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Abstract: Bilinear integrals of operator-valued functions with respect to spectral measures
and integrals of scalar functions with respect to the product of two spectral measures arise
in many problems in scattering theory and spectral analysis. Unfortunately, the theory of
bilinear integration with respect to a vector measure originating from the work of Bartle
cannot be applied due to the singular variational properties of spectral measures. In this
work, it is shown how “decoupled” bilinear integration may be used to find solutions X
of operator equations AX − XB = Y with respect to the spectral measure of A and to
apply such representations to the spectral decomposition of block operator matrices. A new
proof is given of Peller’s characterisation of the space L1((P ⊗ Q)L(H)) of double operator
integrable functions for spectral measures P , Q acting in a Hilbert space H and applied to
the representation of the trace of

∫
Λ×Λ

ϕd(PTP ) for a trace class operator T . The method
of double operator integrals due to Birman and Solomyak is used to obtain an elementary
proof of the existence of Krein’s spectral shift function.

Keywords: bilinear integration; tensor products; operator equations; double operator
integrals; spectral measure

1. Introduction

Since its inception, the mathematical treatment of quantum theory has generated many problems in
measure and integration theory, some of which are still being worked out. At the forefront is the spectral
theory of self-adjoint operators in Hilbert space, where the decomposition A =

∑
λ∈σ(A) λ.Pλ of a

Hermitian matrix A = {ajk}nj,k=1 with respect to the orthogonal projections Pλ onto the eigenspace of
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the eigenvalues λ ∈ σ(A) ofA is replaced by the spectral decomposition T =
∫
σ(T )

λ dP (λ) with respect
to the self-adjoint spectral measure P associated with the self-adjoint linear operator T . The spectrum
σ(T ) of T is the complement of the set of all numbers λ ∈ C for which (λI − T )−1 is a bounded linear
operator onH, so any eigenvalue of T belongs to σ(T ).

For a quantum system in a state ψ ∈ H, the conventional interpretation of quantum measurement
suggests that the number ‖P (E)ψ‖2 is the probability that an observation of the quantity represented by
the self-adjoint operator T has its value in the Borel set E ⊆ σ(T ). If ψ is also an eigenvector of T for
the eigenvalue λ ∈ R, then:

‖P (E)ψ‖ =

{
1, λ ∈ E
0, λ /∈ E

that is, in the state ψ, an observation of T yields the value λ with certainty, so explaining such facts
as the quantisation of energy levels in an atom. Clearly, the operator-valued spectral measure uniquely
associated with a quantum observable is a fundamental concept in quantum theory.

Another problem of integration theory arising from quantum physics is the Feynman-Kac formula:

e−it(H0+Q(V )) =

∫
Ω

e−i
∫ t
0 V ◦Xs ds dMt, t > 0 (1)

The left-hand side represents the dynamics of a quantum system described by a free Hamiltonian H0

perturbed by a potential V where Q(V ) is the operator of multiplication by V . The finitely-additive
operator valued set functions Mt, t > 0, are manufactured from the free evolution e−itH0 , t ≥ 0, and the
spectral measure Q associated with the configuration or position operators; see [1–4] and the extensive
references in these monographs. Although we shall need to consider integration with respect to certain
finitely additive set functions manufactured from a pair of spectral measures, the operator valued integrals
considered in the present work are orders of magnitude more tractable than the singular path integral
on the right hand side of equation (1). Even at the basic level of integration theory considered here,
Grothendieck’s inequality [26] provides essential insights.

A number of problems in scattering theory, spectral theory and their applications in the context of a
Hilbert spaceH are treated by considering integrals of the form:∫

Σ

Φ(σ)E(dσ),

∫
Σ

E(dσ)Φ(σ) and
∫

Σ×Λ

ϕ(σ, λ)E(dσ)TF (dλ) (2)

for spectral measures E and F , T ∈ L(H) and operator valued functions Φ : Σ → L(H) and scalar
functions ϕ. Such integrals are bilinear in the functions Φ and operator valued measures E and F .
Unfortunately, the well-developed theories of bilinear integration of Bartle [5] and Dobrakov [6–9] do
not apply in this situation due to the variational properties of spectral measures acting on a Hilbert space.

The 2-variation supP
∑

B∈P ‖E(B)ψ‖2 for a spectral measure E and a vector ψ ∈ H is always
finite. The supremum is taken over all finite partitions P into Borel sets. However, for the spectral
measure of multiplication by characteristic functions say, the total variation supP

∑
B∈P ‖χBψ‖ of the

L2([0, 1])-valued measure B 7−→ χBψ, B ∈ B([0, 1]), is infinite on each set of positive measure where
ψ ∈ L2([0, 1]) is nonzero, which leads to difficulties interpreting integrals like (2) using the classical
theory of bilinear integration utilising semivariation [5].
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An integral of the first form in (2) arises in treating the connection between time-dependent scattering
theory and stationary state scattering theory [10,11]. Bilinear integrals of this nature have recently been
handled by a “decoupling” method in [12]. In this technique, an auxiliary tensor product L(H)⊗̂τH is
defined, and the tensor product integral: ∫

Σ

Φ(σ)⊗ (Eh)(dσ)

is an element of L(H)⊗̂τH for each h ∈ H, in the fashion of [13]. The bilinear evaluation map
(T, h) 7−→ Th, T ∈ L(H), h ∈ H, uniquely defines a continuous linear map J : L(H)⊗̂τH → H
for which J(T ⊗ h) = Th for every T ∈ L(H) and h ∈ H, so that:(∫

Σ

Φ(σ)E(dσ)

)
h :=

∫
Σ

Φ(σ)(Eh)(dσ) := J

(∫
Σ

Φ(σ)⊗ (Eh)(dσ)

)
By this means, the variational properties of the spectral measure E play no role in the definition of

the first integral in (2).
Similar difficulties arise in the theory of stochastic integration, which is now thoroughly understood.

For a Brownian motion process 〈bt〉t≥0 with respect to a probability measure P , there exists a unique
L2(P )-valued orthogonally scattered measure W given by W ([s, t)) = bt − bs, 0 ≤ s < t. The
multiplication map J : X⊗Y 7−→ X.Y for random variables X, Y is actually continuous into L2(P ) on
the closure of

∫ t
0
X ⊗ dW in L2(P ⊗P ) as X runs over all adapted simple processes; see [14], Theorem

5.3. For an adapted process X , the stochastic integral
∫ t

0
Xsdbs may be viewed as an example of a

bilinear integral J
(∫ t

0
X ⊗ dW

)
. The two-variation of W on a Borel set B ⊂ [0,∞) is the Lebesgue

measure |B| of B, but W : B([0,∞)) → L2(P ) has infinite variation on any set of positive Lebesgue
measure: the variation of a Brownian motion process 〈bt〉t≥0 on any interval is infinite P -a.e.

The last type of integral in (2) is a double operator integral studied in a series of papers by Birman
and Solomyak [15–20]. With the choice of the function:

ϕf (σ, λ) =

{
f(σ)−f(λ)

σ−λ , σ 6= λ

f ′(λ), σ = λ

for a sufficiently smooth function f : R→ R, the equality:

f(A)− f(B) =

(∫
σ(A)×σ(B)

ϕf d(E ⊗ F )C1(H)

)
(A−B)

holds if A,B are densely-defined self-adjoint operators in the Hilbert spaceH with spectral measures E
and F , respectively, and A − B belongs to the operator ideal C1(H) of all trace class operators on H.
The finitely-additive spectral measure (E ⊗ F )C1(H) acts on the operator ideal C1(H).

Integration with respect to finitely-additive spectral measures is studied in considerable
detail in [21], Section 2, where for an algebra A of subsets of a non-empty set Ω and a complex Banach
space X , a finitely-additive set function M : A → L(X) is called a finitely-additive spectral measure if
M(C ∩D) = M(C)M(D) for all C,D ∈ A and M(Ω) = I , the identity operator on X . In the case that
A is actually a σ-algebra of subsets of Ω and M is countably additive for the strong operator topology
of L(X), the operator-valued measure M is simply called a spectral measure. The spectral theorem for
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a self-adjoint operator T acting in a Hilbert space asserts the existence of a unique spectral measure P
whose values are self-adjoint projection operators, such that T =

∫
σ(T )

λ dP (λ). The finitely-additive
spectral measure (E ⊗ F )C1(H) is defined on the algebra A generated by measurable rectangles U × V
by the formula: (

(E ⊗ F )C1(H)(U × V )
)
(T ) = E(U)TF (V ), T ∈ C1(H)

for U ∈ B(σ(A)), V ∈ B(σ(B)). It is only in trivial cases that (E ⊗ F )C1(H) is countably additive
for the strong operator topology of L(C1(H)); see Proposition 19 below. The finitely-additive spectral
measure (E ⊗ F )S is similarly defined in the case that S is a symmetrically-normed operator ideal.
The commutative Banach *-algebra L1((E ⊗ F )S) of all equivalence classes of (E ⊗ F )S-integrable
functions is discussed in Proposition 15 below.

An application of the formula above leads to the expression:

tr(f(A)− f(B)) =

∫
R
f ′(λ) dΞ(λ)

for a finite Borel measure Ξ on R. It turns out that Ξ is absolutely continuous with respect to the
Lebesgue measure, and its density ξ with respect to the Lebesgue measure is Krein’s spectral shift
function with respect to the pair (A,B). If S(λ) is the scattering operator associated with the self-adjoint
operators A and B, then the remarkable formula:

Det(S(λ)) = e−2πiξ(λ), λ ∈ R

holds ([22], Chapter 8).
Examples of the other integrals of the form (2) arise in the spectral theory of block operators,

resonance and optimal control theory, numerical analysis and the theory of Krein’s spectral shift function
in scattering theory and non-commutative geometry. The authoritative treatment of the applications of
the decoupling approach to bilinear integration is given in the papers referred to in the sections to follow.

Section 2 deals with solutions of operator equations AX − XB = Y where A is a
self-adjoint operator, B is a closed linear operator and Y is bounded. Representations for
the solution X given in Section 3 in terms of an integral of the second form in (2) leads to
estimates for the norm of X in terms of the spectral separation between the linear operators A

and B. As in the case of the connection between time-dependent and stationary state scattering
theory [10,11], such integrals have been previously referred to as strong operator-valued Stieltjes
integrals in [23,24]. A brief account of the connection with the spectral analysis of block operator
matrices considered in [23,24] is also given. In case B is also a self-adjoint operator, the solution
X of the operator equation above can be expressed as a double operator integral described in
Section 4 using decoupled integrals. For spectral measures E and F acting on a Hilbert space
H, a double operator integral is an integral with respect to a finitely-additive spectral measure
(E ⊗ F )S acting on a symmetrically normed operator ideal S. The space L1((E ⊗ F )S) of
(E ⊗ F )S-integrable functions has been characterised by Peller in [25] for the cases S = L(H)

and S = C1(H). An elementary proof of Peller’s characterisation is given in Theorem 16
of Section 5 by appealing to Pisier’s recent account [26] of Grothendieck’s theorem. Peller’s
representation facilitates an explicit formula given in [20] for the trace of the integral

∫
Λ×Λ

ϕd(ETE) for
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ϕ ∈ L1((E ⊗ E)S) in the case T ∈ S = C1(H). The existence of Krein’s spectral shift function is
established in Theorem 22 of Section 6 using double operator integrals and Fourier transforms.

2. Linear Operator Equations

The analysis of the equation AX −XB = Y for linear operators A, B, X and Y acting in a Hilbert
space H has many applications in operator theory, differential equations and quantum physics; see [27]
for a relaxed discussion with numerous examples.

Starting with the case of scalars, the equation ax − xb = y has a unique solution provided that
a 6= b. For the case of diagonal matrices A = diag(λ1, . . . , λn) and B = diag(µ1, . . . , µn), for any
matrix Y = {yij}ni,j=1, there exists a unique solution X of the equation AX − XB = Y if and only if
λi − µj 6= 0 for i, j = 1, . . . , n, and then, the solution X = {xij}ni,j=1 is given by:

xij =
yij

λi − µj
, i, j = 1, . . . , n.

The operator version is called the Sylvester–Rosenblum theorem in [27], although earlier versions are
due to Krein and Daletskii ([27], p. 1). For a continuous linear operator A on a Banach space X , the
spectrum σ(A) of A is the set of all λ ∈ C for which λI − A is not invertible.

Theorem 1 (Sylvester–Rosenblum theorem). Let X be a Banach space and let A and B be continuous
linear operators on X for which σ(A) ∩ σ(B) = ∅. Then, for each operator Y ∈ L(X ), the equation
AX −XB = Y has a unique solution X ∈ L(X ).

As a taster for applications of the Sylvester–Rosenblum Theorem, suppose that A and B are bounded
normal operators on a Hilbert space H with spectral measures PA and PB, respectively. Then, there
exists c > 0, such that for any two Borel subsets S1 and S2 of C separated by a distance:

δ = inf{|x− y| : x ∈ S1, y ∈ S2 }

the projections E = PA(S1), F = PB(S2), satisfy the norm estimate:

‖EF‖ ≤ c

δ
‖A−B‖.

The norm ‖EF‖ represents the angle between the subspaces ran(E) and ran(F ). Such estimates are
useful in numerical computations. Even in finite dimensional Hilbert spaces, the Sylvester–Rosenblum
theorem leads to eigenvalue estimates for matrix norms independent of dimension.

Theorem 2 ([28], Theorem 5.1a). Let A and B be two normal (n × n) matrices with eigenvalues
α1, . . . , αn and β1, . . . , βn, respectively, counting multiplicity. With the same constant c mentioned
above, if ‖A−B‖ ≤ ε/c, then there exists a permutation π of the index set {1, . . . , n}, such that:

|αi − βπi| < ε

for i = 1, . . . , n.
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The Sylvester–Rosenblum theorem also comes with a representation of the solutionX of the equation
AX −XB = Y if σ(A) ∩ σ(B) = ∅. Suppose that the contour Γ is the union of closed contours in the
plane, with total windings one around σ(A) and zero around σ(B). Then:

X =
1

2πi

∫
Γ

(ζI − A)−1Y (ζI −B)−1. (3)

Other representations of the solution are possible by utilising the spectral properties of the operators
A and B; see [27], Section 9.

In the present paper, we are concerned with solutions X of the operator equation AX − XB = Y

when A is an unbounded self-adjoint or normal operator acting in a Hilbert space H and B is a closed
unbounded operator. If the spectra σ(A) and σ(B) are a positive distance apart, then we hope to construct
the solution X of AX −XB = Y by the formula:

X =

∫
σ(A)

dPA(ζ)Y (ζI −B)−1 (4)

in place of (3) with respect to the spectral measure PA of A. The operator-valued measure PA acts on
the values of the operator-valued function ζ 7−→ Y (ζI − B)−1. As in the case of scattering theory
considered in [12], for h ∈ H, the vector Xh ∈ H often has the representation:

Xh = J

∫
σ(A)

PA(dζ)⊗ (Y (ζI −B)−1h)

where the H-valued function ζ 7−→ Y (ζI − B)−1h, σ ∈ σ(A), is PA-integrable in the tensor product
space L(H)⊗̂τH and J : L(H)⊗̂τH → H is the continuous linear extension of the composition map
T ⊗ h 7→ Th, T ∈ L(H), h ∈ H.

If the operator B is itself a bounded linear operator, then the simpler representation (3) may be
employed with the contour Γ winding once around σ(B) and zero times around σ(A).

Because we shall be dealing with unbounded operatorsA andB, we have to be careful about domains
when interpreting the equationAX−XB = Y . We follow the treatment in [23], Section 2. Applications
of Equation (4) to perturbation theory and the spectral shift function may also be found in [23] and at the
end of the next section.

3. Integral Solutions of Operator Equations

Definition 1. Let H and K be Hilbert spaces. Suppose that A : D(A) → K and B : D(B) → H
are closed and densely-defined linear operators with domains D(A) ⊂ K and D(B) ⊂ H. Given
Y ∈ L(H,K), a continuous linear operator X ∈ L(H,K) is said to be a weak solution of the equation:

AX −XB = Y (5)

if for every h ∈ D(B) and k ∈ D(A∗), the equality:

(Xh,A∗k)− (XBh, k) = (Y h, k) (6)

holds with respect to the inner product (·, ·) of K.
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The domain D(A∗) of the adjoint A∗ of A is the set of all elements k of K, such that the linear map
h 7−→ (Ah, k), h ∈ D(A), is the restriction to D(A) of h 7−→ (h, y), h ∈ H, for an element y ∈ K and
then y = A∗k.

A strong solution X ∈ L(H,K) of (5) has the property that:

ran(X � D(B)) ⊂ D(A) (7)

and:
AXh−XBh = Y h, h ∈ D(B) (8)

The existence of strong solutions of the operator Equation (5) is discussed in [29] under the
assumption that A and−B are the generators of C0-semigroups, a situation that arises in delay or partial
differential equations and control theory. Strong solutions of (5) may not exist in this setting, even when
the spectra σ(A) and σ(B) are separated by a vertical strip ([29], Example 9).

In the case that A and B are both self-adjoint operators, the following result is a consequence of [28],
Theorem 4.1; (see [23], Theorem 2.7).

Theorem 3. Let H and K be Hilbert spaces. Suppose that A : D(A) → K and B : D(B) → H are
self-adjoint operators whose spectra σ(A) and σ(B) are a distance δ > 0 apart. Then, Equation (5) has
a unique weak solution:

X =

∫
R
e−itAY eitBfδ(t) dt

for any function fδ ∈ L1(R), continuous on R \ {0}, such that:∫
R
e−isxfδ(s) ds =

1

x
for |x| > 1

δ
.

Moreover ‖X‖ ≤ π
2δ
‖Y ‖.

The integral representing the solution X is a Pettis integral for the strong operator topology.
We now turn to the tensor product topology τ mentioned above. Let X ,Y be Banach spaces. For

y∗ ∈ Y∗, we have: ∣∣∣∣∣
〈

n∑
j=1

Tjxj, y
∗

〉∣∣∣∣∣ =

∣∣∣∣∣
〈

n∑
j=1

xj, T
∗
j y
∗

〉∣∣∣∣∣
≤

n∑
j=1

‖xj‖X .‖T ∗j y∗‖X ∗

for all Tj ∈ L(X ,Y) and xj ∈ X , j = 1, . . . , n and all n = 1, 2, . . . . Hence, if we let:

‖u‖τ = sup
‖y∗‖≤1

inf

{
n∑
j=1

‖xj‖X .‖T ∗j y∗‖X ∗ : u =
n∑
j=1

Tj ⊗ xj

}
(9)

over all representations u =
∑n

j=1 Tj ⊗ xj , n = 1, 2 . . . , of u ∈ L(X ,Y) ⊗ X , then the inequality
‖Ju‖Y ≤ ‖u‖τ holds for the product map Ju =

∑n
j=1 Tjxj by the Hahn–Banach theorem. The

completion of the linear space L(X ,Y)⊗X with respect to the norm ‖ · ‖τ is written as L(X ,Y)⊗̂τX .
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For a self-adjoint operatorA in a Hilbert spaceK and a closed, densely-defined operatorB in a Hilbert
spaceH, the domains D(B) and D(A) are endowed with the respective graph norms associated with the
closed operators B and A. Suppose also that τ is the topology on the tensor product L(X )⊗ X defined
by Formula (9) with X = Y = K, and let E = L(K)⊗̂τK be the completion of the tensor product with
the norm topology τ . As in [12], Proposition B.11, the collection K ⊗ K∗ ⊗ K∗ of continuous linear
functionals on the Banach space E separates points of E, and the composition map:

T ⊗ k 7−→ Tk, T ∈ L(K), k ∈ K

has a continuous linear extension JE : E → K. The following definition of a bilinear integral is
suggested by [13].

Definition 2. Let K be a Hilbert space. A function f : Ω → K is said to be m-integrable in
E = L(K)⊗̂τK for an operator valued measure m : S → L(K), if for each x, x′, y′ ∈ K, the scalar
function (f, x′) is integrable with respect to the scalar measure (mx, y′) and for each S ∈ S, there exists
an element (m⊗ f)(S) of E, such that:

((m⊗ f)(S), x⊗ y′ ⊗ x′) =

∫
S

(f, x′) d(mx, y′) (10)

for every x, x′, y′ ∈ K.
If f is m-integrable in E, then mf(S) ∈ K is defined for each S ∈ S by:

mf(S) = JE
(
(m⊗ f)(S)

)
.

We also denote mf(S) by
∫
S
dmf or

∫
S
dm(ω) f(ω).

In the present context, the representation of solutions of Equation (5) via bilinear integration is
analogous to the treatment in [12], Section 3, for scattering theory.

Example 3. Suppose that A is a bounded self-adjoint operator defined on a Hilbert space K, such that
σ(A) ⊂ (−∞,−δ) for some δ > 0. Let −B be the generator of a uniformly-bounded C0-semigroup
e−tB, t ≥ 0, on the Hilbert spaceH.

We can employ (3) in this situation to represent the weak solution of Equation (5), but it is instructive
to see how the integral (4) converges with the assumptions above.

Let E = L(K)⊗̂πK be the projective tensor product of the Hilbert space K with the space L(K) of
bounded linear operators on K with the uniform norm (see [30], Section III.6). Then, etA ⊗ (Y e−tBh)

belongs to the tensor productL(K)⊗K for each t ≥ 0 and h ∈ H, and the function t 7−→ etA⊗(Y e−tBh),
t ≥ 0, is continuous in L(K)⊗̂πK, because A is assumed to be bounded, so:

etA ⊗ (Y e−tBh) = I ⊗ (Y e−tBh) +
∞∑
n=1

tn

n!
(An ⊗ (Y e−tBh))

converges in L(K)⊗̂πK uniformly for t in any bounded interval. The inequalities:∫ ∞
0

∥∥etA ⊗ (Y e−tBh)
∥∥
L(K)⊗̂πK

≤
∫ ∞

0

‖etA‖.‖(Y e−tBh)‖ dt

≤
(∫ ∞

0

e−δt‖e−tB‖ dt
)
.‖Y ‖L(H,K).‖h‖
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ensure that
∫∞

0
etA ⊗ (Y e−tBh) dt converges as a Bochner integral in the projective tensor product

L(K)⊗̂πK and:∫
σ(A)

PA(dζ)⊗
(
Y (ζI −B)−1h

)
=

∫
σ(A)

PA(dζ)⊗
(
Y

∫ ∞
0

eζte−tBh dt

)
=

∫ ∞
0

(∫
σ(A)

eζtPA(dζ)

)
⊗
(
Y e−tBh

)
dt

=

∫ ∞
0

etA ⊗ (Y e−tBh) dt

belongs to L(K)⊗̂πK, too. Then:∫
σ(A)

PA(dζ)
(
Y (ζI −B)−1h

)
= JE

∫
σ(A)

PA(dζ)⊗
(
Y (ζI −B)−1h

)
defines a continuous linear operator:∫

σ(A)

PA(dζ)Y (ζI −B)−1 : h 7−→
∫
σ(A)

PA(dζ)
(
Y (ζI −B)−1h

)
, h ∈ H

belonging to L(H,K) with norm bounded by:

supt≥0 ‖e−tB‖
δ

‖Y ‖L(H,K)

In order to deal with unbounded operators, we replace the projective tensor product topology π by the
topology τ defined by Formula (9).

Lemma 4. Let H and K be Hilbert spaces. Suppose that A : D(A) → K is a self-adjoint operator
with spectral measure PA and B : D(B) → H is a densely-defined, closed linear operator, such that
σ(A) ∩ σ(B) = ∅.

Let Y ∈ L(H,K). For each h ∈ H, the K-valued function:

Φh : ζ 7−→ Y (ζI −B)−1h, ζ ∈ σ(A) (11)

is PA-integrable in L(K)⊗̂πK on every compact subset of σ(A).
Furthermore, there exist L(H,K)-valued B(σ(A))-simple functions:

sn : σ(A)→ L(H,K), n = 1, 2, . . .

such that for each h ∈ H, sn(ω)h → Φh(ω) in K as n → ∞ for PA-almost all ω ∈ σ(A) and for each
compact subset of K of σ(A),

sup
S∈B(K)

‖(PA ⊗ Φh)(S)− (PA ⊗ (snh))(S)‖L(K)⊗̂πK → 0

as n→∞.
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Proof. For a closed and densely-defined operator T , the resolvent (λI −T )−1 is defined for all complex
numbers λ belonging to the resolvent set ρ(T ) = C \ σ(T ). Suppose that ρ(T ) is non-empty. Then, the
resolvent equation:

(λI − T )−1 − (µI − T )−1 = (µ− λ)(λI − T )−1(µI − T )−1

for λ, µ ∈ ρ(T ) ensures that λ 7−→ (λI − T )−1, λ ∈ ρ(T ), is a holomorphic operator-valued function
for the uniform operator topology. It follows that for each h ∈ H, the function:

λ 7−→ (λI − A)−1 ⊗ (Y (λI −B)−1h)

is continuous in the projective tensor product L(K)⊗̂πK for the uniform norm on L(K). For a compact
subset K of σ(A), let AK = PA(K)A be the part of A on K. Then, for a contour ΓK with a winding of
one around K and zero around the closed set σ(B), the integral:∫

ΓK

‖(λI − AK)−1‖.‖Y (λI −B)−1h‖K |dλ|

is bounded by (|ΓK |. supλ∈ΓK
‖(λI − AK)−1‖.‖(λI −B)−1‖).‖Y ‖L(H,K).‖h‖H, so the function:∫

ΓK

(λI − AK)−1 ⊗ (Y (λI −B)−1h) dλ

converges as a Bochner integral in L(K)⊗̂πK. For every Borel subset S of the set K and x, x′, y′ ∈ K,
an application of Cauchy’s integral formula yields:∫

S

(PAx, x
′)(dζ)(Y (ζI −B)−1h, y′)

=
1

2πi

∫
S

(PAx, x
′)(dζ)

∫
ΓK

(Y (λI −B)−1h, y′)

λ− ζ
dλ

=
1

2πi

∫
ΓK

((λI − PA(S)AK)−1x, x′)(Y (λI −B)−1h, y′) dλ

so according to Definition 2 (replacing the topology τ by the stronger projective topology π), the function
ζ 7−→ Y (ζI −B)−1h, ζ ∈ σ(A), is PA-integrable in L(K)⊗̂πK on the set K and:∫

S

dPA(ζ)⊗ (Y (ζI −B)−1h)

=
1

2πi

∫
ΓK

(λI − P (S)AK)−1 ⊗ (Y (λI −B)−1h) dλ (12)

as an element of the projective tensor product L(K)⊗̂πK for each Borel subset S of K.
Because the operator-valued function λ 7−→ (λI − B)−1, λ ∈ σ(A), is uniformly continuous on the

compact set K, for each ε > 0, there exists an L(H)-valued B(σ(A))-simple function ϕε, such that:

sup
λ∈K
‖(λI −B)−1 − ϕε(λ)‖L(H) < ε

so that:
sup

S∈B(K)

∫
ΓK

‖(λI − P (S)AK)−1‖.‖Y (λI −B)−1h− Y ϕε(λ)h‖K |dλ| → 0
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as ε→ 0+ for each h ∈ H. According to the identity (12), it follows that:

sup
S∈B(K)

‖(PA ⊗ Φh)(S)− (PA ⊗ (Y ϕεh))(S)‖L(K)⊗̂πK → 0

as ε → 0+. Because the spectral measure PA is inner regular on compact sets, the simple functions sn,
n = 1, 2, . . . , can be pieced together from the simple functions ϕ1/n, n = 1, 2, . . . , on each compact
set K.

If both operators A and B are self-adjoint, then Theorem 3 ensures that a weak solution X of
Equation (5) exists and gives a norm estimate for X . If just one operator is self-adjoint, the following
result is applicable.

Theorem 5. Let H and K be Hilbert spaces. Suppose that A : D(A) → K is a self-adjoint operator
with spectral measure PA, and B : D(B) → H is a densely-defined, closed linear operator, such that
σ(A) ∩ σ(B) = ∅. Let Y ∈ L(H,K).

(i) Equation (5) has a strong solution if and only if there exists an operator valued measure M :

B(σ(A))→ L(H,K), such that:

M(K)h =

∫
K

dPA(ζ)(Y (ζI −B)−1h), h ∈ H

for each compact subset K of σ(A). The operator valued measure M exists if and only if:

sup
K

∥∥∥∥∫
K

dPA(ζ)(Y (ζI −B)−1h)

∥∥∥∥
L(H,K)

<∞ (13)

for every h ∈ H. Then, X = M(σ(A)) is the unique strong solution of Equation (5).
(ii) If for each h ∈ H, the function Φh given by Formula (11) is PA-integrable in E = L(K)⊗̂τK

on σ(A), then the map h 7−→ JE
∫
σ(A)

dPA ⊗ Φh, h ∈ H, defines a continuous linear operator∫
σ(A)

dPA(ζ)Y (ζI −B)−1 ∈ L(H,K), and the operator:

X =

∫
σ(A)

dPA(ζ)Y (ζI −B)−1

is the unique strong solution of Equation (5).
Let h ∈ H. The function Φh is PA-integrable in E = L(K)⊗̂τK on σ(A) if and only if:

sup
K

∥∥∥∥∫
K

dPA(ζ)⊗ (Y (ζI −B)−1h)

∥∥∥∥
L(K)⊗̂τK

<∞ (14)

Proof. The proof of (i) is similar to the proof of (ii), which we now give. Suppose that for each h ∈ H,
the function Φh is PA-integrable in E = L(K)⊗̂τK on σ(A). Then, for h ∈ D(B), we have:

APA(K)

∫
σ(A)

P (dζ)Φh(ζ)− PA(K)

∫
σ(A)

P (dζ)ΦBh(ζ) = PA(K)Y h

because PA(K)
∫
σ(A)

P (dζ)Φu(ζ) =
∫
K
PA(dζ)PA(K)Φu(ζ) for all u ∈ H, and by Formula (3),

the operator XK =
∫
K
dPA(ζ)PA(K)Y (ζI −B)−1 is the unique solution of the equation:

(PA(K)A)XKh−XKBh = PA(K)Y h, h ∈ D(B)
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The case of unbounded B is mentioned in [23], Lemma 2.5. Because PA(K)XK = XK and
A and PA(K) commute, we have AXKh − XKBh = PA(K)Y h for all h ∈ D(B). Now,
XKu = PA(K)

∫
σ(A)

P (dζ)Φu(ζ) converges in K as K ↑ σ(A) for each u ∈ H, so X = limK XK

belongs to L(H,K) by the uniform boundedness principle. Suppose that h ∈ D(B). Then,
limK AXKh = XBh+ Y h, so Xh belongs to the closure of A restricted to the subspace:

{PA(K)u : u ∈ K, K ⊂ σ(A) compact }

Hence, Xh ∈ D(A), and X is therefore a strong solution of Equation (5). On the other hand, if (5)
does have a strong solution X , it can be written as X = limK XK with XK = PA(K)X uniformly
bounded over compact sets K ⊂ σ(A).

Conversely, suppose that the bound (14) holds for every h ∈ H. There exists an increasing sequence
of compact subsets Kj , j = 1, 2, . . . , of σ(A), such that:

‖PA((σ(A) \Kj) ∩ S)‖ < 1/j

for every j = 1, 2, . . . and S ∈ σ(A), because the spectral measure PA is a regular operator valued Borel
measure. Let Ωj = Kj \ (∪i<jKi). Then, σ(A) \ ∪jΩj is PA-null, and Ω1,Ω2, . . . are pairwise disjoint.

For each y′ ∈ K, S ∈ B(σ(A)) and j = 1, 2, . . . :∫
Ωj∩S

(Y (ζI −B)−1h)⊗ (PA(dζ)y′) ∈ K⊗̂πK

If the bound (14) holds, then:

Ch = sup
n,S,‖y′‖≤1

∥∥∥∥∥
∫

(∪nj=1Ωj)∩S
(Y (ζI −B)−1h)⊗ (PA(dζ)y′)

∥∥∥∥∥
K⊗̂πK

<∞

The projective tensor product K⊗̂πK is associated with the trace class operators on K via the
embedding u : K⊗̂πK → L(K) defined by u(x⊗ y)k = (k, y)x. Then:

u

(∫
(∪nj=1Ωj)∩S

(Y (ζI −B)−1h)⊗ (PA(dζ)y′)

)
k

=
n∑
j=1

∫
Ωj∩S

(Y (ζI −B)−1h)(k, PA(dζ)y′)

for x, y, k ∈ K and the bound:
n∑
j=1

∫
Ωj∩S
|(Y (ζI −B)−1h, x′)|.|(k, PAy′)|(dζ) ≤ 4Ch‖x′‖.‖y′‖.‖k‖

holds for each x′, y′, k ∈ K and S ∈ B(σ(A)) by [31], Proposition I.1.11. It follows from the weak
sequential completeness of the Hilbert space K and the Orlicz–Pettis theorem ([31], Corollary I.4.4)
that the sum

∑∞
j=1

∫
Ωj∩S(Y (ζI − B)−1h) (k, PA(dζ)y′) converges unconditionally in K for each

S ∈ B(σ(A)) and:

k 7−→
∞∑
j=1

∫
Ωj∩S

(Y (ζI −B)−1h) (k, PA(dζ)y′), k ∈ K
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is a bounded linear operator whose norm is bounded by 4Ch‖y′‖. According to the non-commutative
Fatou lemma (see Section 4),∫

S

(Y (ζI −B)−1h)⊗ (PA(dζ)y′) =
∞∑
j=1

∫
Ωj∩S

(Y (ζI −B)−1h)⊗ (PA(dζ)y′)

belongs to K⊗̂πK and: ∥∥∥∥∫
S

(Y (ζI −B)−1h)⊗ (PA(dζ)y′)

∥∥∥∥
K⊗̂πK

≤ 4Ch‖y′‖

for each S ∈ B(σ(A)). Hence, the function Φh is PA-integrable in L(K)⊗̂τK on σ(A) and∥∥∥∫σ(A)
dPA ⊗ Φh

∥∥∥
L(K)⊗̂τK

≤ 4Ch. The uniform boundedness principle and the Vitali–Hahn–Saks

theorem ensures that the formulaM(S) =
∫
S
PA(dζ)(Y (ζI−B)−1) defines anL(H,K)-valued measure

M for the strong operator topology, so that (i) applies.

Remark 4. The operator-valued measure M : B(σ(A)) → L(H,K) is called a strong operator-valued
Stieltjes integral in [23,24]. According to Lemma 4, for each compact subset K of σ(A), the operator
M(K) ∈ L(H) can be written as a Stieltjes integral:

M(K)h = lim
n→∞

∫
K

PA(dζ)Y sn(ζ)h

for B(σ(A))-simple function sn : σ(A) → L(H), n = 1, 2, . . . , which may be chosen to be step
functions based on finite intervals, restricted to the spectrum σ(A) of A.

Example 5. The solution X in Theorem 3 is actually a strong solution. If A and B are self-adjoint and
d(σ(A), σ(B)) = δ > 0, then:∫

S

dPA(ζ)⊗ (Y (ζI −B)−1h) =

∫
R
(PA(S)eitA)⊗ (Y e−itBh)fδ(t) dt

belongs to L(K)⊗̂τK for each S ∈ B(σ(A)) and h ∈ H. To see this, let k ∈ K. Then, the integral:∫
R
(Y e−itBh)⊗ (PA(S)e−itAk)fδ(t) dt

converges in K⊗̂πK because t 7−→ (Y e−itBh) ⊗ (PA(S)e−itAk), t ∈ R, is continuous in K⊗̂πK and
fδ ∈ L1(R), so: ∫

R
‖Y e−itBh)⊗ (PA(S)e−itAk)fδ(t)‖K⊗̂πK dt

≤
∫
R
‖Y e−itBh‖.‖e−itAk‖.|fδ(t)| dt

≤ ‖Y ‖L(H,K)‖h‖H‖k‖K‖fδ‖1

and ‖
∫
S
dPA(ζ) ⊗ (Y (ζI − B)−1h)‖L(K)⊗̂τK ≤ ‖Y ‖L(H,K)‖h‖H‖fδ‖1. Then, by an appeal to Theorem

5 (ii), the operator:

X =

∫
σ(A)

dPA(ζ)Y (ζI −B)−1 =

∫
R
e−itAY eitBfδ(t) dt
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is the unique strong solution of Equation (5). It is shown in [24], Lemma 4.2, that there is actually no
distinction between weak and strong solutions of the Sylvester–Rosenblum Equation (5) because the
bound (13) follows from the boundedness in the weak operator topology.

Example 6. If A is self-adjoint, B is densely defined and closed, supσ(A) ≤ 0 and there exists
0 < ω < π/2 and a sector:

Sω− = {−z : z ∈ C \ {0}, arg |z| < ω} ∪ {0}

that is contained in ρ(B), then according to [29], Theorem 15:∫
S

dPA(ζ)⊗ (Y (ζI −B)−1k) ∈ L(K)⊗̂πK, S ∈ B(σ(A)), k ∈ K

The application of the integral representation of solutions of the Sylvester–Rosenblum Equation (5)
to the spectral analysis of block operator matrices is discussed in detail in [23,24]. It is worthwhile to
mention the background concerning self-adjoint operator block matrices:

H =

(
A0 B01

B10 A1

)

acting in the orthogonal sum H = H0 ⊕ H1 of separable Hilbert spaces H0 and H1. Then, H can also
be written as H = A+B for the operator matrices:

A =

(
A0 0

0 A1

)
, B =

(
0 B01

B10 0

)

with A self-adjoint and B bounded. A strong solution Q of the equation:

QA− AQ+QBQ = B (15)

having the form:

Q =

(
0 Q01

Q10 0

)
, Q10 = −Q∗01

determines a reducing subspace for the original block operator matrix operator H , so that:

(I +Q)−1H(I +Q) = A+BQ =

(
A0 +B01Q10 0

0 A1B10Q01

)

Consequently, if U is the unitary operator associated with the polar decomposition I+Q = U |I+Q|,

then U∗HU =

(
H0 0

0 H1

)
is the block diagonalization of H for self-adjoint operators H0, H1 similar

to the operators A0 +B01Q10 and A1 +B10Q01, respectively.
The Equation (15) is called Riccati’s equation. It also arises in optimal control theory when the

operator entries may not be self-adjoint; see [23] for a list of references. Equation (15) is quadratic in
Q, and provided that 0 <

√
‖B‖‖D‖ ≤ δ/π with respect to the distance δ = d(σ(U), σ(V )) between

the spectra of U and V , a fixed point argument produces a unique strong solution Q of the associated
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operator equation QU − V Q + QBQ = D ([23], Theorem 3.6) in the case that U and V are bounded
self-adjoint operators; see also [24], Section 5. When σ(A0) and σ(A1) are separated and B01, B10 are
small perturbations, solutions of (15) are constructed in [23], Theorems 7.4, 7.6 and 7.7. In the analysis
of resonances between scattering channels, the situation where σ(A0) ∩ σ(A1) 6= ∅ also arises [32].

Conditions for which the equation ξ = ξ0 + ξ1 (modZ) is valid almost everywhere are given in [23],
Theorem 6.1, for the spectral shift function ξ with respect to the pair (H,A) and the spectral shift function
ξj with respect to the self-adjoint pair (Hj, Aj), j = 0, 1. Actually, the almost sure decomposition
ξ = ξ0 + ξ1 can be deduced from [23], Lemma 7.10, and Equation (28) below, where the distinguished
Birman–Solomyak representation is chosen for Krein’s spectral shift function by employing double
operator integrals.

4. Double Operator Integrals

As mentioned in Example 5 above, if A : D(H)→ H and B : D(H)→ H are self-adjoint operators,
d(σ(A), σ(B)) = δ > 0 and Y ∈ L(H,H), then for each h ∈ H, the function ζ 7→ Y (ζI − B)−1h,
ζ ∈ σ(A), is PA-integrable in L(H)⊗̂τH, and X =

∫
σ(A)

dPA(ζ)Y (ζI − B)−1 is the unique strong
solution of Equation (5). Because B is self-adjoint, we can rewrite the solution X as an iterated integral:

X =

∫
σ(A)

dPA(ζ)Y

(∫
σ(B)

dPB(µ)

ζ − µ

)
with respect to the spectral measures PA, PB associated with A and B.

An application of the Fubini strategy sees the expression:

X =

∫
σ(A)×σ(B)

dPA(ζ)Y dPB(µ)

ζ − µ
(16)

as a representation of the strong solution of the operator equation:

AX −XB = Y

in the case that both A and B are self-adjoint operators.
Integrals like (16) have been studied extensively in the case that Y ∈ L(H) is a Hilbert–Schmidt

operator and, more generally, when Y belongs to the Schatten ideal Cp(H) inL(H) for some 1 ≤ p <∞,
where they are called double operator integrals [20].

Following [33], Section III.2, a subspace S of the collection L(H) of all bounded linear operators on
a separable Hilbert space H is called a symmetrically-normed ideal with norm ‖ · ‖S if (S, ‖ · ‖S) is a
Banach space and:

a. for S ∈ S, L,K ∈ L(H), we have LSK ∈ S and ‖LSK‖S ≤ ‖L‖‖S‖S‖K‖;
b. if S has rank one, then ‖S‖S = ‖S‖; and
c. the closed unit ball of (S, ‖ · ‖S) is sequentially closed in the weak operator topology of L(H),

that is if Sn ∈ S with supn ‖Sn‖S < ∞ and if Sn → S in the weak operator topology of L(H),
then S ∈ S and ‖S‖S ≤ lim supn ‖Sn‖S.
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For 1 ≤ p ≤ ∞, the Schatten ideal Cp(H) consists of all compact operators T whose singular values
{λj}∞j=1 belong to `p with the norm ‖T‖pCp(H) =

∑∞
j=1 λ

p
j for 1 ≤ p < ∞ and ‖T‖C∞(H) = ‖T‖.

The singular values {λj}∞j=1 are the eigenvalues of the positive operator (T ∗T )
1
2 . For 1 ≤ p < ∞,

S = Cp(H) is a symmetrically-normed ideal. Condition c. is often called the non-commutative Fatou
lemma. It fails for the compact operators C∞(H), but S = L(H) is itself a symmetrically-normed
(improper) ideal with the uniform norm. The symmetrically-normed ideal C1(H) of trace class operators
onH may be identified with the projective tensor productH⊗̂πH ([30], III.7.1).

For a bounded linear operator T on a Hilbert spaceH, the expression:

Iϕ(T ) =

∫
Λ×M

ϕ(λ, µ)E(dλ)TF (dµ)

is a double operator integral ifE is an L(H)-valued spectral measure on the measurable space (Λ, E) and
F is an L(H)-valued spectral measure on the measurable space (M,F). The function ϕ : Λ×M → C
is taken to be uniformly bounded on Λ ×M . In Formula (16), ϕ(λ, µ) = (λ − µ)−1, so that |ϕ(λ, µ)|
is bounded by 1/δ for (λ, µ) ∈ σ(A) × σ(B) when the spectra σ(A) and σ(B) are a positive distance
δ apart.

The map T 7−→ Iϕ(T ), T ∈ C2(H), is continuous into the space C2(H) of Hilbert–Schmidt
operators and:

‖Iϕ‖C2(H) = ‖ϕ‖L∞(Λ×M)

so that the map (E ⊗ F )C2(H) : U 7−→ IχU , U ∈ E ⊗ F , is actually a spectral measure acting on C2(H),
and the equality:

Iϕ =

∫
Λ×M

ϕd(E ⊗ F )C2(H)

holds for all bounded measurable functions ϕ : Λ×M → C ([20], Section 3.1).
The situation is more complicated if the space C2(H) of Hilbert–Schmidt operators (with the

Hilbert–Schmidt norm) is replaced by the Schatten ideal S = Cp(H) in L(H) for some 1 ≤ p <∞ not
equal to two or as in the case of Formula (16), by S = L(H) itself, because the map U × V 7→ IχU×V ,
U ∈ E , V ∈ F , only defines a finitely-additive set function (E ⊗ F )S acting on elements T ∈ S, so
that:

(E ⊗ F )S(U × V )T = E(U)TF (V ), U ∈ E , V ∈ F .

For a bounded function ϕ : Λ × M → C, the double operator integral Iϕ may be viewed as a
continuous generalisation of a classical Schur multiplier:

Tµ : x 7−→
∑
i,j

µijαijeij, x =
∑
i,j

αijeij (17)

for an infinite matrix µ = {µij} ∈ M, with respect to the matrix units eij corresponding to an
orthonormal basis {hj} of H. If Pj denotes the orthogonal projection onto the linear space span{hj}
for each j = 1, 2, . . . , then:

Tµ =
∑
i,j

µij(Pi ⊗ Pj)M

for the operators (Pi ⊗ Pj)M : x 7−→ PixPj acting on the infinite matrix x ∈M for i, j = 1, 2 . . . .
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To be more precise, let S be a symmetrically-normed ideal in L(H). The linear map JS : L(H) ⊗
L(H) → L(S) is defined by JS(A ⊗ B)T = ATB for T ∈ S and A,B ∈ L(H). In the language
of [20], Section 4, the element JS(A⊗B) of L(S) is the transformer on S associated with A⊗B. The
tensor product W = L(H)⊗̂τH is defined by completion with respect to the norm (9).

Definition 7. Let (Λ, E) and (M,F) be measurable spaces and H a separable Hilbert space. Let m :

E → Ls(H) be an operator valued measure for the strong operator topology and n : F → H be a
H-valued measure.

An (E⊗F)-measurable function ϕ : Λ×M → C is said to be (m⊗n)-integrable inW = L(H)⊗̂τH
if for every x, x′, y′ ∈ H, the function ϕ is integrable with respect to the scalar measure (mx, x′)⊗(n, y′)

and for every A ∈ E ⊗ F , there exists ϕ.(m⊗ n)(A) ∈ L(H)⊗̂τH, such that:

〈ϕ.(m⊗ n)(A), x⊗ x′ ⊗ y′〉 =

∫
A

ϕd((mx, x′)⊗ (n, y′))

for every x, x′, y′ ∈ H.
If ϕ is (m⊗ n)-integrable in L(H)⊗̂τH and JW : L(H)⊗̂τH → H is the multiplication map, then:∫

A

ϕd(mn) = JW (ϕ.(m⊗ n)(A)), A ∈ E ⊗ F

The following observation is useful for treating double operator integrals.

Proposition 6. Let H, m : E → Ls(H) and n : F → H be as in Definition 7. If T ∈ C1(H), then there
exists a unique vector measure:

m⊗ (Tn) : E ⊗ F → L(H)⊗̂τH

such that (m ⊗ (Tn))(E × F ) = m(E) ⊗ (Tn(F )) ∈ L(H) ⊗ H for each E ∈ E and F ∈ F .
Consequently, every bounded (E ⊗ F)-measurable function ϕ : Λ×M → C is (m⊗ (Tn))-integrable
in W = L(H)⊗̂τH and:∫

A

ϕd(m(Tn)) = JW (ϕ.(m⊗ (Tn))(A)), A ∈ E ⊗ F .

Proof. If T is a trace class operator on H, then there exists orthonormal sets {φj}j , {ψj}j and a
summable sequence {λj}j of scalars, such that Th =

∑∞
j=1 λjφj(h, ψj) for every h ∈ H. For each

j = 1, 2 . . . , the total variation of the product measure:

(mh, k)⊗ (n, ψj) : E × F 7−→ (m(E)h, k)⊗ (n(F ), ψj), E ∈ E , F ∈ F

is bounded by ‖m‖(Λ).‖n‖(M).‖h‖.‖k‖ for every h, k ∈ H. Here, ‖m‖ and ‖n‖ denote the
semi-variation of m and n, respectively ([31], p. 2). It follows that (n, ψj)(m ⊗ φj) admits a unique
countably-additive extension Mj : E ⊗ F → L(H) ⊗ H whose semi-variation with respect to the
norm (9) is bounded by ‖m‖(Λ).‖n‖(M) and m⊗ (Tn) =

∑
j λjMj converges in L(H)⊗̂τH uniformly

on E ⊗ F .
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Corollary 7. Let (Λ, E) and (M,F) be measurable spaces and H a separable Hilbert space. Let m :

E → Ls(H) and n : F → Ls(H) be operator valued measures for the strong operator topology. Then,
there exists a unique operator valued measure:

JC1(H)(m⊗ n) : E ⊗ F → Ls(C1(H),Ls(H))

such that:
JC1(H)(m⊗ n)(E × F ) = JC1(H)(m(E)⊗ n(F )), E ∈ E , F ∈ F .

Proof. It is easy to check that for A ∈ E ⊗ F and T ∈ C1(H), the formula:([
JC1(H)(m⊗ n)(A)

]
T
)
h = JW ((m⊗ (T (nh)))(A)), h ∈ H

defines a linear operator
[
JC1(H)(m⊗ n)(A)

]
T on H whose operator norm is bounded by

‖m‖(Λ).‖n‖(M)‖T‖C1(H), and A 7−→
[
JC1(H)(m⊗ n)(A)

]
T , A ∈ E ⊗ F , is countably additive in

L(H) for the strong operator topology for each T ∈ C1(H).

Given T ∈ C1(H), the expression (mTn)(E × F ) = m(E)Tn(F ), E ∈ E and F ∈ F , is the
restriction to product sets of the L(H)-valued measure mTn = JC1(H)(m⊗ n)T .

The following notation gives an interpretation of Formula (16) in the case that the operator Y belongs
to the symmetrically-normed ideal S = Cp(H), 1 ≤ p < ∞ or S = L(H). The collection C1(H) of
trace class operators is a linear subspace of S in each case.

Let (m⊗ n)S be the finitely-additive set function defined by:

(m⊗ n)S(E × F ) = JS(m(E)⊗ n(F )), E ∈ E , F ∈ F

that is (m ⊗ n)S : A → L(S) is finitely additive on the algebra A of all finite unions of product sets
E × F for E ∈ E , F ∈ F .

Suppose that the function ϕ : Λ ×M → C is integrable with respect to the measure JC1(H)(m ⊗ n)

with values in Ls(C1(H),Ls(H)). If for E ∈ E and F ∈ F , the linear map:

u 7−→
(∫

E×F
ϕd[JC1(H)(m⊗ n)]

)
u, u ∈ C1(H)

is the restriction to C1(H) of a continuous linear map Tϕ ∈ L(S), then we write:∫
E×F

ϕd(m⊗ n)S

for for the continuous linear map Tϕ and we say that ϕ is (m⊗ n)S-integrable if:∫
E×F

ϕd(m⊗ n)S ∈ L(S)

for every E ∈ E and F ∈ F .
To check that the operator

∫
E×F ϕd(m ⊗ n)S ∈ L(S) is uniquely defined, observe that C1(H) is

norm dense in Cp(H) for 1 < p ≤ ∞. In the case S = L(H), the closure in the ultra-weak topology can
be taken.
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Although (m⊗ n)S is only a finitely-additive set function, the L(S)-valued set function:

E × F 7−→
∫
E×F

ϕd(m⊗ n)S, E ∈ E , F ∈ F

of an (m⊗n)S-integrable function ϕ defines a finitely-additive L(S)-valued set function on the algebra
generated by all product sets E × F for E ∈ E and F ∈ F .

Corollary 7 tells us that for an (m ⊗ n)C1(H)-integrable function ϕ : Λ ×M → C, the L(H)-valued
set function:

A 7−→
(∫

A

ϕd(m⊗ n)C1(H)

)
T, A ∈ E ⊗ F

is countably additive in the strong operator topology for each T ∈ C1(H). The following simple
observation describes the situation for other operator ideals S.

Proposition 8. Suppose that ϕ : Λ ×M → C is an (m ⊗ n)S-integrable function. For each T ∈ S,
the set function:

E × F 7−→
(∫

E×F
ϕd(m⊗ n)S

)
T, E ∈ E , F ∈ F

is separately σ-additive in the strong operator topology of L(H), that is,(∫
(∪∞j=1Ej)×F

ϕd(m⊗ n)S

)
T =

∞∑
j=1

(∫
Ej×F

ϕd(m⊗ n)S

)
T, F ∈ F(∫

E×(∪∞j=1Fj)

ϕd(m⊗ n)S

)
T =

∞∑
j=1

(∫
E×Fj

ϕd(m⊗ n)S

)
T, E ∈ E

for all pairwise disjoint Ej ∈ E , j = 1, 2, . . . and all pairwise disjoint Fj ∈ F , j = 1, 2, . . . .

The following result was proven by Birman and Solomyak ([20], Section 3.1).

Theorem 9. Let (Λ, E) and (M,F) be measurable spaces and H a separable Hilbert space. Let P :

E → Ls(H) and Q : F → Ls(H) be spectral measures. Then, there exists a unique spectral measure
(P⊗Q)C2(H) : E ⊗ F → L(C2(H)), such that (P⊗Q)C2(H)(A) = (P ⊗Q)C2(H)(A) for all A ∈ A and:∫

A

ϕd(P ⊗Q)C2(H) =

∫
A

ϕd(P⊗Q)C2(H) ∈ L(C2(H)), A ∈ E ⊗ F

for every bounded (E ⊗ F)-measurable function ϕ : Λ×M → C. Moreover,

‖(P⊗Q)C2(H)(ϕ)‖L(C2(H)) = ‖ϕ‖∞.

For spectral measures P and Q, the formula:(∫
E×F

ϕd(P ⊗Q)S

)
T =

(∫
Λ×M

ϕd(P ⊗Q)S

)
P (E)TQ(F )

holds for each E ∈ E , F ∈ F and T ∈ S, so it is only necessary to verify that∫
Λ×M ϕd(P ⊗Q)S ∈ L(S) in order to show that ϕ is (P ⊗Q)S-integrable.

The following observation gives an interpretation of Formula (16) as a double operator integral.
The Fourier transform of f ∈ L1(R) is the function f̂ : R → C defined by f̂(ξ) =

∫
R e
−iξxf(x) dx

for ξ ∈ R.
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Theorem 10. Let H be a separable Hilbert space. Let P : B(R)→ Ls(H) and Q : B(R)→ Ls(H) be
spectral measures on R. Let S = Cp(H) for some 1 ≤ p < ∞ or S = L(H). Suppose that f ∈ L1(R)

and ϕ(λ, µ) = f̂(λ− µ) for all λ, µ ∈ R. Then,
∫
R×R ϕd(P ⊗Q)S ∈ L(S) and:∥∥∥∥∫

R×R
ϕd(P ⊗Q)S

∥∥∥∥
L(S)

≤ ‖f‖1 (18)

Proof. For T ∈ C1(H) and Borel subsets E,F of R, by Fubini’s theorem, we have:(∫
E×F

ϕd[JC1(H)(P ⊗Q)]

)
T =

∫
R

(∫
E

e−iλξ dP (λ)

)
T

(∫
F

eiµξ dQ(µ)

)
f(ξ) dξ

The right-hand side is a Bochner integral in the strong operator topology of L(H) because:

ξ 7−→
∫
R
e−iλξ dP (λ), ξ 7−→

∫
R
eiµξ dQ(µ), ξ ∈ R

are continuous unitary groups in the strong operator topology. Moreover,

ξ 7−→
(∫

E

e−iλξ dP (λ)

)
T

(∫
F

eiµξ dQ(µ)

)
, ξ ∈ R

is continuous in the norm of S for compact subsets E,F of R, because S is a symmetrically-normed
ideal in L(H); so, the Bochner integral converges in S itself, and we obtain:∥∥∥∥(∫

E×F
ϕd[JC1(H)(P ⊗Q)]

)
T

∥∥∥∥
S

≤ ‖f‖1‖T‖S

For E,F increasing to R, the inclusion
∫
R×R ϕd(P ⊗ Q)S ∈ L(S) and the bound (18) is now a

consequence of the non-commutative Fatou lemma.

Corollary 11. Let H be a separable Hilbert space, and let A,B be self-adjoint operators with
spectral measures PA : B(σ(A)) → Ls(H) and PB : B(σ(B)) → Ls(H), respectively. Let S = Cp(H)

for some 1 ≤ p < ∞ or S = L(H). If the spectra of A and B are separated by a distance
d(σ(A), σ(B)) = δ > 0, then

∫
σ(A)×σ(B)

(λ− µ)−1(PA ⊗ PB)S(dλ, dµ) ∈ L(S) and:∥∥∥∥∫
σ(A)×σ(B)

(PA ⊗ PB)S(dλ, dµ)

λ− µ

∥∥∥∥
L(S)

≤ π

2δ

In particular, Equation (5) has a unique strong solution for Y ∈ S given by the double
operator integral:

X =

∫
σ(A)×σ(B)

dPA(λ)Y dPB(µ)

λ− µ
:=

(∫
σ(A)×σ(B)

(PA ⊗ PB)S(dλ, dµ)

λ− µ

)
Y

so that ‖X‖S ≤ π
2δ
‖Y ‖S.

Although the Heaviside function χ(0,∞) is not the Fourier transform of an L1-function, the following
result of Gohberg and Krein ([34], Section III.6) holds, in case P = Q. The general case is outlined
in [20], Theorem 7.2.



Mathematics 2015, 3 583

Theorem 12. Let H be a separable Hilbert space. Let P : B(R)→ Ls(H) and Q : B(R)→ Ls(H) be
spectral measures on R. Then: ∫

R×R
χ{λ>µ} d(P ⊗Q)Cp(H) ∈ L(Cp(H))

for every 1 < p <∞.

The following recent result of Sukochev and Potapov [35] settled a long outstanding conjecture of
Krein for the index p in the range 1 < p <∞.

Theorem 13. Let H be a separable Hilbert space. Let P : B(R) → Ls(H) and Q : B(R) → Ls(H)

be spectral measures on R. Suppose that f : R → R is a continuous function for which the
difference quotient:

ϕf (λ, µ) =

{
f(λ)−f(µ)

λ−µ , λ 6= µ

0 , λ = µ

is uniformly bounded. Then, for every 1 < p <∞,∫
R×R

ϕf d(P ⊗Q)Cp(H) ∈ L(Cp(H))

and there exists Cp > 0, such that:∥∥∥∥∫
R×R

ϕf d(P ⊗Q)Cp(H)

∥∥∥∥
Cp(H)

≤ Cp‖ϕf‖∞

Such a function f is said to be uniformly Lipschitz on R and ‖f‖Lip1
:= ‖ϕf‖∞.

Corollary 14. Suppose that f : R → R is a uniformly Lipschitz function. Then, for every 1 < p < ∞,
there exists Cp > 0, such that:

‖f(A)− f(B)‖Cp(H) ≤ Cp‖f‖Lip1
‖A−B‖Cp(H)

for any self-adjoint operators A and B on a separable Hilbert spaceH.

Proof. Let PA and PB be the spectral measures of A and B, respectively, and suppose that
‖A−B‖Cp(H) <∞. Then, according to [20], Theorem 8.1 (see also [21], Corollary 7.2), the equality:

f(A)− f(B) =

(∫
R×R

ϕf d(PA ⊗ PB)Cp(H)

)
(A−B)

holds, and the norm estimate follows from Theorem 13.
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5. Traces of Double Operator Integrals

In this section, let (Λ, E) and (M,F) be given measurable spaces, H a separable Hilbert space and
P : E → Ls(H), Q : F → Ls(H) spectral measures. Let S = Cp(H) for some 1 ≤ p < ∞ or
S = L(H). The Banach space L1(P ) of P -integrable functions is isomorphic to the C*-algebra L∞(P )

of P -essentially bounded functions. The analogous result for (P ⊗Q)S-integrable functions follows.

Proposition 15. For an (E ⊗ F)-measurable function ϕ : Λ×M → C, let [ϕ] be the equivalence class
of all functions equal to ϕ (P ⊗Q)-almost everywhere. Let:

L1((P ⊗Q)S) = {[ϕ] : ϕ is (P ⊗Q)S-integrable}

with the pointwise operations of addition and scalar multiplication with the norm:

‖[ϕ]‖S =

∥∥∥∥∫
Λ×Λ

ϕd(P ⊗Q)S

∥∥∥∥
L(S)

Then, ‖[ϕ]‖∞ ≤ ‖[ϕ]‖S, and L1((P ⊗ Q)S) is a commutative Banach *-algebra under pointwise
multiplication. If S = C2(H), then:

L1((P ⊗Q)S) = L∞(P ⊗Q)

is a commutative C∗-algebra. Furthermore, the Banach *-algebras:

L1((P ⊗Q)C1(H)) = L1((P ⊗Q)C∞(H)) = L1((P ⊗Q)L(H))

are isometric, where C∞(H) is the uniformly-closed subspace of L(H) consisting of compact operators
onH.

Remark 8. The analogy of double operator integrals with multiplier theory in harmonic analysis is
fleshed out in [21], Example 2.13, as follows.

If Λ is a locally-compact abelian group with Fourier transform F , the spectral measure Q is defined
by multiplication by characteristic functions on L2(Λ) and P = F−1QF is the spectral measure of
the “momentum operator” on Λ, then for 1 < p < ∞, the space Mp(Λ) of Fourier multipliers on
Lp(Λ) coincides with the commutative Banach *-algebra L1(Pp) for the finitely-additive set function
Pp : A → L(Lp(Λ)) defined as in [21], Example 2.13, by the spectral measure P acting on on L2(Λ).
For example, when Λ = R, the operator

∫
R sgn dPp ∈ L(Lp(Λ)) is the Hilbert transform for 1 < p <∞.

It is only in the case p = 2 that L1(P2) = L∞(P ). One might argue that multiplier theory in
commutative harmonic analysis is devoted to the study of the commutative Banach *-algebra L1(Pp) for
1 < p < ∞. The analysis of the commutative Banach *-algebra L1((E ⊗ F )S)) for general spectral
measures E and F and symmetric operator ideal S has many applications to scattering theory and
quantum physics [20].

The commutative Banach *-algebra L1((P ⊗Q)L(H)) is characterised by a result of Peller [25].
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Theorem 16. Let ϕ : Λ ×M → C be a uniformly-bounded function. Then, [ϕ] ∈ L1((P ⊗ Q)L(H)) if
and only if there exist a finite measure space (T,S, ν) and measurable functions α : Λ × T → C and
β : M × T → C, such that

∫
T
‖α(·, t)‖L∞(P )‖β(·, t)‖L∞(Q) dν(t) <∞ and:

ϕ(λ, µ) =

∫
T

α(λ, t)β(µ, t) dν(t), λ ∈ Λ, µ ∈M (19)

The norm of [ϕ] ∈ L1((P ⊗Q)L(H)) with the representation (19) satisfies:

K−1
G

∫
T

‖α(·, t)‖L∞(P )‖β(·, t)‖L∞(Q) dν(t) ≤ ‖[ϕ]‖L1((P⊗Q)L(H))

≤

∥∥∥∥∥
(∫

T

|α(·, t)|2 dν(t)

) 1
2

∥∥∥∥∥
L∞(P )

∥∥∥∥∥
(∫

T

|β(·, t)|2 dν(t)

) 1
2

∥∥∥∥∥
L∞(Q)

(20)

for Grothendieck’s constant KG. Moreover, ‖[ϕ]‖L1((P⊗Q)L(H)) is the infimum of all numbers on
the right-hand side of the inequality (20) for which there exists a finite measure ν, such that the
representation (19) holds for ϕ.

Formula (19) is to be interpreted in the sense that ϕ is a special representative of the equivalence class
[ϕ] ∈ L1((P ⊗ Q)L(H)). It is worthwhile to make a few remarks on the significance of Formula (19) in
order to motivate its proof below.

If the functions α and β in the representation (19) have the property that t 7−→ α(·, t), t ∈ T and
t 7−→ β(·, t), t ∈ T , are strongly ν-measurable in L∞(P ) and L∞(Q), respectively, then the
function t 7−→ α(·, t) ⊗ β(·, t), t ∈ T , is strongly measurable in the projective tensor product
L∞(P )⊗̂πL∞(Q), and: ∫

T

‖α(·, t)‖L∞(P )‖β(·, t)‖L∞(Q) dν(t) <∞

Hence, the function t 7−→ α(·, t) ⊗ β(·, t), t ∈ T , is Bochner integrable in L∞(P )⊗̂πL∞(Q),
that is [ϕ] ∈ L∞(P )⊗̂πL∞(Q). However, it is only assumed α is (E ⊗ S)-measurable and
β is (F ⊗ S)-measurable, so this conclusion is unavailable.

Let νP : E → [0,∞) be a finite measure, such that νP (E) ≤ ‖P‖(E) for E ∈ E and
limνP (E)→0 ‖Ph‖(E) = 0 for all h ∈ H with ‖h‖ ≤ 1. Such a measure exists by the
Bartle–Dunford–Schwartz Theorem ([31], Corollary I.2.6) or, more simply, νP =

∑∞
n=1 2−n(Pen, en)

for some orthonormal basis {en}n of H. Let νQ : F → [0,∞) be a finite measure corresponding to Q.
Then, L∞(P ) = L∞(νP ) and L∞(Q) = L∞(νQ).

There is a bijective correspondence between elements [k] of the projective tensor product
L∞(νP )⊗̂πL∞(νQ) ⊂ L∞(νP ⊗ νQ) and nuclear operators Tk : L1(νQ) → L∞(νP ), such that for
each f ∈ L1(νQ),

(Tkf)(λ) =

∫
M

k(λ, µ)f(µ) dνQ(µ)

for νP almost all λ ∈ Λ, in the sense that for functions with:

∞∑
j=1

‖φj‖L∞(νP )‖ψj‖L∞(νQ) <∞
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the kernel [k] =
∑∞

j=1 φj ⊗ ψj corresponds to the nuclear operator:

(Tkf) =
∞∑
j=1

φj

∫
M

fψj dνQ, f ∈ L1(νQ)

Nuclear operators between Banach space are discussed in [30], Section III.7.
In the case that H = `2 and P = Q are projections onto the standard basis vectors, then∫

N×N ϕd(P ⊗ Q)L(`2) is the classical Schur multiplier operator (17) and Grothendieck’s inequality
ensures that L1((P ⊗ Q)L(`2)) = `∞⊗̂π`∞; see Proposition 18 below and [26], Theorem 3.2. In this
case, the measure ν in Formula (19) is the counting measure on N, and there is no difficulty with strong
ν-measurability in an L∞-space.

The passage from the discrete case to the case of general spectral measures P and Q sees the nuclear
operators from L1(νQ) to L∞(νP ) replaced by one-integral operators from L1(νQ) to L∞(νP ), which
leads to the Peller representation (19).

5.1. Schur Multipliers and Grothendieck’s Inequality

If E is any L(H)-valued spectral measure and h ∈ H, the identity:

∞∑
n=1

‖E(fn)h‖2
H =

(
E

(
∞∑
n=1

|fn|2
)
h, h

)

ensures that theH-valued measure Eh has bounded `2-semi-variation in `2(H), the Hilbert space tensor
productH⊗̂`2 = ⊕∞j=1H with norm ‖u‖2

`2(H) =
∑∞

j=1 ‖uj‖2
H. It follows from [5] that for any essentially

bounded functions f : Λ→ `2 and g : M → `2 and h ∈ H, the `2-valued function f is (Ph)-integrable
in `2(H), and the `2-valued function g is (Qh)-integrable in `2(H). Then, there exist operator-valued
measures f ⊗ P : E → L(H, `2(H)) and g ⊗Q : F → L(H, `2(H)), such that:

(f ⊗ P )(E)h = (f ⊗ (Ph))(E), E ∈ E , h ∈ H and

(g ⊗Q)(F )h = (g ⊗ (Qh))(F ), F ∈ F , h ∈ H

There is a simple sufficient condition for ϕ ∈ L1((P ⊗ Q)L(H)). Observe first that the linear map
J : `2(H)⊗ `2(H)→ H⊗̂πH defined by:

J(({φn}n)⊗ ({ψm}m)) =
∞∑
j=1

φj ⊗ ψj

has a continuous linear extension to a contraction J : C1(`2(H)) → C1(H) corresponding to taking the
trace in the discrete index. The formula:

(((f ⊗ P )⊗ (g ⊗Q))C1(H)(E × F ))(h⊗ k) := (((f ⊗ (Ph))(E))⊗ (g ⊗ (Qk))(F ))

for h, k ∈ H, E ∈ E and F ∈ F defines a finitely-additive set function:

((f ⊗ P )⊗ (g ⊗Q))C1(H)
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with values in L(C1(H), C1(`2(H))), because C1(K) can be identified with K⊗̂πK for any Hilbert
space K. Moreover,

‖((f ⊗ P )⊗ (g ⊗Q))C1(H)(Λ×M)‖L(C1(H),C1(`2(H))) ≤ ‖f‖∞.‖g‖∞

Then, the operator:∫
Λ×M

(f, g) d(P ⊗Q)C1(H) = J [((f ⊗ P )⊗ (g ⊗Q))C1(H)(Λ×M)]

is an element of L(C1(H)), that is ϕ = (f, g) belongs to L1((P ⊗Q)C1(H)) = L1((P ⊗Q)L(H)), and we
have the representation:

ϕ(λ, µ) =
∞∑
n=1

fn(λ)gn(µ) (21)

where P -ess.sup{
∑∞

n=1 |fn|2} <∞ and Q-ess.sup{
∑∞

n=1 |gn|2} <∞. Moreover, the bound:∥∥∥∥∫
Λ×M

ϕd(P ⊗Q)L(H)

∥∥∥∥
L(L(H))

≤

∥∥∥∥∥∥
(
∞∑
n=1

|fn|2
) 1

2

∥∥∥∥∥∥
L∞(P )

.

∥∥∥∥∥∥
(
∞∑
n=1

|gn|2
) 1

2

∥∥∥∥∥∥
L∞(Q)

(22)

holds. The same argument works if the spectral measures P , Q are replaced by any two operator valued
measures m : E → Ls(H) and n : F → Ls(H) by appealing to the metric form ([26], Theorem 2.4) of
Grothendieck’s inequality, so that:∥∥∥∥∫

Λ×M
ϕd(m⊗ n)L(H)

∥∥∥∥
L(L(H))

≤ K2
G‖m‖(Λ)‖n‖(M)

∥∥∥∥∥∥
(
∞∑
n=1

|fn|2
) 1

2

∥∥∥∥∥∥
L∞(m)

.

∥∥∥∥∥∥
(
∞∑
n=1

|gn|2
) 1

2

∥∥∥∥∥∥
L∞(n)

.

Alternatively, for each T ∈ L(H), the linear operator:(∫
Λ×M

ϕd(P ⊗Q)L(H)

)
T ∈ L(H)

can be realised as the operator associated with the bounded sesquilinear form:

(h, k) 7−→
∞∑
n=1

(TQ(gn)h, P (fn)k).

See ([20], Theorem 4.1).
A remarkable consequence of Grothendick’s inequality is that for ϕ ∈ L1((P ⊗ Q)L(H)), Peller’s

representation (19) is necessary (νP ⊗ νQ) almost everywhere. The analysis of Pisier [26] leads the way.
The projective tensor product `∞⊗̂π`∞ is the completion of the tensor product `∞ ⊗ `∞ with respect

to the norm:

‖u‖π = inf

{
n∑
j=1

‖xj‖∞‖yj‖∞ : u =
n∑
j=1

xj ⊗ yj, xj, yj ∈ `∞
}

Another distinguished norm on `∞ ⊗ `∞ is given by:

γ2(u) = inf

sup
ξ∈`1

(
n∑
j=1

|ξ(xj)|2
) 1

2

. sup
η∈`1

(
n∑
j=1

|η(yj)|2
) 1

2





Mathematics 2015, 3 588

where the infimum runs over all possible representation u =
∑n

j=1 xj ⊗ yj for xj, yj ∈ `∞, j = 1, . . . , n

and n = 1, 2, . . . . Then, γ2 may also be viewed as the norm of factorisation through a Hilbert space:

γ2(u) = inf{sup
i
‖xi‖. sup

j
‖yj‖}

where the infimum runs over all Hilbert spaces H and all xj, yj ∈ H for which u ∈ `∞ ⊗ `∞ has the
finite representation u =

∑
i,j(xi, xj)ei⊗ ej with respect to the standard basis {ej}j of `∞. Another way

of viewing γ2(u) is:

γ2(u) = inf


∥∥∥∥∥∥
(

n∑
j=1

|xj|2
) 1

2

∥∥∥∥∥∥
∞

.

∥∥∥∥∥∥
(

n∑
j=1

|yj|2
) 1

2

∥∥∥∥∥∥
∞


over representations u =

∑n
j=1 xj ⊗ yj , xj, yj ∈ `∞, because:

sup
ξ∈`1

(
n∑
j=1

|ξ(xj)|2
) 1

2

= sup∑
j |αj |2≤1

∥∥∥∥∥
n∑
j=1

αjxj

∥∥∥∥∥
∞

= sup
k

(
n∑
j=1

|xj(k)|2
) 1

2

=

∥∥∥∥∥∥
(

n∑
j=1

|xj|2
) 1

2

∥∥∥∥∥∥
∞

Proposition 17. Let ϕ : N× N→ C be a function that defines a Schur multiplier Mϕ : L(`2)→ L(`2),
that is in matrix notation Mϕ({aij}i,j∈N) = {ϕ(i, j)aij}i,j∈N. The following conditions are equivalent.

(i) ‖Mϕ‖L(L(`2)) ≤ 1.
(ii) There exists a Hilbert space H and functions x : N→ B1(H), y : N→ B1(H) with values in the

closed unit ball B1(H) ofH, such that ϕ(n,m) = (x(n), x(m)), n,m ∈ N.
(iii) For all finite subsets E,F of N, the bound:∥∥∥∥∥ ∑

i∈E,j∈F

ϕ(i, j)ei ⊗ ej

∥∥∥∥∥
`∞⊗γ2`∞

≤ 1

holds.

Proof. Suppose first that ϕ is zero off a finite set E × F . Then, the bound (i) is equivalent to the
condition that: ∣∣∣∣∣ ∑

i∈E,j∈F

ϕ(i, j)aijα(i)β(j)

∣∣∣∣∣ ≤ 1

for all linear maps a : `2(E)→ `2(F ) with norm ‖a‖ ≤ 1 and matrix {aij} with respect to the standard
basis and all α ∈ B1(`2(E)), β ∈ B1(`2(F )), that is ϕ belongs to the polarC◦1 of the setC1 of all matrices
{α(i)aijβ(j)}(i,j)∈E×F with a, α, β as described. According to [26], Remark 23.4, the set C1 is itself

the polar C◦2 of the set C2 of all matrices {ψij}(i,j)∈E×F with
∥∥∥∑i∈E,m∈F ψ(i, j)ei ⊗ ej

∥∥∥
`∞⊗γ2`∞

≤ 1.

Then (i) holds if and only if ϕ belongs to C◦◦2 = C2, which is exactly Condition (iii). Conditions (ii)
and (iii) are equivalent by the the definition of the norm γ2. The passage to all of N× N follows from a
compactness argument.
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Remark 9. (a) The argument above uses the factorisation of the norm γ∗2 dual to γ2 described in [26],
Proposition 3.3 and Remark 23.4; this only relies on the Hahn–Banach Theorem.

(b) The representation (21) is the measure space version of the implication (ii) =⇒ (i) above.
The necessity of the condition (21) in the general measure space setting is proven using complete
boundedness arguments in [36], Theorem 3.3; see also [37,38].

One version of Grothendieck’s inequality from [26] is that the norm γ2 and the projective tensor
product norm are equivalent on `∞ ⊗ `∞ with:

γ2(u) ≤ ‖u‖π ≤ KGγ2(u), u ∈ `∞ ⊗ `∞

The constant KG is Grothendieck’s constant. The projective tensor product version of Proposition 17
follows, with the same notation.

Proposition 18. Let E,F be finite subsets of N, and let ϕ : N × N → C be a function vanishing off
E × F . Then:

1

KG

∥∥∥∥∥ ∑
i∈E,j∈F

ϕ(i, j)ei ⊗ ej

∥∥∥∥∥
`∞⊗π`∞

≤ ‖Mϕ‖L(L(`2))

=

∥∥∥∥∥ ∑
i∈E,j∈F

ϕ(i, j)en ⊗ ej

∥∥∥∥∥
`∞⊗γ2`∞

Passing to infinite sets, a bounded function ϕ : N × N → C with ‖Mϕ‖L(L(`2)) < ∞ necessarily has
a representation:

ϕ(i, j) =
∞∑
k=1

a(i, k)β(j, k), i, j ∈ N

with
∑∞

k=1 ‖a(·, k)‖∞‖β(·, k)‖∞ <∞, as in Peller’s representation (19).

5.2. Schur Multipliers on Measure Spaces

We first note that for any choice of finite measures νP , νQ equivalent to P and Q, respectively,
the Banach algebra L1((P ⊗ Q)L(H))) is isometrically isomorphic to the set of multipliers of the
projective tensor product L2(νP )⊗̂πL2(νQ), that is [ϕ] ∈ L1((P ⊗ Q)L(H))) if and only if for every
[h] ∈ L2(νP )⊗̂πL2(νQ), the function ϕ.h is equal (νP ⊗ νQ)-a.e. to an element of L2(νP )⊗̂πL2(νQ) and
‖[ϕ]‖L1((P⊗Q)L(H)

is equal to the norm of the linear map:

[h] 7−→ [ϕ.h], [h] ∈ L2(νP )⊗̂πL2(νQ)

If ν ′P and ν ′Q are another pair of such equivalent measures, then the operator of multiplication
by
√
dν ′P/dνP is a unitary map from L2(νP ) to L2(ν ′P ) and similarly for νQ, so that multiplication

by
√
dν ′P/dνP ⊗

√
dν ′Q/dνQ is an isometric isomorphism from the space L2(νP )⊗̂πL2(νQ) onto

L2(ν ′P )⊗̂πL2(ν ′Q).
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Proposition 19. Let νP , νQ be finite measures equivalent to the spectral measures P , Q, respectively.
Then, L1((P ⊗ Q)L(H)) is isometrically isomorphic to the set of multipliers of the projective tensor
product L2(νP )⊗̂πL2(νQ) and the identity:

‖[ϕ]‖L1((P⊗Q)L(H)) = sup
‖h‖H≤1,‖g‖H≤1

‖[ϕ]‖L2((Ph,h))⊗̂πL2((Qg,g)) (23)

holds.

Proof. Let {hn}n be a sequence of vectors in H with
∑

n ‖hn‖2 < ∞, such that
{P (E)hn : n = 1, 2, . . . } is an orthogonal set of vectors in H for each E ∈ E . Such a sequence
of vectors can always be manufactured by taking any vectors ξn ∈ H with

∑
n ‖ξn‖2 < ∞ and for a

measure νP equivalent to P , the sets Λn where d(Pξn, ξn)/dνP > 0. Then, hn = P (Λn \
⋃
m<n Λn)ξn,

n = 1, 2, . . . , will do the job. Let {gn}n be the corresponding vectors for Q.
As noted above, the norm of L2(νP )⊗̂πL2(νQ) is invariant under a change of equivalent measures, so

we may as well assume that:

νP =
∞∑
n=1

(Phn, hn) and νQ =
∞∑
n=1

(Qgn, gn)

so that the mappings χE →
∑∞

n=1 P (E)hn, E ∈ E , and χF →
∑∞

n=1Q(F )hn, F ∈ F , define a unitary
equivalences UP , UQ between L2(νP ) and L2(νQ) andH, respectively.

The map Tk : L2(νQ) → L2(νP ) with integral kernel k ∈ L2(νP )⊗̂πL2(νQ) is the trace class. Let
T̃k ∈ C1(H) be the corresponding trace class operatorH. Then:

∞∑
n,m=1

(T̃kQ(F )gm, P (E)hn) =

∫
E×F

k d(νP ⊗ νQ)

Let [ϕ] ∈ L1((P ⊗Q)L(H))) = L1((P ⊗Q)C1(H))). Then, T̃k ∈ C2(H) and:((∫
Λ×M

ϕd(P ⊗Q)C1(H)

)
T̃k

(
∞∑
m=1

Q(F )gm

)
,

(
∞∑
n=1

P (E)hn

))

= tr

((∫
Λ×M

ϕd(P ⊗Q)C2(H))

)
T̃k

(
∞∑
m=1

Q(F )gm

)
⊗

(
∞∑
n=1

P (E)hn

)∗)

=
∞∑

n,m=1

∫
E×F

ϕd((PT̃kQ)gm, hn)

=

∫
E×F

ϕ.k d(νP ⊗ νQ)

It follows that ϕ.k is the kernel of the trace class operator Tϕ.k : L2(νQ)→ L2(νP ), such that:

UPTϕ.kU
∗
Q =

(∫
Λ×M

ϕd(P ⊗Q)C1(H))

)
T̃k ∈ C1(H)

the equality ‖ϕ.k‖L2(νP )⊗̂πL2(νQ) =
∥∥∥(∫Λ×M ϕd(P ⊗Q)C1(H))

)
T̃k

∥∥∥
C1(H)

holds and:

‖[ϕ]‖L1((P⊗Q)L(H)
= sup{‖ϕ.k‖L2(νP )⊗̂πL2(νQ) : ‖k‖L2(νP )⊗̂πL2(νQ) ≤ 1} (24)
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According to the identities above,∥∥∥∥∫
Λ×M

ϕd(PT̃kQ)

∥∥∥∥
C1(H)

= ‖ϕ.k‖L2(νP )⊗̂πL2(νQ)

for all k ∈ L2(νP )⊗ L2(νQ), so if:

‖ϕ.k‖L2(νP )⊗̂πL2(νQ) ≤ C

for all k ∈ L2(νP )⊗L2(νQ) satisfying ‖k‖L2(νP )⊗̂πL2(νQ) ≤ 1, then [ϕ] ∈ L1((P ⊗Q)L(H))), the identity
(24) holds and:

‖[ϕ]‖L1((P⊗Q)L(H)
= sup

sup‖u‖2≤1,‖v‖2≤1

‖ϕ.(u⊗ v)‖L2(νP )⊗̂πL2(νQ)

The equality (23) follow from the identities:∫
Λ

|ψ1|2|ψ2|2 dνP =

∥∥∥∥∥
∞∑
n=1

P (ψ1.ψ2)hn

∥∥∥∥∥
2

H

= (P (|ψ1|2)(UPψ2), (UPψ2))

for ψ1 ∈ L∞(νP ), ψ2 ∈ L2(νP ) and the unitary equivalence UP defined above. The analogous identities
hold for the spectral measure Q.

Proof of Theorem 16. We proceed by reduction to the `2-case considered in Proposition 18. A Lusin
µ-filtration of a σ-finite measure space (Σ, E , µ) is an increasing family F = 〈Fn〉n∈N of σ-algebras,
such that for a set Σ0 of full measure, E ∩ Σ0 =

∨
(F ∩ Σ0), and each element of Fn is the countable

union of sets belonging to a countable partition Gn of Σ0 into sets of finite positive µ-measure and such
that each set in Gn+1 is contained in an element of Gn, for n = 1, 2 . . . .

Let νP , νQ be finite measures equivalent to P , Q, respectively. Because both L2(νP ) and L2(νQ)

are isomorphic to the separable Hilbert space H, for the purpose of obtaining the representation (19),
we may suppose that the underlying σ-algebras are countably generated.

Let P = {Pn}n be a Lusin νP -filtration, and let Q = {Qn}n be a Lusin νQ-filtration. Suppose
that n = 1, 2, . . . , {Ai}∞i=1 is the n-th partition associated with P and {Bi}∞j=1 is the n-th partition
associated withQ. The corresponding projection operators Pn : L1(νP )→ `1 andQn : L1(νQ)→ `1 are
defined by:

Pn : f 7−→
{∫

Ai

f dνP

}∞
i=1

, f ∈ L1(νP )

Qn : g 7−→

{∫
Bj

f dνQ

}∞
j=1

, g ∈ L1(νQ)

The conditional expectation (En ⊗ Fn)(f) = E(f |Pn ⊗ Qn) is defined for any measurable function
f : Λ×M → C that is integrable over any set Ai ×Bj , i, j ∈ N.

It is easy to verify that P ∗nTϕnQn = T(En⊗Fn)ϕ for the matrix:

ϕn =

{∫
Ai×Bj ϕd(νP ⊗ νQ)

νP (Ai)νQ(Bj)

}∞
i,j=1
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and the operator Tϕn : `1 → `∞ with kernel ϕn.
Moreover, for every finite rank operator U : L∞(νP )→ L1(νQ), the bound:

|tr(P ∗nTϕnQnU)| = |tr(TϕnQnUP
∗
n)| ≤ ‖ϕn‖`∞⊗̂π`∞‖QnUP

∗
n‖

Suppose that there exists C > 0, such that ‖ϕn‖`∞⊗̂π`∞ ≤ C for all n = 1, 2, . . .

Then, tr(P ∗nTϕnQnU) = tr(T(En⊗Fn)ϕU) = tr(TϕEnUFn), and taking n → ∞, the martingale
convergence theorem shows that the bound:

|tr(TϕU)| ≤ C‖U‖L(L∞,L1)

holds for every finite rank operator U : L∞(νP ) → L1(νQ). It follows from [39], Theorem 6.16, that
Tϕ belongs to the Banach ideal I1(L1(νQ), L∞(νP )) of one-integral operators from L1(νQ) to L∞(νP ).
Because L∞(νP ) is a dual space, [39], Corollary 5.4, ensures that Tϕ enjoys the factorisation:

L1(νQ)
Tϕ
−→ L∞(νP )

T1 ↓ ↑ T2

L∞(ν) −→
j

L1(ν)

for some bounded linear operators T1 and T2 and finite measure space (T,S, ν). The given factorisation
also follows by the original 1954 Grothendieck argument with the choice E = L1(νQ), F = L1(νP )

in [30], Section IV.9.2.
Every bounded linear operator u from L1(η1) to L∞(η2) is an integral operator with a bounded kernel,

because f ⊗ g 7→ 〈uf, g〉 defines a continuous linear functional on L1(η1)⊗̂πL1(η2) ≡ L1(η1 ⊗ η2)

(see [40], Lemma 2.2, for a compactness argument), so there exist bounded measurable functions α :

Λ× T → C and β : M × T → C, such that:

(T1f)(t) =

∫
M

β(µ, t)f(λ)dνQ(λ), f ∈ L1(νQ)

(T2g)(λ) =

∫
T

α(λ, t)g(t)dν(t), g ∈ L1(ν)

The representation (19) and the associated bounds follow if we can take:

C = KG‖[ϕ]‖L1((P⊗Q)L(H))

We know from the bounds (18) that:

‖ϕn‖`∞⊗̂π`∞ ≤ KG‖Mϕn‖L(L(`2)) = KG‖ϕn‖`∞⊗̂γ2`∞

The norm γ2 defined on `∞ ⊗ `∞ is the norm of factorisation through a Hilbert space. For any
bounded linear operator u : X → Y between Banach spaces X and Y , γ2(u) = inf{‖u1‖, ‖u2‖} where
the infimum runs over all Hilbert spacesH and all possible factorisations:

u : X
u2
−→H

u1
−→Y
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of u throughH with u = u1 ◦ u2. Taking X = L1(νQ) and Y = L∞(νP ), the bound (22) says that:

‖ϕ‖L1((P⊗Q)L(H)) ≤ ‖ϕ‖L∞(νP )⊗̂γ2L∞(νQ)

with respect to the completion L∞(νP )⊗̂γ2L∞(νQ) of L∞(νP ) ⊗ L∞(νQ) in the norm φ 7→ γ2(Tφ),
φ ∈ L∞(νP )⊗ L∞(νQ).

The norm estimates:

‖ϕn‖`∞⊗̂γ2`∞ = ‖(En ⊗ Fn)ϕ‖L∞(νP )⊗̂γ2L∞(νQ) ≤ ‖ϕ‖L∞(νP )⊗̂γ2L∞(νQ)

follow from the definition of γ2 and the contractivity of the conditional expectation operators En,Fn.
According to Proposition 19, the norm of the linear operator:

Mϕ : C1(L2(νQ), L2(νP ))→ C1(L2(νQ), L2(νP ))

associated with multiplication by ϕ on L2(νP )⊗̂πL2(νQ) is equal to:

‖[ϕ]‖L1((P⊗Q)L(H)) = ‖[ϕ]‖L1((P⊗Q)C1(H))

The equality ‖ϕ‖L∞(νP )⊗̂γ2L∞(νQ) = ‖Mϕ‖L(L(L2(νQ),L2(νP )) is proven in [36], Theorem 3.3, using
complete boundedness techniques, but this can be established in a more elementary way by noting that
if [ϕ] ∈ L1((P ⊗ Q)C1(H)), then the martingale convergence theorem ensures that M(En⊗Fn)ϕ → Mϕ in
the strong operator topology of:

L(C1(L2(νQ), L2(νP )), C1(L2(νQ), L2(νP ))

as n→∞ and also:

‖(En ⊗ Fn)ϕ‖L∞(νP )⊗̂γ2L∞(νQ) −→ ‖ϕ‖L∞(νP )⊗̂γ2L∞(νQ)

as n→∞. Then, ‖Mϕ‖ = supn ‖M(En⊗Fn)ϕ)‖ by duality. The equality:

‖(En ⊗ Fn)ϕ‖L∞(νP )⊗̂γ2L∞(νQ) = ‖M(En⊗Fn)ϕ)‖L(L(L2(νQ),L2(νP )))

follows for each n = 1, 2, . . . from Proposition 17 by replacing ei ⊗ ej in (iii) by χAi×Bj for
i, j = 1, 2, . . . . The final assertion of Theorem 16 follows from the equalities:

‖ϕ‖L∞(νP )⊗̂γ2L∞(νQ) = ‖Mϕ‖L(L(L2(νQ),L2(νP ))) = ‖[ϕ]‖L1((P⊗Q)L(H))

Remark 10. (a) The original proof of Peller [25,40], Theorem 2.2, factorises the finite rank operator
U : L∞(νP ) → L1(νQ) instead, so the constant K2

G appears in place of KG in the bound associated
with (19).

(b) Let L1(νP )⊗̃L1(νQ) be the closure of the linear space of all k ∈ L1(νP )⊗ L1(νQ) in the uniform
norm of the space of operators Tk ∈ L(L∞(νQ), L1(νP )) corresponding to the compact linear operators
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from L∞(νQ) to L1(νP ). By [30], Section IV.9.2, the function α ⊗ β in Formula (19) is ν-integrable in
the space of one-integral operators:

I1(L1(νQ), L∞(νP )) ≡ (L1(νP )⊗̃L1(νQ))′

and ϕ =
∫
T
α⊗ β dν.

(c) The proof above shows that operator Tϕ : L1(νQ) → L∞(νP ) is (strictly) one-integral in the
sense of [39], p. 97, and [30], Section IV.9.2, if and only if [ϕ] ∈ L1((P ⊗ Q)L(H)). The reason
that we may have ‖[ϕ]‖L∞(νP )⊗̂πL∞(νQ) = ∞ for some [ϕ] ∈ L1((P ⊗ Q)L(H)), that is the function
α ⊗ β associated with the representation (19) fails to be ν-integrable in L∞(νP )⊗̂πL∞(νQ), so that
Tϕ : L1(νQ) → L∞(νP ) thereby fails to be a nuclear operator, is that the vector measure E 7−→ uχE

associated with a continuous linear map u from L1 to L∞ has a weak*-density, but not necessarily a
strongly-measurable density in L∞.

For any u ∈ C1(H) and ϕ ∈ L1((P ⊗ P )L(H)), the operator:

Mϕu =

(∫
Λ×Λ

ϕd(P ⊗ P )C1(H))

)
u

is the trace class. Moreover, the expression E 7−→ tr(uP (E)), E ∈ E , is a complex measure µu on the
σ-algebra E , such that |µu| << νP . As indicated in [20], Section 9.1, the identity:

tr(Mϕu) =

∫
Λ

ϕ(λ, λ) dµu(λ) (25)

holds. In the case that u : H → H is a finite rank operator, together with the polarisation, the bound (23)
shows that the operator Tϕ : L2(µu)→ L2(µu) with integral kernel ϕ is the trace class and:

‖Tϕ‖C1(L2(µu)) ≤ 16‖[ϕ]‖L1((P⊗Q)L(H)
‖u‖C1(H).

The same bound holds for all u ∈ C1(H). The identity:

|ψ|2.νP = (P (UPψ), (UPψ)), ψ ∈ L2(νP )

ensures that tr(Mφ1⊗φ2u) = tr(Tφ1⊗φ2) for Tφ1⊗φ2 ∈ C1(L2(µu)) with u ∈ C1(H) and φ1, φ2 bounded on
Λ. Then, the equality:

tr(Mϕu) = tr(Tϕ)

holds, because both sides are continuous for ϕ ∈ L∞(νP )⊗̂γ2L∞(νP ).
The representation (21) converges in L∞(νP )⊗̂γ2L∞(νP ), and there exists a set Λ0 of full νP -measure,

such that:

ϕ(λ, µ) =
∞∑
n=1

fn(λ)gn(µ)
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for all λ, µ ∈ Λ0, where the right-hand sum converges absolutely. The expression above constitutes a
distinguished element of the equivalence class [ϕ]. Consequently, Formula (25) is valid because:

tr(Tϕ) =
∞∑
n=1

tr(Tfn⊗gn)

=
∞∑
n=1

∫
Λ

fn(λ)gn(λ) dµu(λ)

=

∫
Λ

ϕ(λ, λ) dµu(λ)

As in the proof of Theorem 16, for any Lusin νP -filtration F = 〈Ek〉k of Λ, for each k = 1, 2, . . . ,
the conditional expectation operators Ek : f 7−→ E(f |Ek) with respect to the σ-algebra Ek and the finite
measure νP have the property that:

∞∑
n=1

|fn.gn − Ek(fn).Ek(gn)|

≤
∞∑
n=1

|(fn − Ek(fn)).gn|+
∞∑
n=1

|Ek(fn).(gn − Ek(gn)|

≤

(
∞∑
n=1

|(fn − Ek(fn))|2
) 1

2

.

(
∞∑
n=1

|gn|2
) 1

2

+

(
∞∑
n=1

|Ek(fn)|2
) 1

2

.

(
∞∑
n=1

|(gn − Ek(gn)|2
) 1

2

→ 0 νP -almost everywhere as k →∞

by the martingale convergence theorem. Consequently, setting:

ϕ̃ = lim
k→∞

(Ek ⊗ Ek)ϕ

wherever the limit exists, the equality ϕ̃(λ, λ) = ϕ(λ, λ) holds for νP -almost all λ ∈ Λ.

Remark 11. There is a representative function ϕ of the equivalence class [ϕ] that is continuous for
the so-called ω-topology of [37], Proposition 9.1, so Formula (25) may also be derived from the trace
formula for a trace class operator with a continuous integral kernel. In fact, Peller’s representation
(19) can be deduced directly from Proposition 18 by employing the ω-continuity of ϕ rather than the
martingale convergence theorem; see [37], Remark p. 139.

6. The Spectral Shift Function

The following perturbation formula of Birman and Solomyak ([20], Theorem 8.1) was mentioned in
the proof of Corollary 14. The operator ideal S is taken to be Cp(H) for 1 ≤ p <∞ or L(H) for a given
Hilbert spaceH.

Theorem 20. Let H be a separable Hilbert space, and let A and B be self-adjoint operators with the
same domain, such that A−B ∈ S. Let PA : B(R)→ Ls(H) and PB : B(R)→ Ls(H) be the spectral
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measures on R associated with A and B, respectively. Suppose that f : R→ R is a continuous function
for which the difference quotient:

ϕf (λ, µ) =

{
f(λ)−f(µ)

λ−µ , λ 6= µ

0 , λ = µ

is uniformly bounded and ϕf ∈ L1((PA ⊗QB)S). Then:∫
R×R

ϕf d(PA ⊗ PB)S ∈ L(S)

and:

f(A)− f(B) =

(∫
R×R

ϕf d(PA ⊗ PB)S

)
(A−B)

If S = C1(H), then we would like to calculate the trace of f(A) − f(B). The method of the
preceding section is unavailable with different spectral measures PA, PB, so we can try to invoke the
Daletskii–Krein formula ([20], Equations (9) and (10)). For a sufficiently smooth function f , this takes
the form:

f(A)− f(B) =

∫ 1

0

(∫
R×R

ϕf (λ, µ) d(PA(t) ⊗ PA(t))C1(H)

)
(A−B) dt

with A(t) = B + t(A−B), 0 ≤ t ≤ 1 and ϕf (λ, λ) = f ′(λ), λ ∈ R. At each point 0 ≤ t ≤ 1, the same
spectral measure PA(t) is involved, so from Formula (25), we can expect that:

tr(f(A)− f(B)) =

∫
R
f ′(λ) dΞ(λ)

for the complex measure Ξ : E 7−→
∫ 1

0
tr(V PA(t)(E)) dt, E ∈ B(R), with V = (A − B) ∈ C1(H).

It turns out that Ξ is absolutely continuous with respect to the Lebesgue measure on R from which
the formula:

tr(f(A)− f(B)) =

∫
R
f ′(λ)ξ(λ) dλ (26)

is obtained. The function ξ : R→ C is Krein’s spectral shift function.
We now turn to establishing the validity of Formula (26) for a restricted class of functions f . Better

results are known, for example, from [25,41–43], but our purpose is to describe applications of singular
bilinear integrals, such as double operator integrals to problems in the perturbation theory of linear
operators. The approach of Boyadzhiev [44] best suits the purpose.

Setting V = A−B ∈ C1(H), we first note that eisA(t) − eisB ∈ C1(H) for each s ∈ R and 0 ≤ t ≤ 1,
because the perturbation series:

eisA(t) = eisB+
∞∑
n=1

(is)n
∫ t

0

· · ·
∫ s2

0

eisB(s−sn)V · · · eisB(s2−s1)V eisBs1 ds1 · · · dsn

converges in the norm of C1(H) and t 7−→ eisA(t) − eisB is norm differentiable in C1(H). Moreover,

‖eisA(t) − eisB‖C1(H) ≤ (e|s|‖V ‖C1(H) − 1) (27)

The following result is straightforward, but it depends on some measure theoretic facts. It establishes
that Ξ is a complex measure.
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Lemma 21. The function t 7−→ PA(t)(E)h, t ∈ [0, 1], is strongly measurable in H for each h ∈ H and
E ∈ B(R). There exists a unique operator-valued measure M : B([0, 1])⊗ B(R)→ Ls(H), σ-additive
for the strong operator topology, such that the equality:

(M(X × Y )h, h) =

∫
X

(PA(t)(Y )h, h) dt, X ∈ B([0, 1]), Y ∈ B(R)

holds for each h ∈ H. For each V ∈ C1(H), the set function E 7−→ tr(VM(E)), E ∈ B([0, 1])⊗B(R),
is a complex measure, and we have:

tr(VM([0, 1]× Y )) =

∫ 1

0

tr(V PA(t)(Y )) dt = Ξ(Y ), Y ∈ B(R) (28)

Proof. If f = µ̂ is the Fourier transform of a finite measure µ, then:

(PA(t)h)(f) =

∫
R
e−iξA(t)h dµ(ξ)

as a Bochner integral and by dominated convergence t 7−→ (PA(t)h)(f), 0 ≤ t ≤ 1, is continuous in H
for each h ∈ H. By a monotone class argument, t 7−→ (PA(t)h)(f), 0 ≤ t ≤ 1, is strongly measurable
for all bounded Borel measurable functions f .

For each h ∈ H, the set function (Mh, h) is nonnegative and finitely additive, and the algebra A is
generated by product sets X × Y for X ∈ B([0, 1]) and Y ∈ B(R), so |(M(A)h, h)| ≤ ‖h‖2

1, A ∈ A.
The set function (Mh, h) : A → [0, ‖h‖2] is separately countably additive with respect to Borel sets, so
it is inner regular with respect to compact product sets and, so, countably additive (countable additivity
may fail without inner-regularity; see [45]).

Denoting the extended measure by the same symbol, |(M(E)h, h)| ≤ ‖h‖2
1 for all E ∈ B([0, 1]) ⊗

B(R). The H-valued measure Mh is weakly countable additive by polarity and, so, norm countably
additive by the Orlicz–Pettis theorem.

For each V ∈ C1(H) and orthonormal basis {hj}j ofH, the bound:

∞∑
j=1

|(VM(E)hj, hj)| ≤ 4‖V ‖C1(H), E ∈ B([0, 1])⊗ B(R)

holds and:

tr(VM([0, 1]× Y )) =
∞∑
j=1

(VM([0, 1]× Y )hj, hj)

=

∫ 1

0

∞∑
j=1

(V PA(t)(Y )hj, hj) dt

by the Beppo–Levi convergence theorem, because:

∞∑
j=1

|(V PA(t)(Y )hj, hj)| ≤ 4‖V ‖C1(H), 0 ≤ t ≤ 1

so Equation (28) holds.
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An application of Fubini’s Theorem for disintegrations of measures shows that:∫
[0,1]×R

e−iλs d(Mh, h)(t, λ) =

∫
R
e−iλs

(∫ 1

0

(PA(t)h, h) dt

)
(dλ)

=

∫ 1

0

∫
R
e−iλs(PA(t)h, h)(dλ) dt

=

∫ 1

0

(e−isA(t)h, h) dt

for each h ∈ H. The identity:∫
R
e−iλs

(∫ 1

0

(V PA(t)h, h) dt

)
(dλ) =

∫ 1

0

(V e−isA(t)h, h) dt

follows for each h ∈ H by polarisation. Because:

Ξ(E) =

∫ 1

0

tr(V PA(t)(E)) dt =
∞∑
j=1

∫ 1

0

(V PA(t)(E)hj, hj) dt, E ∈ B(R)

for any orthonormal basis {hj}j ofH, the Fourier transform of the measure Ξ is:

∫
R
e−iλs dΞ(λ) =

∫ 1

0

tr(V e−isA(t)) dt

= i

∫ 1

0

s−1 d

dt
tr(e−isA(t)) dt

= i
tr(e−isA − e−isB)

s

We need to establish that the inverse Fourier transform Φ̌ of the uniformly bounded,
continuous function:

Φ : s 7−→ i
tr(e−isA − e−isB)

s
, s ∈ R \ {0}, Φ(0) = tr(V )

belongs to L1(R). Then, ξ = Φ̌ is the spectral shift function. Clearly, the value of Φ at zero is irrelevant.
It suffices to show that there exists ξ ∈ L1(R), such that:

µ(Φ) = 2π

∫
R
ξ(t)µ̌(t) dt =

∫
R
ξ(t)µ̂(t) dt

with µ̌(t) = (2π)−1
∫
R e

ist dµ(s) and µ̂(t) =
∫
R e
−ist dµ(s), t ∈ R, for every finite positive measure µ,

because then Φ̌ = ξ as elements of the space S ′ of Schwartz distributions on R. Therefore, we consider
the class of functions f : R→ R for which f ′ = µ̂ and f(0) = 0 and, consequently, tr(f(A)− f(B)) =

(2π)−1µ(Φ).

Theorem 22. Let H be a separable Hilbert space, and let A and B be self-adjoint operators with the
same domain, such that A−B ∈ C1(H). Then, there exists a function ξ ∈ L1(R), such that:

tr(f(A)− f(B)) =

∫
R
f ′(λ)ξ(λ) dλ (29)
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for every function f : R→ C for which there exists a finite positive Borel measure µ on R, such that:

f(x) = i

∫
R

e−isx − 1

s
dµ(s), x ∈ R

(a) tr(A−B) =
∫
R ξ(λ) dλ.

(b) ‖ξ‖1 ≤ ‖A−B‖C1(H).
(c) If B ≤ A, then ξ ≥ 0 a.e.
(d) ξ is zero a.e. outside of the interval (inf(σ(A) ∪ σ(B)), sup(σ(A) ∪ σ(B))).

Proof. The proof is set out in considerable detail in [44]. Here, we review the salient points.
The estimate ‖f(A) − f(B)‖C1(H) ≤ µ(R)‖A − B‖C1(H) follows from the bound (27) and

the calculation:

f(A)− f(B) =
i

2π

∫
R

e−isA − e−isB

s
dµ(s)

obtained from an application of Fubini’s theorem with respect to PA ⊗ µ and PB ⊗ µ on R× [ε,∞) for
ε > 0. Then:

tr(f(A)− f(B)) =
1

2π

∫
R

Φ dµ

An expression for the spectral shift function ξ may be obtained from Fatou’s theorem ([46],
Theorem 11.24). Suppose that ν is a finite measure on R and:

φν(z) =
1

2πi

∫
R

dν(λ)

λ− z
, z ∈ C \ R

is the Cauchy transform of ν. Then, ν is absolutely continuous if:

ν̂(ξ) =

∫
R
e−iξx(φν(x+ i0+)− φν(x+ i0−)) dx, ξ ∈ R.

The jump function x 7−→ φν(x+ i0+)−φν(x+ i0−) defined for almost all x ∈ R is then the density
of ν with respect to the Lebesgue measure. For ν = Ξ , if the representation:

Φ(s) = i
tr(e−isA − e−isB)

s

=
1

2πi

∫
R
e−isx

(
lim
ε→0+

∫ 1

0

tr(V (A+ tV − x− iε)−1−

V (A+ tV − x+ iε)−1) dt

)
dx

were valid, then we would expect that ξ = Φ̌ has the representation:

ξ(s) =
1

2πi
lim
ε→0+

∫
R
eisx−ε|x|

tr(e−ixA − e−ixB)

x
dx, s ∈ R,

= lim
ε→0+

1

π
tr
[
arctan

(
A− sI
ε

)
− arctan

(
B − sI

ε

)]
(30)

where the arctan function may be expressed as:

arctan t =
1

2i

∫
R

eist − 1

s
e−|s| ds, t ∈ R
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In the case that A − B = α(·, w)w for α > 0 and w ∈ H, ‖w‖ = 1, a calculation, given explicitly
in [44], shows that the function:

h(x, y) =
1

π
tr
[
arctan

(
A− xI
y

)
− arctan

(
B − xI

y

)]
=

1

2πi
log(1 + 2iyα((B − z)−1w, (B − z)−1w)), z = x+ iy, y > 0

is harmonic and uniformly bounded in the upper half-plane. By Fatou’s theorem ([46], Theorem 11.23),
the boundary values ξ(x) = limy→0+ h(x, y) are defined for almost all x ∈ R and satisfy:

lim
y→∞

πyh(x, y) =

∫
R
ξ(t) dt = ‖ξ‖1 ≤ ‖A−B‖C1(H)

for every x ∈ R, so in the case that A−B has rank one, Formula (30) is valid.
For an arbitrary self-adjoint perturbation:

V =
∞∑
j=1

αj(·, wj)wj

with
∑∞

j=1 |αj| = ‖A− B‖C1(H) <∞, the function ξn ∈ L1(R) may be defined in a similar fashion for
An = B +

∑n
j=1 αj(·, wj)wj , n = 1, 2, . . . , so that ξn → ξ in L1(R) as n → ∞ from which it verified

that ξ = Φ̌.

The representation ξ = Φ̌ obtained above may be viewed as the Fourier transform approach. In the
case of a rank one perturbation V = α(·, w)w, the Cauchy transform approach is developed by
Simon [47] with the formula:

tr((A− zI)−1 − (B − zI)−1) = −
∫
R

ξ(λ)

(λ− z)2
dλ

for z ∈ C \ [a,∞) for some a ∈ R, established in [47], Theorem 1.9, by computing a contour integral.
Here, the boundary value ξ(x) = limy→0+ h(x, y) is expressed as:

ξ(x) =
1

π
Arg(1 + αF (λ+ i0+))

for almost all x ∈ R with respect to the Cauchy transform:

F (z) =

∫
R

d(PBw,w)(λ)

λ− z
, z ∈ C \ (−∞, a)

The Cauchy transform approach is generalised to Type II von Neumann algebras in [41].
Many different proofs of Krein’s Formula (29) are available for a wide class of functions f ,

especially in a form that translates into the setting of non-commutative integration [41–43]. As remarked
in [20], p. 163, an ingredient additional to double operator integrals (such as complex function theory)
is needed to show that the measure Ξ is absolutely continuous with respect to the Lebesgue measure
on R. Krein’s original argument uses perturbation determinants from which follows the representation
Det(S(λ)) = e−2πiξ(λ) for the scattering matrix S(λ) for A and B ([22], Chapter 8).
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