(a, b),

µ(a, b) = g(a, b)− g(b, a),

∂3(h, µ) = (t, γ, δ), where

t(a, b, c, d) = −a∗h(b, c, d) + h(ab, c, d)− h(a, bc, d) + h(a, b, cd)− d∗h(a, b, c),

γ(a, b, c) = −b∗µ(a, c) + µ(a, bc)− c∗µ(a, b) + h(a, b, c)− h(b, a, c) + h(b, c, a),

δ(a, b, c) = −a∗µ(b, c) + µ(ab, c)− b∗µ(a, c)− h(a, b, c) + h(a, c, b)− h(c, a, b).

A quite straightforward verification shows that (6) is actually a truncated cochain complex, that is the
equalities ∂2∂1 = 0 and ∂3∂2 = 0 hold.

A basic result here is the following, whose proof is quite long and technical, and we give it in
Subsection 3.1, so as not to obstruct the natural flow of the paper.

Theorem 3.3. Let M be any commutative monoid, and let A : HM → Ab be a functor. For each
n ≤ 3, there is a natural isomorphism:

Hn
c (M,A) ∼= Hn

(
C•c (M,A)

)
. (7)

From this theorem, for n ≤ 3, we have isomorphisms

Hn
c (M,A) ∼= Zn

c (M,A)/Bn
c (M,A) (8)

where
Zn

c (M,A) = Ker
(
∂n : Cn

c (M,A)→ Cn+1
c (M,A)

)
,

Bn
c (M,A) = Im

(
∂n−1 : Cn−1

c (M,A)→ Cn
c (M,A)

)
,

are referred as the groups of commutative n-cocycles and commutative n-coboundaries onM with values
in A, respectively.

After Theorem 3.3 and the isomorphisms in (1), Grillet symmetric cohomology groupsHn
s (M,A) and

the commutative ones Hn
c (M,A) are closely related, for n ≤ 3 through the natural injective cochain

map

0 // C1
s (M,A) ∂1 //

i1=id

C2
s (M,A) ∂2 //
_�

i2
��

C3
s (M,A) ∂3 //
_�

i3
��

C4
s (M,A)
_�

i4
��

0 // C1
c (M,A) ∂1 // C2

c (M,A) ∂2 // C3
c (M,A) ∂3 // C4

c (M,A),
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which is the identity map, i1(f) = f , on one-cochains, the inclusion map, i2(g) = g, on two-cochains,
and on three- and four-cochains is defined by the simple formulas i3(h) = (h, 0) and i4(t) = (t, 0, 0),
respectively. The only non-trivial verification here concerns the equality ∂3i3 = i4∂

3, that is, ∂3(h, 0) =

(∂3h, 0, 0), for any h ∈ C3
s (M,A), but it easily follows from Lemma 3.4 below.

From now on, we shall regard the complex of symmetric cochains as a subcomplex of the complex of
commutative cochains, via the above injective cochain map. Thus,

C•s (M,A) ⊆ C•c (M,A). (9)

Lemma 3.4. LetA : HM → Ab be a functor, where M is any commutative monoid, and let h : M3 →⊔
a∈M Aa be a function with h(a, b, c) ∈ Aabc. Then, h satisfies the symmetry conditions

h(a, b, c) + h(c, b, a) = 0, h(a, b, c) + h(b, c, a) + h(c, a, b) = 0, (10)

if and only if it satisfies either (11) or (12) below.

h(a, b, c)− h(b, a, c) + h(b, c, a) = 0 (11)

h(a, b, c)− h(a, c, b) + h(c, a, b) = 0 (12)

Proof. The implication (10)⇒(11) and (10)⇒(12) are easily seen. To see that (11)⇒(10), observe that,
making the permutation (a, b, c) 7→ (c, b, a), equation (11) is written as h(b, c, a) = h(c, b, a)+h(b, a, c).
If we carry this to equation (11), we obtain

h(a, b, c)− h(b, a, c) + h(c, b, a) + h(b, a, c) = h(a, b, c) + h(c, b, a) = 0,

that is the first condition in (10) holds. However, then, we get also the second one simply by replacing
the term h(b, a, c) with −h(c, a, b) in (11). The proof that (12)⇒(10) is parallel.

Theorem 3.5. For any commutative monoid M and any functor A : HM → Ab, there are natural
isomorphisms

H1
s (M,A) ∼= H1

c (M,A), (13)

H2
s (M,A) ∼= H2

c (M,A), (14)

and a natural monomorphism
H3

s (M,A) ↪→ H3
c (M,A). (15)

Proof. The equalities Z1
s (M,A) = Z1

c (M,A) and B2
s (M,A) = B2

c (M,A) are clear.
Further Z2

s (M,A) = Z2
c (M,A), since the cocycle condition on a commutative two-cochain g implies

the symmetry condition g(a, b) = g(b, a). Hence, the isomorphisms (13) and (14) follow from those in
(1) and (8), for n = 1 and n = 2, respectively.

The homomorphism in (15) is the composite of

H3
s (M,A)

(1)∼= H3C•s (M,A)
(9)−→ H3C•c (M,A)

(8)∼= H3
c (M,A),
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so it suffices to prove that the homomorphism induced by (9) on the third cohomology groups is injective.
To do so, suppose h ∈ C3

s (M,A) is a symmetric three-cochain, such that i3(h) = (h, 0) ∈ B2
c (M,A)

is a commutative three-coboundary, that is (h, 0) = ∂2g for some g ∈ C2
c (M,A). This means that the

equalities:

h(a, b, c) = −a∗g(b, c) + g(ab, c)− g(a, bc) + c∗g(a, b), 0 = g(a, b)− g(b, a),

hold, whence g ∈ C2
s (M,A) is a symmetric two-cochain and h = ∂2g ∈ B2

s (M,A) is actually a
symmetric two-coboundary. It follows that the inclusion map i3 : Z3

s (M,A) ↪→ Z3
c (M,A) induces an

injective map in cohomology H3C•s (M,A)
)
↪→ H3C•c (M,A), as required.

Remark 3.6. The inclusion H3
s (M,A) ⊆ H3

c (M,A) is, in general, strict. Let G be any abelian group,
and let A : HG→ Ab be the constant functor defined by any other abelian group A, as in Example 3.2.
Then, by Lemma 3.4 and a result by Mac Lane [15] (Theorem 4), we have that H3

s (G,A) = 0. However,
for instance, it holds that H3

c (Z/2Z,Z/2Z) ∼= Z/2Z 6= 0.

If M is any commutative monoid and A : HM → Ab is a functor, then a function f : M →⊔
a∈M Aa, such that f(a) ∈ Aa and f(ab) = a∗f(b) + b∗f(a), is called a derivation of M in A, written

as f : M → A. Let
Der(M,A)

denote the abelian group, under pointwise addition, of derivations f : M → A.

Corollary 3.7. For any commutative monoid M and any functor A : HM → Ab, there is
a natural isomorphism

H1
c (M,A) ∼= Der(M,A).

Proof. The equality Z1
c (M,A) = Der(M,A) holds, since any derivation f : M → A satisfies the

normalization condition f(1) = 0. Hence, the result follows from the isomorphisms (7) in Theorem 3.3
for n = 1.

For the next corollary, let us recall that a commutative (group) coextension of a commutative monoid
M by a functor A : HM → Ab is a surjective monoid homomorphism p : E � M , such that,
for each a ∈ M , it is given a simply transitive group action of the group Aa on the fiber set p−1(a),
(ua, xa) 7→ ua · xa, satisfying the equations below.

(ua · xa)(ub · xb) = (a∗ub + b∗ua) · (xaxb)

Let Extc(M,A) denote the set of equivalence classes of such commutative co-extensions of M by
A, where two of them, say p : E � M and p′ : E ′ � M , are equivalent whenever there is a monoid
isomorphism ϕ : E → E ′, such that p′ϕ = p and ϕ(u · x) = u · ϕ(x), for any x ∈ E and u ∈ Ap(x).

Corollary 3.8. For any commutative monoid M and any functor A : HM → Ab, there is
a natural bijection

H2
c (M,A) ∼= Extc(M,A).
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Proof. After the isomorphism (14) in Theorem 3.5, this is the classification result by Grillet [8]
(§V.4). We are not going to bring Grillet’s proof here, but we recall that in the correspondence
between commutative (= symmetric) two-cohomology classes and iso-classes of co-extensions, each
g ∈ Z2

c (M,A) is taken to the commutative coextension π : Aog M �M , where

Aog M =
⊔
a∈M Aa,

is the crossed product commutative monoid whose elements are pairs (ua, a) where a ∈M and ua ∈ Aa
and whose multiplication is given by

(ua, a)(ub, b) = (a∗ub + b∗ua + g(a, b), ab).

This multiplication is unitary ((0, 1) is the unit) since g is normalized, that is g(a, 1) = 0 = g(1, a);
and it is associative and commutative due to g being a symmetric two-cocycle, that is because of the
equalities a∗g(b, c) + g(a, bc) = g(ab, c) + c∗g(a, b) and g(a, b) = g(b, a). The homomorphism π :

Aog M � M is the projection, (ua, a) 7→ a, and for each a ∈ M , the action of Aa on π−1(a) is given
by addition in Aa, va · (ua, a) = (va + ua, a).

3.1. Proof of Theorem 3.3

We start by specifying the relevant truncation of the cochain complex C•(W
2
M,A) that, by Fact 2.3,

yields cocycles and coboundaries on the commutative monoid M at dimensions ≤ 3. To do so, we need
to pay attention to the six-dimensional truncated part of W

2
M

W
2
M : · · · M10 //////M6 //////

�� vv��
M3 //////

�� ww��
M //////

�� ww~~
1 // //

ww~~
1

yy

whose face and degeneracy operators are given by

di(b1, b2, a1) =



a1 i = 0,

b2a1 i = 1,

b1b2 i = 2,

b1 i = 3;

di(c1, c2, c3, b1, b2, a1) =



(b1, b2, a1) i = 0,

(c2b1, c3b2, a1) i = 1,

(c1c2, c3, b2a1) i = 2,

(c1, c2c3, b1b2) i = 3,

(c1, c2, b1) i = 4;

di(d1, d2, d3, d4, c1, c2, c3, b1, b2, a1) =



(c1, c2, c3, b1, b2, a1) i = 0,

(d2c1, d3c2, d4c3, b1, b2, a1) i = 1,

(d1d2, d3, d4, c2b1, c3b2, a1) i = 2,

(d1, d2d3, d4, c1c2, c3, b2a1) i = 3,

(d1, d2, d3d4, c1, c2c3, b1b2) i = 4,

(d1, d2, d3, c1, c2, b1) i = 5;

si(a1) =


(1, 1, a1) i = 0,

(1, a1, 1) i = 1,

(a1, 1, 1) i = 2;

si(b1, b2, a1) =



(1, 1, 1, b1, b2, a1) i = 0,

(1, b1, b2, 1, 1, a1) i = 1,

(b1, 1, b2, 1, a1, 1) i = 2,

(b1, b2, 1, a1, 1, 1) i = 3;
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si(c1, c2, c3, b1, b2, a1) =



(1, 1, 1, 1, c1, c2, c3, b1, b2, a1) i = 0,

(1, c1, c2, c3, 1, 1, 1, b1, b2, a1) i = 1,

(c1, 1, c2, c3, 1, b1, b2, 1, 1, a1) i = 2,

(c1, c2, 1, c3, b1, 1, b2, 1, a1, 1) i = 3,

(c1, c2, c3, 1, b1, b2, 1, a1, 1, 1) i = 4.

Hence, (with a dimensional shift) the cochain complex C•(W
2
M,A) for low degrees is

0→ C1(W
2
M,A)

∂−→ C2(W
2
M,A)

∂−→ C3(W
2
M,A)

∂−→ C4(W
2
M,A), (16)

where

A one-cochain λ ∈ C1(W
2
M,A) is a function λ : M →

⊔
a∈M Aa with λ(a) ∈ Aa, such that

λ(1) = 0.

A two-cochain λ ∈ C2(W
2
M,A) is a function

λ : M2 ×M →
⊔
a∈M Aa,

with λ(b1, b2, a1) ∈ Ab1b2a1 , such that λ(1, 1, a1) = 0 = λ(1, a1, 1) = λ(a1, 1, 1).

A three-cochain λ ∈ C3(W
2
M,A) is a function

λ : M3 ×M2 ×M →
⊔
a∈M Aa,

with λ(c1, c2, c3, b1, b2, a1) ∈ Ac1c2c3b1b2a1 , such that

λ(1, 1, 1, b1, b2, a1) = 0 = λ(1, b1, b2, 1, 1, a1) = λ(b1, 1, b2, 1, a1, 1) = λ(b1, b2, 1, a1, 1, 1).

A four-cochain λ ∈ C4(W
2
M,A) is a function

λ : M4 ×M3 ×M2 ×M →
⊔
a∈M Aa,

such that λ(d1, d2, d3, d4, c1, c2, c3, b1, b2, a1) ∈ Ad1d2d3d4c1c2c3b1b2a1 and:

0 = λ(1, 1, 1, 1, c1, c2, c3, b1, b2, a1) = λ(1, c1, c2, c3, 1, 1, 1, b1, b2, a1)

= λ(c1, 1, c2, c3, 1, b1, b2, 1, 1, a1) = λ(c1, c2, 1, c3, b1, 1, b2, 1, a1, 1)

= λ(c1, c2, c3, 1, b1, b2, 1, a1, 1, 1).

The coboundary homomorphisms are given by

(∂1λ)(b1, b2, a1) = (b1b2)∗λ(a1)− (b1)∗λ(b2a1) + (a1)∗λ(b1b2)− (b2a1)∗λ(b1),

(∂2λ)(c1, c2, c3, b1, b2, a1) = (c1c2c3)∗λ(b1, b2, a1)− (c1)∗λ(c2b1, c3b2, a1)

+ (b1)∗λ(c1c2, c3, b2a1)− (a1)∗λ(c1, c2c3, b1b2)

+ (c3b2a1)∗λ(c1, c2, b1),
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(∂3λ)(d1, d2, d3, d4,c1, c2, c3, b1, b2, a1) =

(d1d2d3d4)∗λ(c1, c2, c3, b1, b2, a1)− (d1)∗λ(d2c1, d3c2, d4c3, b1, b2, a1)

+ (c1)∗λ(d1d2, d3, d4, c2b1, c3b2, a1)− (b1)∗λ(d1, d2d3, d4, c1c2, c3, b2a1)

+ (a1)∗λ(d1, d2, d3d4, c1, c2c3, b1b2)− (d4c3b2a1)∗λ(d1, d2, d3, c1, c2, b1).

Then, the claimed isomorphisms (7) follows from the existence of the following diagram of abelian
group homomorphisms

0 // C1(W
2
M,A) ∂1 //

φ1
��

C2(W
2
M,A) ∂2 //

φ2
��

C3(W
2
M,A) ∂3 //

φ3
��

Γ2

~~

C4(W
2
M,A)

φ4
��

Γ3

~~

0 // C1
c (M,A) ∂1 //

ψ1
��

C2
c (M,A) ∂2 //

ψ2
��

C3
c (M,A) ∂3 //

ψ3
��

C4
c (M,A)

ψ4
��

0 // C1(W
2
M,A) ∂1 // C2(W

2
M,A) ∂2 // C3(W

2
M,A) ∂3 // C4(W

2
M,A)

which satisfy the equalities ∂nφn = φn+1∂
n and ∂nψn = ψn+1∂

n, for 1 ≤ n ≤ 3; φnψn = id, for
0 ≤ n ≤ 4; ψ1φ1 = id; ψ2φ2 = Γ2∂

2 + id; and ψ3φ3 = Γ3∂
3 + ∂2Γ2 + id.

These homomorphisms are defined as follows

• φ1 = ψ1 = id;

• φ2(λ) = g, where g(a, b) = λ(a, b, 1);

• ψ2(g) = λ, where λ(b1, b2, a1) = (a1)∗g(b1, b2)− (b1)∗g(b2, a1);

• Γ2(λ) = λ′, where λ′(b1, b2, a1) = λ(b1, b2, 1, 1, a1, 1)− λ(b1b2, 1, 1, 1, 1, a1);

• φ3(λ) = (h, µ), where:

h(a, b, c) = λ(a, b, c, 1, 1, 1), µ(a, b) = λ(a, 1, 1, 1, 1, b)− λ(1, a, 1, 1, b, 1) + λ(1, 1, a, b, 1, 1);

• ψ3(h, µ) = λ, where

λ(c1, c2, c3, b1, b2, a1) = (b1b2a1)∗h(c1, c2, c3) + (c1c2b1)∗h(c3, b2, a1)− (c1c2a1)∗h(c3, b1, b2)

+ (c1c2a1)∗h(b1, c3, b2)− (c1a1)∗h(c2, b1, c3b2) + (c1a1)∗h(c2, c3, b1b2)

+ (c1c2b2a1)∗µ(c3, b1);

• Γ3(λ) = λ′, where

λ′(c1, c2, c3, b1, b2, a1) = −λ(c1c2, 1, 1, c3, 1, 1, 1, b1, b2, a1) + λ(c1, c2, 1, c3, 1, b1, b2, 1, 1, a1)

− (a1)∗λ(c1, c2, c3, 1, 1, 1, b1b2, 1, 1, 1) + (a1)∗λ(c1c2, 1, c3, 1, 1, 1, 1, 1, b1b2, 1)

− (a1)∗λ(c1c2, c3, 1, 1, 1, 1, 1, 1, 1, b1b2) + (b1)∗λ(c1c2, c3, 1, 1, 1, 1, 1, 1, 1, b2a1)

− (b1)∗λ(c1c2, 1, c3, 1, 1, 1, 1, 1, b2a1, 1) + (c1)∗λ(c2, b1, c3b2, 1, 1, 1, 1, 1, a1, 1)

− (c1)∗λ(c2, c3b1b2, 1, 1, 1, 1, 1, 1, 1, a1) + (c1c2)∗λ(1, c3, 1, 1, b1b2, 1, 1, 1, 1, a1)

− (c1c2)∗λ(1, 1, c3, 1, b1, b2, 1, 1, a1, 1) + (c1c2b1)∗λ(c3, 1, 1, 1, 1, 1, 1, b2, a1, 1)

− (c1c2b1)∗λ(1, c3, 1, 1, 1, b2, a1, 1, 1, 1) + (c1c2a1)∗λ(1, c3, 1, 1, 1, b1, b2, 1, 1, 1)

− (c1c2a1)∗λ(c3, 1, 1, 1, 1, 1, 1, b1, b2, 1)− (c1c2a1)∗λ(1, 1, c3, 1, b1, 1, b2, 1, 1, 1);
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• φ4(λ) = (t, γ, δ), where

t(a, b, c, d) = λ(a, b, c, d, 1, 1, 1, 1, 1, 1),

γ(a, b, c) = λ(a, 1, 1, 1, 1, 1, 1, b, c, 1)− λ(1, a, 1, 1, 1, b, c, 1, 1, 1) + λ(1, 1, a, 1, b, 1, c, 1, 1, 1)

− λ(1, 1, 1, a, b, c, 1, 1, 1, 1),

δ(a, b, c) = λ(a, b, 1, 1, 1, 1, 1, 1, 1, c)− λ(a, 1, b, 1, 1, 1, 1, 1, c, 1) + λ(a, 1, 1, b, 1, 1, 1, c, 1, 1)

+ λ(1, a, b, 1, 1, 1, c, 1, 1, 1)− λ(1, a, 1, b, 1, c, 1, 1, 1, 1) + λ(1, 1, a, b, c, 1, 1, 1, 1, 1);

• ψ4(t, γ, δ) = λ, where

λ(d1, d2, d3, d4, c1, c2,c3, b1, b2, a1) = (c1c2c3b1b2a1)∗t(d1, d2, d3, d4)

− (d1d2d3c1a1)∗t(c2, d4c3, b1, b2)− (d1d2d3c1b2a1)∗t(d4, c3, c2, b1)

+ (d1d2d3c1a1)∗t(d4, c2c3, b1, b2) + (d1d2d3c1a1)∗t(c2, b1, d4c3, b2)

− (d1d2d3c1a1)∗t(d4, c2b1, c3, b2) + (d1d2d3c1a1)∗t(c2b1, d4, c3, b2)

+ (d1d2c1a1)∗t(d3, c2, b1, d4c3b2)− (d1d2c1a1)∗t(d3, c2, d4c3, b1b2)

− (d1b1b2a1)∗t(d2, c1, d3c2, d4c3) + (d1d2c1a1)∗t(d3, d4, c2c3, b1b2)

− (d1d2b1b2a1)∗t(d3, d4, c1, c2c3)− (d1b1b2a1)∗t(d2, d3, d4, c1c2c3)

+ (d1b1b2a1)∗t(d2, d3, c1c2, d4c3)− (d1d2b1b2a1)∗t(c1, d3, d4, c2c3)

− (d1d2b1b2a1)∗t(d3, c1, c2, d4c3) + (d1d2b1b2a1)∗t(c1, d3, c2, d4c3)

+ (d1d2b1b2a1)∗t(d3, c1, d4, c2c3)− (d1d2d3b1b2a1)∗t(d4, c1, c2, c3)

+ (d1d2d3b1b2a1)∗t(c1, d4, c2, c3)− (d1d2d3b1b2a1)∗t(c1, c2, d4, c3)

+ (d1d2d3d4c1a1)∗t(c2, c3, b1, b2)− (d1d2d3d4c1a1)∗t(c2, b1, c3, b2)

− (d1d2d3c1c2b1)∗t(d4, c3, b2, a1) + (d1d2c2c3b1b2a1)∗δ(d3, d4, c1)

− (d1d2d3c1b2a1)∗δ(d4, c3, c2b1) + (d1d2d3c1b1b2a1)∗δ(d4, c3, c2)

− (d1d2d3c3b1b2a1)∗γ(d4, c1, c2)− (d1d2d3d4c1b2a1)∗γ(c3, c2, b1)

+ (d1d2d3c1b2a1)∗γ(d4c3, c2, b1).

A quite tedious, but totally straightforward, verification shows that these homomorphisms φn, ψn and
Γn satisfy the claimed properties, implying that the truncated cochain complexes C•c (M,A) in (6) and
C•(W

2
M,A) in (16) are homology-isomorphic.

4. Classifying Braided Abelian ⊗-Groupoids by Cohomology Classes

This section is dedicated to showing a precise cohomological classification of braided monoidal
abelian groupoids. The case of monoidal abelian groupoids was dealt with in [2], where their
classification was solved by means of Leech’s three-cohomology classes of monoids. Strictly symmetric
monoidal abelian groupoids have been classified in [9], in this case by Grillet’s three-cohomology classes
of commutative monoids. Here, we show how every braided monoidal abelian groupoid invariably has a
commutative monoid M , a group valued functor A : HM → Ab and a commutative three-dimensional
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cohomology class k ∈ H3
c (M,A) associated with it. Furthermore, the triple (M,A, k) thus obtained is

an appropriate system of ‘descent data’ to rebuild the braided abelian groupoid up to braided equivalence.
To fix some terminology and notations needed throughout this section, we start by stating that by

a groupoid (or Brandt groupoid), we mean a small category, all of whose morphisms are invertible.
A groupoid M whose isotropy (or vertex) groups AutM(x), x ∈ ObM, are all abelian is termed an
abelian groupoid. For instance, any abelian group A can be regarded as an abelian groupoid M with
only one object a and AutM(a) = A. For many purposes, it is convenient to distinguish A from the
one-object groupoidM; the notation

K(A, 1)

forM is not bad (its nerve or classifying space [27] (Example 1.4) is precisely the Eilenberg–Mac Lane
minimal complex K(A, 1)), and we shall use it below. A groupoid in which there are no morphisms
between different objects is termed totally disconnected. It is easily seen that any abelian totally
disconnected groupoid is actually a disjoint union of abelian groups or, more precisely, of the form⊔
a∈M K(Aa, 1), for some family of abelian groups (Aa)a∈M .
We use additive notation for abelian groupoids; thus, the identity morphism of an object x of an

abelian groupoidM is denoted by 0x, if u : x→ y, v : y → z are morphisms, their composite is written
as v + u : x→ z, whereas the inverse of u is −u : y → x.

Monoidal categories, and particularly braided monoidal categories, have been studied extensively in
the literature, and we refer to Mac Lane [3,20], Saavedra [4] and Joyal and Street [19] for the background.
We intend to work with braided abelian ⊗-groupoids (or braided monoidal abelian groupoids)

M = (M,⊗, I,a, l, r, c), (17)

which consist of an abelian groupoidM, a functor ⊗ :M×M→M (the tensor product), an object I

(the unit object) and natural isomorphisms ax,y,z : (x⊗y)⊗z → x⊗(y⊗z), lx : I⊗x→ x, rx : x⊗I→ x

(called the associativity, left unit, right unit constraints, respectively) and cx,y : x ⊗ y → y ⊗ x (the
braidings), such that the four coherence conditions below hold.

ax,y,z⊗t + ax⊗y,z,t = (0x ⊗ ay,z,t) + ax,y⊗z,t + (ax,y,z ⊗ 0t), (18)

((x⊗ y)⊗ z)⊗ t a //

a⊗0
��

(x⊗ y)⊗ (z ⊗ t) a // x⊗ (y ⊗ (z ⊗ t))

(x⊗ (y ⊗ z))⊗ t a // x⊗ ((y ⊗ z)⊗ t)
0⊗a
OO

(0x⊗ly) + ax,I,y = rx⊗0y, (19)

(x⊗ I)⊗ y a //

r⊗ 0 ""

x⊗ (I⊗ y)

0⊗ l||
x⊗ y

(0y⊗cx,z) + ay,x,z + (cx,y⊗0z) = ay,z,x + cx,y⊗z + ax,y,z, (20)
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(y ⊗ x)⊗ z a // y ⊗ (x⊗ z)
0⊗c
))

(x⊗ y)⊗ z

c⊗0 55

a
))

y ⊗ (z ⊗ x)

x⊗ (y ⊗ z) c // (y ⊗ z)⊗ x
a 55

(cx,z⊗0y)− ax,z,y + (0x⊗cy,z) = −az,x,y + cx⊗y,z − ax,y,z. (21)

x⊗ (z ⊗ y)
−a // (x⊗ z)⊗ y

c⊗ 0
))

x⊗ (y ⊗ z)

0⊗ c 55

−a
))

(z ⊗ x)⊗ y

(x⊗ y)⊗ z c // z ⊗ (x⊗ y)

−a 55

For further use, we recall that in any braided abelian ⊗-groupoid M, the equalities below hold
(see [19]).

lx⊗y + aI,x,y = lx ⊗ 0y, 0x ⊗ ry + ax,y,I = rx⊗y, (22)

lx + cx,I = rx, rx + cI,x = lx. (23)

Example 4.1 (Two-dimensional crossed products). Every commutative three-cocycle (h, µ) ∈
Z3

c (M,A) gives rise to a braided abelian ⊗-groupoid

Aoh,µM = (Aoh,µM,⊗, I,a, l, r, c), (24)

that should be thought of as a two-dimensional crossed product of M by A, and it is built as follows: its
underlying groupoid is the totally disconnected groupoid

Aoh,µM =
⊔
a∈M K(Aa, 1),

where recall that each K(Aa, 1) denotes the groupoid having a as its unique object and Aa as the
automorphism group of a. That is, an object of A oh,µM is an element a ∈ M ; if a 6= b are different
elements of the monoidM , then there are no morphisms inAoh,µM between them, whereas its isotropy
group at any a ∈M is Aa.

The tensor product ⊗ : (A oh,µM) × (A oh,µM) → A oh,µM is given by multiplication in M on
objects, so a⊗ b = ab, and on morphisms by the group homomorphisms

⊗ : Aa ×Ab → Aab, ua ⊗ ub = b∗ua + a∗ub.

The unit object is I = 1, the unit of the monoid M , and the structure constraints and the braiding
isomorphisms are

aa,b,c = h(a, b, c) : (ab)c→ a(bc),

ca,b = µ(a, b) : ab→ ba,

la = 0a : 1a = a→ a, ra = 0a : a1 = a→ a,

which are easily seen to be natural since A is an abelian group valued functor. The coherence condition
(18), (20) and (21) follow from the three-cocycle condition ∂3(h, µ) = (0, 0, 0), while the coherence
condition (19) holds due to the normalization condition h(a, 1, b) = 0.
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Example 4.2. A braided abelian ⊗-groupoid is called strict if all of its structure constraints ax,y,z, lx
and rx are identities. Regarding a monoid as a category with only one object, it is easy to identify a
braided abelian strict ⊗-groupoid with an abelian track monoid, in the sense of Baues-Jibladze [28] and
Pirashvili [29], endowed with a braided structure. Porter [30] and Joyal-Street [31] (§3, Example 4) (a
preliminary manuscript of [19])) show a natural way to produce braided strict abelian ⊗-groupoids from
crossed modules in the category of monoids. We recall that construction in this example.

A crossed module in the category Mon is a triplet (G,M, ∂) consisting of a monoid M , a group
G endowed with a M -action by a monoid homomorphism M → End(G), written (a, g) 7→ ag, and a
homomorphism ∂ : G→M satisfying

∂(ag) a = a ∂g, ∂gg′ g = g g′.

Roughly speaking, these two conditions say that the action of M on G behaves like an abstract
conjugation. Note that when the monoid M is a group, we have the ordinary notion of a crossed module
by Whitehead [32]. Observe that, if ∂g = 1, then g g′ = g′ g for all g′ ∈ G; that is, the subgroup
{g | ∂g = 1} is contained in the center of G, and therefore, it is abelian. The crossed module is termed
abelian whenever, for any a ∈M , the subgroup {g | ∂g a = a} ⊆ G is abelian. If, for example, the group
G is abelian, or the monoidM is cancellative (a group, for instance), then the crossed module is abelian.

A bracket operation for a crossed module (G,M, ∂) is a function { , } : M ×M → G satisfying

∂{a, b} b a = ab, {1, b} = 1 = {a, 1}, {∂g, a} ag = g, {a, ∂g} g = ag,

{ab, c} = a{b, c} {a, c}, {a, bc} = {a, b} b{a, c}.

This operation should be thought of as an abstract commutator.
Each abelian crossed module with a bracket operator yields a braided abelian strict⊗-groupoidM =

M(G,M, ∂, { , }) as follows. Its objects are the elements of the monoid M , and a morphism g : a→ b

inM is an element g ∈ G with a = ∂g b. The composition of two morphisms a
g→ b

h→ c is given by
multiplication in G, a

gh→ c. The tensor product is

(a
g→ b)⊗ (c

h→ d) = (ac
g bh−→ bd),

and the braiding is provided by the bracket operator via the formula

ca,b = {a, b} : ab→ ba.

In the very special case where M and G are commutative, the action of M on G is trivial, and ∂ is
the trivial homomorphism (i.e., ag = g and ∂g = 1, for all a ∈ M , g ∈ G), then a bracket operator
{ , } : M ×M → G amounts a bilinear map, that is, a function satisfying

{1, b} = 1 = {a, 1}, {ab, c} = {a, c} {b, c}, {a, bc} = {a, b} {a, c}.

Thus, for example, when M = N is the additive monoid of non-negative integers and G = Z is the
abelian group of integers, a bracket N × N → Z is given by {p, q} = pq. Furthermore, if G is any
multiplicative abelian group, then any g ∈ G defines a bracket N× N→ G by {p, q} = gpq.
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SupposeM,M′ are braided abelian⊗-groupoids. A braided⊗-functor (or braided monoidal functor)

F = (F, ϕ, ϕ0) :M→M′ (25)

consists of a functor on the underlying groupoids F : M → M′, natural isomorphisms ϕx,y : Fx ⊗
Fy → F (x⊗ y) and an isomorphism ϕ0 : I→ F I, such that the following coherence conditions hold

Fax,y,z + ϕx⊗y,z + (ϕx,y⊗0Fz) = ϕx,y⊗z + (0Fx⊗ϕy,z) + aFx,Fy,Fz, (26)

(Fx⊗ Fy)⊗ Fz ϕ⊗0 //

a
��

F (x⊗ y)⊗ Fz ϕ // F ((x⊗ y)⊗ z)

Fa
��

Fx⊗ (Fy ⊗ Fz)
0⊗ϕ // Fx⊗ F (y ⊗ z)

ϕ // F (x⊗ (y ⊗ z))

F lx + ϕI,x + (ϕ0⊗0Fx) = lFx, Frx + ϕx,I + (0Fx⊗ϕ0) = rFx, (27)

I⊗ Fx ϕ0⊗ 0 //

l
��

F I⊗ Fx
ϕ
��

Fx F (I⊗ x)F loo

Fx⊗ I
0⊗ϕ0 //

r
��

Fx⊗ F I

ϕ
��

Fx F (x⊗ I)Froo

ϕy,x + cFx,Fy = Fcx,y + ϕx,y. (28)

Fx⊗ Fy c //

ϕ
��

Fy ⊗ Fx
ϕ
��

F (x⊗ y) Fc // F (y ⊗ x)

If F ′ : M → M′ is another braided ⊗-functor, then an isomorphism θ : F ⇒ F ′ is a natural
isomorphism on the underlying functors, θ : F ⇒ F ′, such that the coherence conditions below
are satisfied.

θx⊗y + ϕx,y = ϕ′x,y + (θx ⊗ θy), θI + ϕ0 = ϕ′0. (29)

Fx⊗ Fy ϕ //

θ⊗θ
��

F (x⊗ y)

θ
��

F ′x⊗ F ′y ϕ′ // F ′(x⊗ y)

F I

θ
��

I

ϕ0 66

ϕ′0
((
F ′I

Example 4.3. Let (h, µ), (h′, µ′) ∈ Z3
c (M,A) be commutative three-cocycles of a commutative monoid.

Then, any commutative cochain g ∈ C2
c (M,A), such that (h, µ) = (h′, µ′) + ∂2g induces a braided

⊗-isomorphism
F (g) = (id, g, 01) : Aoh,µM ∼= Aoh′,µ′M (30)

which is the identity functor on the underlying groupoids and whose structure isomorphisms are given
by ϕa,b = g(a, b) : ab → ab and ϕ0 = 01 : 1 → 1, respectively. Since the groups Aab are abelian,
these isomorphisms ϕa,b are natural. The coherence condition (26) and (28) follow from the equality
(h, µ) = (h′, µ′) + ∂2g, whilst the conditions in (27) trivially hold because of the normalization
conditions g(a, 1) = 0a = g(1, a).
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If f ∈ C1
c (M,A) is any commutative one-cochain and g′ = g + ∂1f ∈ C2

c (M,A), then an
isomorphism of braided ⊗-functors θ(f) : F (g) ⇒ F (g′) is defined by putting θ(f)a = f(a) : a → a,
for each a ∈ M . So defined, θ is natural because of the abelian structure of the groups Aa; the first
condition in (29) holds owing to the equality g′ = g+∂1f and the second one thanks to the normalization
condition f(1) = 01 of f .

With compositions defined in a natural way, braided abelian ⊗-groupoids, braided ⊗-functors and
isomorphisms form a 2-category [16] (Chapter V, §1). A braided ⊗-functor F : M → M′ is called
a braided ⊗-equivalence if it is an equivalence in this 2-category of braided abelian ⊗-groupoids, that is
when there exists a braided ⊗-functor F ′ : M′ → M and braided isomorphisms η : idM ∼= F ′F and
ε : FF ′ ∼= idM′ . From [4] (I, Proposition 4.4.2), it follows that a braided ⊗-functor F :M→M′ is a
braided ⊗-equivalence if and only if the underlying functor is an equivalence of groupoids, that is if and
only if it is full, faithful and essentially surjective on objects or [33] (Chapter 6, Corollary 2) if and only
if the induced map on the sets of iso-classes of objects

ObM/∼= → ObM′/∼=, [x] 7→ [Fx],

is a bijection, and the induced homomorphisms on the automorphism groups

AutM(x)→ AutM′(Fx), u 7→ Fu,

are all isomorphisms.

Remark 4.4. From the coherence theorem for monoidal categories [19] (Corollary 1.4, Example 2.4),
it follows that every braided abelian ⊗-groupoid is braided ⊗-equivalent to a braided strict one, that
is to one in which all of the structure constraints ax,y,z, lx and rx are identities (see Example 4.2).
This suggests that it is relatively harmless to consider braided abelian ⊗-groupoids as strict. However,
it is not so harmless when dealing with their homomorphisms, since not every braided ⊗-functor is
isomorphic to a strict one (i.e., one as in (25) in which the structure isomorphisms ϕx,y and ϕ0 are all
identities). Indeed, it is possible to find two braided abelian strict ⊗-groupoids, sayM andM′, that are
related by a braided ⊗-equivalence between them, but there is no strict ⊗-equivalence either fromM to
M′ nor fromM′ toM.

Our goal is to state a classification for braided abelian ⊗-groupoids, where two of them connected by
a braided ⊗-equivalence are considered the same. The main result in this section is the following

Theorem 4.5 (Classification of braided abelian ⊗-groupoids). (i) For any braided abelian ⊗-groupoid
M, there exist a commutative monoid M , a functor A : HM → Ab, a commutative three-cocycle
(h, µ) ∈ Z3

c (M,A) and a braided ⊗-equivalence

Aoh,µM 'M.

(ii) For any two commutative three-cocycles (h, µ) ∈ Z3
c (M,A) and (h′, µ′) ∈ Z3

c (M ′,A′), there is
a braided ⊗-equivalence:

Aoh,µM ' A′ oh′,µ′M
′

if and and only if there exist an isomorphism of monoids i : M ∼= M ′ and a natural isomorphism
ψ : A ∼= A′i, such that the equality of cohomology classes below holds.
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[h, µ] = ψ−1
∗ i∗[h′, µ′] ∈ H3

c (M,A)

Proof. (i) LetM = (M,⊗, I,a, l, r, c) be any given braided abelian ⊗-groupoid.
In a first step, we assume thatM is totally disconnected and strictly unitary, in the sense that its unit

constraints lx and rx are all identities. Then, a system of data (M,A, (h, µ)), such that Aoh,µM =M
as braided abelian groupoids, is defined as follows:

• The monoid M . Let M = ObM be the set of objects ofM. The function on objects of the tensor
functor ⊗ : M×M → M determines a multiplication on M , simply by making ab = a ⊗ b, for any
a, b ∈M . Because of the strictness of the unit inM, this multiplication on M is unitary with 1 = I, the
unit object ofM. Furthermore, it is associative and commutative since, asM is totally disconnected, the
existence of the associativity constraints (ab)c → a(bc) and the braidings ab → ba forces the equalities
(ab)c = a(bc) and ab = ba. Thus, M becomes a commutative monoid.

• The functor A : HM → Ab. For each a ∈ M = ObM, let Aa = AutM(a) be the vertex group
of the underlying groupoid at a. The group homomorphisms ⊗ : Aa × Ab → Aab have an associative,
commutative and unitary behavior in the sense that the equalities

(ua ⊗ ub)⊗ uc = ua ⊗ (ub ⊗ uc), ua ⊗ ub = ub ⊗ ua, 01 ⊗ ua = ua, (31)

hold. These follow from the abelian nature of the groups of automorphisms inM, since the diagrams
below commute due to the naturality of the structure constraints and the braiding.

(ab)c

(ua⊗ub)⊗uc
��

aa,b,c // a(bc)

ua⊗(ub⊗uc)

��
(ab)c

aa,b,c // a(bc)

ab

ua⊗ub
��

ca,b // ba

ub⊗ua
��

ab
ca,b // ba

1a = a

01⊗ua
��

0a // a

ua

��
1a = a

0a // a

Then, if we write b∗ : Aa → Aab for the homomorphism, such that

b∗ua := 0b ⊗ ua = ua ⊗ 0b,

the equalities:

(bc)∗(ua) = 0bc ⊗ ua = (0b ⊗ 0c)⊗ ua
(31)
= 0b ⊗ (0c ⊗ ua) = b∗(c∗ua),

1∗ua = 01 ⊗ ua
(31)
= ua,

show that the assignments a 7→ Aa, (a, b) 7→ b∗ : Aa → Aab, define an abelian group valued functor on
HM . Note that this functor determines the tensor product ⊗ ofM, since

ua ⊗ ub = (ua + 0a)⊗ (0b + ub) = (ua ⊗ 0b) + (0a ⊗ ub)
(31)
= (0b ⊗ ua) + (0a ⊗ ub)

= b∗ua + a∗ub.

• The three-cocycle (h, µ) ∈ Z3
c (M,A). The associativity constraint and the braiding of M are

necessarily written in the form aa,b,c = h(a, b, c) and ca,b = µ(a, b), for some given lists
(
h(a, b, c) ∈

Aabc
)
a,b,c∈M and

(
µ(a, b) ∈ Aab

)
a,b∈M . SinceM is strictly unitary, the equations in (19) and (22) give the
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normalization conditions h(a, 1, b) = 0 = h(1, a, b) = h(a, b, 1) for h, while the equations in (23) imply
the normalization conditions µ(a, 1) = 0 = µ(1, a) for µ. Thus, (h, µ) ∈ C3

c (M,A) is a commutative
three-cochain, which is actually a three-cocycle, since the coherence conditions (18), (20) and (21) are
now written as

h(a, b, cd) + h(ab, c, d) = a∗h(b, c, d) + h(a, bc, d) + d∗h(a, b, c)

b∗µ(a, c) + h(b, a, c) + c∗µ(a, b) = h(b, c, a) + µ(a, bc) + h(a, b, c),

b∗µ(a, c)− h(a, c, b) + a∗µ(b, c) = −h(c, a, b) + µ(ab, c)− h(a, b, c),

which amount to the cocycle condition ∂3(h, µ) = (0, 0, 0).
Since an easy comparison (see Example 4.1) shows that M = A oh,µM , the proof of this part is

complete, under the hypothesis of beingM totally disconnected and strictly unitary.
It remains to prove that the braided abelian ⊗-groupoid M is braided ⊗-equivalent to another one

M′ that is totally disconnected and strictly unitary. To do that, we combine the transport process by
Saavedra [4] (I, 4.4.5) and Joyal-Street [19] (Example 2.4), which shows how to transport the braided
monoidal structure on an abelian ⊗-groupoid along an equivalence on its underlying groupoid, with the
generalized Brandt’s theorem, which asserts that every groupoid is equivalent (as a category) to a totally
disconnected groupoid [33] (Chapter 6, Theorem 2). Since every braided abelian ⊗-groupoid is braided
⊗-equivalent to a braided abelian strict ⊗-groupoid (see Remark 4.4), there is no loss of generality in
assuming thatM is itself strictly unitary.

Then, let M = ObM/∼= be the set of isomorphism classes [x] of the objects ofM; let us choose, for
each a ∈ M , any representative object xa ∈ a, with x[I] = I; and let us form the totally disconnected
abelian groupoid

M′ =
⊔
a∈M K(Aa, 1),

whose set of objects is M and whose vertex group at any object a ∈M is Aa = AutM(xa).
This groupoid M′ is equivalent to the underlying groupoid M. To give a particular equivalence

F : M → M′, let us select for each a ∈ M and each x ∈ a an isomorphism ηx : x → xa in M.
In particular, for every a ∈ M , we take ηxa = 0xa , the identity morphism of xa. Then, let F :M→M′

be the functor that acts on objects by Fx = [x] and on morphisms u : x → y by Fu = ηy + u − ηx.
We also have the more obvious functor F ′ :M′ →M, which is defined on objects by F ′a = xa and on
morphisms u : a → a by F ′u = u. Clearly, FF ′ = idM′ , and the natural equivalence η : idM ⇒ F ′F

satisfies the equalities Fη = idF and ηF ′ = idF ′ . Therefore, the given braided monoidal structure
onM can be transported to one onM′, such that the functors F and F ′ underlie braided ⊗-functors,
and the natural equivalences η : idM ⇒ F ′F and id : FF ′ ⇒ idM′ turn out to be ⊗-isomorphisms.
In the transported structure, the tensor product ⊗ : M′ × M′ → M′ is the dotted functor in the
commutative square

M′ ×M′ ⊗ //

F ′×F ′
��

M′

M×M ⊗ //M,

F

OO
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and the unit object is F I = [I]. The functors F and F ′ are endowed with the isomorphisms

ϕx,y = −F (ηx ⊗ ηy) : Fx⊗ Fy → F (x⊗ y), ϕ0 = 0[I] : [I]→ F I = [I],

ϕ′a,b = ηxa⊗xb : F ′a⊗ F ′b→ F ′(a⊗ b), ϕ′0 = 0I : I→ F ′[I] = I,

and the structure constraints a, r, l and the braiding c of M′ are those isomorphisms uniquely
determined by (26)–(28), respectively. Now, a quick analysis indicates that, for any object a ∈ ObM′ =

M ,

ra
(27)
= F (rxa) + ϕxa,I + (0a ⊗ ϕ0) = ϕxa,I = −F (ηxa ⊗ ηI)

= −F (0xa ⊗ 0I) = F (0xa⊗I) = F (0xa) = 0a

Similarly, we have la = 0a, and therefore,M′ is strictly unitary.

(ii) We first assume that there exist an isomorphism of monoids i : M ∼= M ′ and a natural
isomorphism ψ : A ∼= A′i, such that ψ∗[h, µ] = i∗[h′, µ′] ∈ H3

c (M,A′i). This means that there is
a commutative two-cochain g ∈ C2

c (M,A′i), such that the equalities below hold.

ψabch(a, b, c) =h′(ia, ib, ic) + (ia)∗g(b, c)− g(ab, c) + g(a, bc)− (ic)∗g(a, b), (32)

ψabµ(a, b) =µ′(ia, ib)− g(a, b) + g(b, a). (33)

Then, a braided isomorphism:

F (g) = (F, ϕ, ϕ0) : Aoh,µM → A′ oh′,µ′M
′ (34)

is defined as follows. The underlying functor acts by F (ua : a→ a) = (ψa(ua) : ia→ ia). The structure
isomorphisms of F are given by ϕa,b = g(a, b) : (ia) (ib) → i(ab) and ϕ0 = 01 : 1 → i1 = 1.
So defined, it is easy to see that F is an isomorphism between the underlying groupoids. Verifying the
naturality of the isomorphisms ϕa,b, that is the commutativity of the squares

(ia)(ib)
ϕa,b //

(ia)∗ψbub+(ib)∗ψaua
��

i(ab)

ψab(a∗ub+b∗ua)
��

(ia)(ib)
ϕa,b // i(ab),

(35)

for ua ∈ Aa, ub ∈ Ab, is equivalent (since the groups A′i(ab) are abelian) to verify the equalities

ψab(a∗ub + b∗ua) = (ia)∗ψbub + (ib)∗ψaua, (36)

which hold since the naturality of ψ : A ∼= A′i just says that

ψab(a∗ub) = (ia)∗ψbub. (37)

The coherence conditions (26) and (28) are verified as follows

ϕa,b⊗c + (0Fa⊗ϕb,c) + aFa,Fb,Fc = ϕa,bc + (ia)∗ϕb,c + h′(ia, ib, ic)

= g(a, bc) + (ia)∗g(b, c) + h′(ia, ib, ic)
(32)
= ψabch(a, b, c) + g(ab, c) + (ic)∗g(a, b) (38)

= ψabch(a, b, c) + ϕab,c + (ic)∗ϕa,b = F (aa,b,c) + ϕa⊗b,c + (ϕa,b⊗0Fc),

ϕb,a + cFa,Fb = g(b, a) + µ′(ia, ib)
(33)
= ψab(µ(a, b)) + g(a, b) = F (ca,b) + ϕa,b, (39)
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whereas the conditions in (27) trivially follow from the equalities g(a, 1) = 0ia = g(1, a).
Conversely, suppose that F = (F, ϕ, ϕ0) : A oh,µM → A′ oh′,µ′M

′ is any braided equivalence.
By [18], there is no loss of generality in assuming that F is strictly unitary in the sense that ϕ0 = 01 :

1→ 1 = F1. As the underlying functor establishes an equivalence between the underlying groupoids,

F :
⊔
a∈M

K(Aa, 1)→
⊔

a′∈M ′
K(A′a′ , 1),

and these are totally disconnected, it is necessarily an isomorphism.
Let us write i : M ∼= M ′ for the bijection describing the action of F on objects; that is, such that

ia = Fa, for each a ∈ M . Then, i is actually an isomorphism of monoids, since the existence of the
structure isomorphisms ϕa,b : (ia)(ib)→ i(ab) forces the equality (ia)(ib) = i(ab).

Let us write ψa : Aa ∼= A′ia for the isomorphism giving the action of F on automorphisms ua : a→ a;
that is, such that Fua = ψaua, for each ua ∈ Aa and a ∈ M . The naturality of the automorphisms ϕa,b
tell us that the equalities (36) hold (see diagram (35)). These, for the case when ua = 0a, give the
equalities in (37), which amounts to ψ : A ∼= A′i being a natural isomorphism of abelian group valued
functors on HM .

Writing now g(a, b) = ϕa,b, for each a, b ∈ M , the equations g(a, 1) = 0ia = g(1, a) hold due to the
coherence (27), and thus, we have a commutative two-cochain

g(F ) =
(
g(a, b) ∈ A′i(ab)

)
a,b∈M , (40)

which satisfies (32) and (33) owing to the coherence (26) and (28), as we can see just by retracting our
steps in (38) and (39), respectively. This means that ψ∗(h, µ) = i∗(h′, µ′)− ∂2g, and therefore, we have
that ψ∗[h, µ] = i∗[h′, µ′] ∈ H3

c (M,A′i), whence [h, µ] = ψ−1
∗ i∗[h′, µ′] ∈ H3

c (M,A).

A braided categorical group [19] (§3) is a braided abelian ⊗-groupoid G = (G,⊗, I,a, l, r, c) in
which, for any object x, there is an object x∗ with an arrow x⊗x∗ → I. Actually, the hypothesis of being
abelian is superfluous here, since every monoidal groupoid in which every object has a quasi-inverse
is always abelian [2] (Proposition 3). The cohomological classification of these braided categorical
groups was stated and proven by Joyal and Street [19] (Theorem 3.3) by means of Eilenberg–Mac Lane’s
commutative cohomology groups H3

c (G,A), of abelian groups G with coefficients in abelian groups A
(see Example 3.2). Next, we obtain Joyal–Street’s classification result as a corollary of Theorem 4.5.

Corollary 4.6. (i) For any abelian groupsG andA and any three-cocycle (h, µ) ∈ Z3
c (G,A), the braided

abelian groupoid Aoh,µ G is a braided categorical group.
(ii) For any braided categorical group G, there exist abelian groupsG and A, a three-cocycle (h, µ) ∈

Z3
c (G,A) and a braided ⊗-equivalence

Aoh,µ G ' G.

(iii) For any two commutative three-cocycles (h, µ) ∈ Z3
c (G,A) and (h′, µ′) ∈ Z3

c (G′, A′), where
G,G′, A and A′ are abelian groups, there is a braided ⊗-equivalence

Aoh,µ G ' A′ oh′,µ′ G
′



Mathematics 2015, 3 1027

if and and only if there exist isomorphism of groups i : G ∼= G′ and φ : A′ ∼= A, such that the equality
of cohomology classes below holds.

[h, µ] = φ∗i
∗[h′, µ′] ∈ H3

c (G,A)

Proof. (i) Recall from Example 3.2 that we are here regarding A as the constant abelian group valued
functor on HG it defines. Since G is a group, for any object a of Aoh,µ G (i.e., any element a ∈ G), we
have a⊗ a−1 = aa−1 = 1 = I. Thus, Aoh,µG is actually a braided categorical group.

(ii) Let G be a braided categorical group. By Theorem 4.5 (i), there are a commutative monoid M , a
functor A : HM → Ab, a commutative three-cocycle (h, µ) ∈ Z3

c (M,A) and a braided ⊗-equivalence
Aoh,µM ' G. Then,Aoh,µM is a braided categorical group as G is, and for any a ∈M , it must exist
another a∗ ∈ M with a morphism a⊗ a∗ = aa∗ → I = 1 in Aoh,µM ; this implies that aa∗ = 1 in M ,
since the groupoid is totally disconnected, whence a∗ = a−1 is an inverse of a in M . Therefore, M = G

is actually an abelian group.
Let A1 be the abelian group attached by A at the unit of G. Then, a natural isomorphism φ : A ∼= A1

is defined, such that, for any a ∈ G, φa = a−1
∗ : Aa → A1. Therefore, if we take (h′, µ′) = φ∗(h, µ) ∈

Z3
c (G,A1), Theorem 4.5 (ii) gives the existence of a braided equivalence A oh,µ G ' A1 oh′,µ′ G,

whence A1 oh′,µ′ G, and the given G are braided ⊗-equivalent.
(iii) This follows directly form Theorem 4.5 (ii).

The classification result in Theorem 4.5 involves an interpretation of the elements of H3
c (M,A)

in terms of certain two-dimensional co-extensions of M by A, such as the elements of H2
c (M,A)

are interpreted as commutative monoid co-extensions in Corollary 3.8. To state this fact, in the next
definition, we regard any commutative monoid M as a braided abelian discrete ⊗-groupoid (i.e., whose
only morphisms are the identities), on which the tensor product is multiplication in M . Thus, if
M = (M,⊗, I,a, l, r, c) is any braided abelian ⊗-groupoid, a braided ⊗-functor p : M → M

is the same thing as a map p : ObM → M satisfying p(x) = p(y) whenever HomM(x, y) 6= ∅,
p(x⊗ y) = p(x) p(y) and p(I) = 1.

Definition 4.7. Let M be a commutative monoid, and let A be any abelian group valued functor on
HM . A braided two-coextension of M by A is a surjective braided ⊗-functor p : M � M , whereM
is a braided abelian ⊗-groupoid, such that, for any a ∈M , it is given an (associative and unitary) action
of the groupoid K(Aa, 1) on the fiber groupoid p−1(a) by means of a functor

K(Aa, 1)×p−1(a)→ p−1(a), (u, x
f→ y) 7→ (x

u·f−→ y)

which is simply transitive, in the sense that the induced functor:

K(Aa, 1)×p−1(a)→ p−1(a)×p−1(a), (u, f) 7→ (u·f, f),

is an equivalence and satisfies

(u · f)⊗ (v · g) = (a∗v + b∗u) · (f ⊗ g), (41)

for every a, b ∈M , u ∈ Aa, v ∈ Ab, f : x→ y ∈ p−1(a) and g : z → t ∈ p−1(b).
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Let us point out that if p(x) = p(y), for some x, y ∈ ObM, then HomM(x, y) 6= ∅ since the functor
K(Aa, 1)×p−1(a) → p−1(a), for a = p(x), is essentially surjective. Furthermore, the functoriality of
the action means that if f, f ′ are composablearrows in p−1(a), then, for any u, u′ ∈ Aa, we have

(u+ u′) · (f + f ′) = u · f + u′ · f ′.

In particular,
f + u · f ′ = u · (f + f ′) = u · f + f ′. (42)

Remark 4.8. These braided two-co-extensions can be seen as a sort of (braided, non-strict) linear
track extensions in the sense of Baues, Dreckmann and Jibladze [28,34]. Briefly, note that to give
a commutative two-coextension p : M � M , as above, is equivalent to giving a surjective braided
⊗-functor p :M�M satisfying

p(x) = p(y) if and only if HomM(x, y) 6= ∅,

together with a family of isomorphisms of groups
(
ψx : Apx ∼= AutM(x)

)
x∈ObM satisfying:

ψyu = f + ψxu− f, f ∈ HomM(x, y),

ψxu⊗ ψyv = ψx⊗y((px)∗v + (py)∗u), x, y ∈ ObM.

The family of isomorphisms (ψx)x∈ObM and the action of A onM are related to each other by the
equations u · f = f + ψx(u), for any x ∈ ObM, u ∈ Ap(x), and f ∈ HomM(x, y).

Let Ext2
c(M,A) denote the set of equivalence classes of such braided two-co-extensions of M by A,

where two of them, say p : M � M and p′ : M′ � M , are equivalent whenever there is a braided
⊗-equivalence F :M→M′, such that p′F = p and F (u · f) = u · F (f), for any morphism f : x→ y

inM and u ∈ Ap(x). Then, we have:

Theorem 4.9 (Classification of braided two-co-extensions). For any commutative monoid M and any
functor A : HM → Ab, there is a natural bijection

H3
c (M,A) ∼= Ext2

c(M,A).

Proof. This is a consequence of Theorem 4.5 with only a slight adaptation of the arguments used for
its proof. For any three-cocycle (h, µ) ∈ Z3

c (M,A), the braided abelian ⊗-groupoid Aoh,µM in (24)
comes with a natural structure of braided two-coextension of M by A, in which the surjective braided
functor π : Aoh,µM � M is given by the identity map on objects, π(a) = a. The fiber groupoid over
any a ∈ M is just π−1(a) = K(Aa, 1), and the action functor K(Aa, 1)× π−1(a) → π−1(a) is given
by addition in Aa, that is u · v = u + v. If (h′, µ′) ∈ Z3

c (M,A) in any other three-cocycle, such that
(h, µ) = (h′, µ′)−∂2g, for some two-cochain g ∈ C2

c (M,A), then the associated braided⊗-isomorphism
in (30), F (g) : A oh,µ M → A oh′,µ′ M , is easily recognized as an equivalence between the braided
co-extensions Aoh,µM �M and Aoh′,µ′ M �M . Thus, we have a well-defined map

H3
c (M,A)→ Ext2

c(M,A), [h, µ] 7→ [Aoh,µM
π
�M ].
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To see that it is injective, suppose (h, µ), (h′, µ′) ∈ Z3
c (M,A), such that the associated braided

two-co-extensions are made equivalent by a braided ⊗-functor, say F : A oh,µ M → A oh′,µ′M ,
which can be assumed to be strictly unitary [18]. Then, the two-cochain g(F ) ∈ C2

c (M,A) built in (40)
satisfies that (h, µ) = (h′, µ′)− ∂2g, whence [h, µ] = [h′, µ′] ∈ H3

c (M,A).
Finally, to prove that the map is surjective, let p : M � M be any given braided two-coextension

of M by A. By Theorem 4.5 (i) and Lemma 4.10 below, we can assume thatM = A′ oh′,µ′ M
′, for

some commutative monoid M ′, a functor A′ : HM ′ → Ab, and a three-cocycle (h′, µ′) ∈ Z3
c (M ′,A′).

Then, a monoid isomorphism i : M ∼= M ′ and a natural isomorphism ψ : A ∼= A′i become determined
by the equations p(ia) = a and ψa(u) = u · 0ia, for any a ∈ M and u ∈ Aa. Furthermore, taking
(h, µ) = ψ−1

∗ i∗(h′, µ′) ∈ Z3
c (M,A), the braided ⊗-isomorphism in (34) for the two-cochain g = 0,

F (0) : A oh,µ M ∼= A′ oh′,µ′ M
′, is then easily seen as an equivalence between the braided extensions

π : Aoh,µM �M and p :M�M .

Lemma 4.10. Let p′ : M′ � M be a braided two-coextension of M by A, and suppose that M
is any braided abelian ⊗-groupoid, which is braided ⊗-equivalent to M′. Then, M can be endowed
with a braided two-coextension structure of M by A, say p : M � M , such that p : M � M and
p′ :M′ �M are equivalent braided two-co-extensions.

Proof. Let F = (F, ϕ) : M → M′ be a braided ⊗-equivalence. Then, a braided two-coextension
structure ofM′ is given as follows: let:

p = p′F :M→M

be the braided⊗-functor composite of p′ and F . This is clearly surjective, since p′ is and F is essentially
surjective. For every a ∈ M , let K(Aa, 1)×p−1(a) → p−1(a) be the action defined by (u, x

f→ y) 7→
(x

u·f−→ y), where u · f is unique arrow inM, such that

F (u · f) = u · Ff. (43)

This is a simply-transitive well-defined action since F is a full, faithful and essentially surjective
functor. In order to check (41), we have:

F ((u · f)⊗ (v · g)) + ϕx⊗z = ϕy⊗t + F (u · f)⊗ F (v · g) (nat. of ϕ)

= ϕy⊗t + (u · Ff)⊗ (v · Fg) (43)
= ϕy⊗t + (a∗u+ b∗v) · (Ff ⊗ Fg) ((41) forM′ �M)

= (a∗v + b∗v) · F (f ⊗ g) + ϕx⊗z (nat. of ϕ and (42))
= F ((a∗v + b∗u) · (f ⊗ g)) + ϕx⊗z (43)

and the result follows since F is faithful and ϕx⊗z is an isomorphism. Thus, we have defined the braided
two-coextensionM�M , which is clearly equivalent to the original one by means of F .
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