
Mathematics 2015, 3, 510-526; doi:10.3390/math3020510
OPEN ACCESS

mathematics
ISSN 2227-7390

www.mdpi.com/journal/mathematics

Article

Effective Summation and Interpolation of Series by Self-Similar
Root Approximants
Simon Gluzman and Vyacheslav I. Yukalov *

Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna 141980, Russia; E-Mail: simon.gluzman@gmail.com

* Author to whom correspondence should be addressed; E-Mail: yukalov@theor.jinr.ru;
Tel.: +7-496-216-3947.

Academic Editor: Palle E. T. Jorgensen

Received: 25 March 2015 / Accepted: 9 June 2015 / Published: 15 June 2015

Abstract: We describe a simple analytical method for effective summation of series,
including divergent series. The method is based on self-similar approximation theory
resulting in self-similar root approximants. The method is shown to be general and applicable
to different problems, as is illustrated by a number of examples. The accuracy of the method
is not worse, and in many cases better, than that of Padé approximants, when the latter can
be defined.
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1. Introduction

In numerous cases of applied mathematics and mathematical physics the solutions to problems can
only be represented as series derived by means of some kind of perturbation theory or iterative procedure.
A great majority of such series is even divergent, having meaning only as asymptotic series for an
infinitesimally small expansion variable. While the considered problems often require to consider finite
values of this variable, sometimes even very large values. The standard way of treating such asymptotic
series, for the purpose of their extrapolation to the finite values of the variable, is by invoking the Padé
approximants [1]. The latter, however, exhibit several deficiencies limiting their applicability, as is
discussed in References [1,2], for instance, such a notorious deficiency as the appearance of spurious
poles. Another weak point is the ambiguity of choosing one of the Padé approximants PM/N from the
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table of many admissible, for each series of order k, variants satisfying the condition M +N + 1 = k.
Also, in the limit of a large variable x the approximant PM/N(x) behaves as xM−N . Hence, only
integer powers of x are allowed. It is possible to improve the results by employing the modified Padé
approximants [3], corresponding to the power P γ

M/N , with choosing the appropriate value of γ satisfying
the large-variable limit.

In the present paper, we show that it is possible to formulate a general method for effectively
extrapolating and interpolating asymptotic series. The method enjoys the following advantages: (i) It is
unambiguously defined for each given series of order k; (ii) It allows for the treatment of large-variable
behavior of any type, whether with integer, rational, or irrational powers; (iii) Being more general, it is
not less accurate than the method of the Padé approximants, when the latter exist, in many cases, being
more accurate.

In the great majority of realistic situations, only a few terms of asymptotic expansions are available.
Therefore, in the examples below, we do not consider very large series, showing that even several terms
allow us to derive quite accurate approximations.

2. Self-Similar Root Approximants

Suppose we are interested in finding a real function f(x) of a real variable x. This function is defined
by a complicated equation that cannot be solved exactly. However, applying a kind of perturbation
theory, we can derive the small-variable behavior of this function

f(x) ' fk(x) (x→ 0) , (1)

represented by asymptotic series, with the k-th order expansion

fk(x) = f0(x)

(
1 +

k∑
n=1

anx
n

)
, (2)

where
f0(x) = Axα . (3)

Sometimes, the large-variable behavior of the function

f(x) ' f (p)(x) (x→∞) (4)

is also known and can be represented by an expansion over 1/x as

f (p)(x) = f∞(x)

(
1 +

p∑
n=1

bn
xn

)
, (5)

with
f∞(x) = Bxβ . (6)

For what follows, it is convenient to deal with the ratio f(x)/f0(x), which at small variable x → 0

behaves as
f(x)

f0(x)
' fk(x)

f0(x)
= 1 +

k∑
n=1

anx
n , (7)
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and at large values of the variable x→∞ it tends to

f(x)

f0(x)
' f∞(x)

f0(x)
=
B

A
xβ−α . (8)

The extrapolation of the small-variable expansions to the large-variable region can be done by
means of self-similar approximation theory [4–8]. In this approach, the transfer from a k-th order
approximation, say, a small-variable expansion, to the higher orders of approximations are treated as
the motion with respect to the approximation order k playing the role of discrete time. Constructing
a dynamical system, whose trajectory is bijective to the sequence of approximations, makes it feasible
to find a fixed point representing the sought function. The convergence to the fixed point is governed
by control functions. The self-similar approximation theory combines the methods of optimal control
theory, dynamical theory, and renormalization-group approach. We shall not go into the details and
mathematical justification of the self-similar approximation theory that has been thoroughly expounded
in References [4–8], but we shall use some of its consequences.

Employing this theory for the purpose of interpolation between the small-variable and large-variable
regions, it is possible to come [9–11] to the self-similar root approximant

f ∗k (x)

f0(x)
=
((
. . . (1 + A1x)n1 + A2x

2
)n2 + . . .+ Akx

k
)nk . (9)

A theorem has been proved [12] stating that all parameters Ai and powers ni of approximant (9) are
uniquely defined through the large-variable form (5).

However, the root approximant (9) cannot be uniquely defined through the small-variable
expansion (2). This hinders the applicability of the approximant (9), since in the majority of cases,
the small-variable expansion is better known, providing a number of terms, while the knowledge of
the large-variable behavior is limited by just a single term (6), often even without precise data for the
amplitude B. In order to extend the applicability of approximant (9) to be uniquely defined through
the small-variable expansion, it is necessary to impose some constraints on the powers nj . Such a
straightforward constraint is the requirement that all parameters Aj of approximant (9) be involved in
the definition of the large-variable limit, which implies the relation

nj =
j + 1

j
(j = 1, 2, . . . , k − 1) , (10)

with nk = β − α. By expanding Eq. (9) in powers of x, it is easy to prove that all parameters Aj are
uniquely defined through the coefficients aj of small-variable expansion (2). In addition, we can require
the validity of the limiting form (6), which improves accuracy.

The self-similar root approximant (9), with conditions (6) and (10), whose parametersAj are uniquely
defined by the accuracy-through-order procedure and are expressed through the coefficients aj of the
small-variable expansion (2), can be called, for short, the root approximant. In the following sections,
we demonstrate that this root approximant provides quite accurate approximations for different problems,
uniformly extrapolating the small-variable expansion (2), valid for x → 0, to the whole region of
x ∈ [0,∞].
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3. Illustration by Simple Examples

Before going to more complicated problems, we show the efficiency of the method by simple cases.

3.1. Hard-Core Scattering Problem

Let us start the illustration of the method from the problem considered by Baker and Gammel [3].
When calculating the scattering length of a repulsive square-well potential, one meets the integral

S(x) =

∫ x

0

(
sin t

t3
− cos t

t2

)2

dt ,

whose limit, as x → ∞, equals π/15. Baker and Gammel state that this integral cannot be correctly
evaluated by the standard Padé method. To solve the problem, they suggest a modified method employing
a power of the Padé approximant. We show below that such integrals can easily be treated by means of
the root approximants.

The small-variable expansion of this integral reads as

S(x) ' x

9
− x3

135
+

x5

2625
− 4x7

297675
+

2x9

5893965
− x11

166080925
+

x13

10672286625
.

Comparing this with form (2), we have S0(x) = x/9. Since expansion (2) is in powers of x2, we
construct the root approximants (9) using x2 as a variable. Thus, the root approximant of third order is

S∗3(x) =
x

9

(((
1 + A1x

2
)2

+ A2x
4
)3/2

+ A3x
6

)−1/6
,

where the parameters are

A1 = 0.133333 , A2 = 0.012952 , A3 = 0.016907 .

To fourth order,

S∗4(x) =
x

9

((((
1 + A1x

2
)2

+ A2x
4
)3/2

+ A3x
6

)4/3

+ A4x
8

)−1/8
,

where

A1 = 0.133333 , A2 = 0.012952 , A3 = 0.002757 , A4 = 0.004636 .

To fifth order,

S∗5(x) =
x

9

((((1 + A1x
2
)2

+ A2x
4
)3/2

+ A3x
6

)4/3

+ A4x
8

)5/4

+ A5x
10

−1/10 ,
where

A1 = 0.133333 , A2 = 0.012952 , A3 = 0.002757 ,

A4 = 0.000578 , A5 = 0.001285 .
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And to sixth order,

S∗6(x) =
x

9

((((1 + A1x
2
)2

+ A2x
4
)3/2

+ A3x
6

)4/3

+ A4x
8

)5/4

+

+A5x
10
)6/5

+ A6x
12
)−1/12

,

where
A1 = 0.133333 , A2 = 0.012952 , A3 = 0.002757 ,

A4 = 0.000578 , A5 = 0.000137 , A6 = 0.000356 .

All these approximants converge to π/15, as x → ∞. The higher the approximant order, the faster
the convergence.

3.2. Debye Function

The n-th order Debye function is defined [13] through the integral representation

D(n, x) ≡ n

xn

∫ x

0

tn

et − 1
dt .

For |x| < 2π and n ≥ 1, it possesses the expansion

D(n, x) ' 1 − n

2(n+ 1)
x + n

∞∑
k=1

B2k

(2k + n)(2k)!
x2k ,

in which B2k are Bernoulli numbers. At large x and Re n > 0, one has

D(n, x) ' Cn
xn

(x→∞, Re n > 0) ,

where
Cn ≡ nΓ(n+ 1)ζ(n+ 1) .

Below, we consider the case of n = 3, corresponding to the Debye function

D(x) ≡ D(3, x) =
3

x3

∫ x

0

t3

et − 1
dt .

The small-variable expansion for the latter takes the form

D(x) ' 1− 3

8
x+

∞∑
k=1

a2kx
2k (x→ 0) ,

in which
a2k =

B2k

(2k + 3)(2k)!
.

While the large-variable behavior is given by the expression

D(x) ' C3

x3
(x→∞) ,
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with

C3 =
π4

5
= 19.481818 .

Constructing the root approximant

D∗5(x) =
x

9

((((
(1 + A1x)2 + A2x

2
)3/2

+ A3x
3
)4/3

+ A4x
4

)5/4

+ A5x
5

)−3/5
,

we compare it with the exact numerical values of the function D(x) and find that D∗5(x) approximates
well this function in the whole region of x ∈ [0,∞], with the maximal error of 15% at x = 5. The best
two-point Padé approximant of the same order, P1/4(x), is less accurate, yielding the maximal error of
33% at x = 15.

3.3. Fermi-Dirac Integral

The general form of the j-th order Fermi-Dirac integral is

F (j, x) =
1

Γ(j + 1)

∫ ∞
0

tj

et−x + 1
dt .

Its asymptotic expansions are known [14].
For concreteness, let us consider the zero-order case that reduces to the function

F (x) ≡ F (0, x) = ln (1 + ex) .

At small x, this function tends to ln 2, and at large x, we have

F (x) ' x (x→∞) .

The root approximant

F ∗5 (x) = ln 2

((((
(1 + A1x)2 + A2x

2
)3/2

+ A3x
3
)4/3

+ A4x
4

)5/4

+ A5x
5

)1/5

,

where
A1 = 0.721348 , A2 = 0.360674 , A3 = 0.390257 ,

A4 = 0.410334 , A5 = 4.294519 ,

provides an accurate approximation for the function F (x) in the whole region of x ∈ [0,∞], the maximal
error being 5%. The two-point Padé approximant P3/2(x) is slightly less accurate, with the maximal error
of 6%.
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3.4. Fekete-Szegö Problem

The problem of maximizing the absolute value of a functional in subclasses of normalized functions
is called the Fekete-Szegö problem [15,16]. The Fekete-Szegö functional is bounded by the function

f(x) = 1 + 2 exp

(
− 2x

1− x

)
,

where 0 < x < 1.
In order to consider the interval [0,∞], as in other examples, we can use the change of the variable

x =
z

1 + z
, z =

x

1− x
.

Then z →∞ as x→ 1. Expanding F (z) at small z gives

F (z) ≡ f(x(z)) ' 3− 4z + 4z2 − 8

3
z3 +

4

3
z4 − 8

15
z5 .

The root approximant F ∗3 (z) uniformly approximates the function F (z) on the interval z ∈ [0,∞],
with the maximal error about 10%. The two-point Padé approximant P2/2(z) is worse, having the
maximal error twice larger than the root approximant F ∗3 (z).

4. Some Useful Tricks

It is important to mention some tricks allowing for the convenient use of the method. Below,
we discuss the interchange of small-variable and large -variable limits and the problem of dealing
with logarithms.

4.1. Inversion of Expansions

In the above examples, we have considered functions, whose expansions are better known for the
small-variable limit, while a few, or just a single term, are available in the large-variable limit. But
generally, the small-variable and large-variable limits are interchangeable. In those cases, when the
large-variable expansion in powers of 1/x provides a number of terms and this expansion enjoys better
convergence properties, it is possible to inverse the small-variable limit to the large-variable limit by
using the variable change x = 1/t. Then, instead of the function f(x), we consider the function

F (t) ≡ f

(
1

t

)
, t =

1

x
. (11)

The small-variable limit (1) becomes the large-variable limit

F (t) ' F (k)(t) ≡ fk

(
1

t

)
(t→∞) , (12)

in which

F (k)(t) = F∞(t)

(
1 +

k∑
n=1

an
tn

)
, (13)
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with

F∞(t) ≡ f0

(
1

t

)
= At−α .

Conversely, the large-variable behavior (4) transforms to the small-variable behavior

F (t) ' Fp(t) ≡ f (p)

(
1

t

)
(t→ 0) , (14)

in which

Fp(t) = F0(t)

(
1 +

p∑
n=1

bnt
n

)
, (15)

where

F0(t) ≡ f∞

(
1

t

)
= Bt−β .

After this change of the variable it is straightforward to employ the same procedure of constructing
the root approximants, as is explained in Section 2.

More generally, it is possible to use the change of the variable t = 1/xs, with a positive power s > 0,
so that again t→∞, when x→ 0.

4.2. Example of Inversion

As an illustration of the inversion procedure, we give below a typical example, discussing it rather
briefly, since the whole method of constructing the root approximants is the same as before.

Let us consider the partition function of the so-called zero-dimensional oscillator, or the generating
functional of zero-dimensional ϕ4 field theory, which is defined through the integral

I(x) =
1√
π

∫ ∞
−∞

exp
(
−ϕ2 − xϕ4

)
dϕ ,

where x plays the role of a coupling parameter. In the weak-coupling limit, one has [17] the asymptotic
expansion

I(x) ' 1 +
∞∑
n=1

anx
n (x→ 0) ,

in which the coefficients are

an =
(−1)n√
π n!

Γ

(
2n+

1

2

)
.

For instance
a1 = − 3

4
, a2 =

105

32
, a3 = − 3465

128
,

and so on.
The strong-coupling expansion reads as

I(x) ' 1.022765 x−1/4 − 0.345684 x−3/4 + 0.127846 x−5/4 (x→∞) .

here the strong-coupling expansion provides a number of terms. Moreover, the absolute values of
the coefficients in this expansion diminish with increasing order, contrary to the coefficients an in the
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weak-coupling expansion, which grow as nn with increasing order n. This makes the strong-coupling
expansion more suitable for constructing root approximants.

Resorting to the change of the variable x = 1/t4, we consider the function J(t) ≡ I(1/t4) and follow
the scheme of the previous section. We define the root approximants J∗k (t) that give us the approximants
I∗k(x) = J∗k (1/x1/4) for the sought function. Found in that way approximant I∗3 (x) has the maximal
error of 5% for the whole range of x ∈ [0,∞]. For comparison, the Padé approximant P1/2(x) has the
maximal error of about 20%, which is much less accurate.

4.3. Dealing with Logarithms

It is worth paying attention to the problem of series involving logarithms, which often appear in
physics applications. Such series do not yield any complication for the method of root approximants
described here.There are two equivalent ways of treating such series. Thus, if a series contains the terms
with xn, xn+1, and with xn lnx, then it is admissible to consider as the terms of one order either those
containing xn and xn lnx or the terms xn+1 and xn lnx.

As an illustration, let us consider, e.g., the typical form of such a series involving logarithms as that
one arising in the Nambu-Iona Lasinio model [18] and leading to the function

f(x) = x

[
√

1 + x2 − x2 ln

(
1 +
√

1 + x2

x

)]
,

where x plays the role of mass. At asymptotically small x, it follows

f(x) ' x+

(
1

2
− ln 2 + lnx

)
x3 (x→ 0) .

While at large x, one has

f(x) ' 2

3
− 1

5x2
+

3

28x4
(x→∞) .

Keeping in mind the dependence of the last expansion on 1/x2, it is convenient to use the variable
z = 1/x2. The root approximant, satisfying the required limits, has the form

f ∗4 (x) =
2

3

((
(1 + A1z)2 + A2z

2
)3/2

+ A3z
2 ln(1 + z) + A4z

3
)−1/6

,

with all parameters uniquely defined by the given expansions. This expression approximates well the
initial function f(x), with the maximal error of 2% at x ≈ 2. Contrary to this, the best Padé approximant
of the same order has the error of 11% at x ≈ 1.5.

5. Ground-State Energy of Electron Gas

Important and not trivial problems arise when studying the properties of charged systems [19–21].
Here we show how our method works for the case of homogeneous electron systems.
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5.1. One-Dimensional Electron Gas

The Hartree-Fock part of the uniform electron energy is well known. The problem arises in calculating
the correlation energy. The latter is usually presented in a reduced dimensionless form ε(rs) as a function
of the Seitz radius rs. High-density expansion for one-dimensional uniform electron gas [22] corresponds
to small rs, when for the correlation energy one has

ε(rs) ' C + 0.00845rs (rs → 0) ,

where

C = − π2

360
= −0.027416 .

The low-density expansion [22] implies large rs, when

ε(rs) '
b1
rs

+
b2

r
3/2
s

(rs →∞) ,

where

b1 = −
(

ln
√

2π − 3

4

)
= −0.168939 , b2 = 0.359933 .

The root approximant, enjoying the same expansions, but valid for arbitrary rs reads as

ε∗3(rs) = − π2

360

((
(1 + A1rs)

3/2 + A2r
2
s

)5/4
+ A3r

3
s

)−1/3
,

with the parameters

A1 = 0.493150 , A2 = 0.056122 , A3 = 0.004274 .

Comparing the prediction of the root approximant with the data from diffusion Monte Carlo
calculations [22] in the interval 0 < rs < 20, we find that the maximal error of ε∗3 is 8%. Padé
approximants give the errors between 2% and 10%. Thus, P1/2(

√
rs) has the error of 2%, while

P0/3(
√
rs) has the maximal error of 10%. The Cioslowski interpolation method [23] results [22] in

a better accuracy of 1%. However, this method includes an additional parameter that is fitted from
numerical Monte Carlo calculations. While our aim has been in constructing good approximations
without fitting parameters, being based only on asymptotic expansions. The principal importance of
avoiding fitting parameters is crucial for those problems where no exact numerical data are available.

5.2. Two-Dimensional Electron Gas

Correlation energy of a homogenous two-dimensional electron gas was studied in several articles,
e.g., in References [24–31]. In high-density limit (small rs), the ground-state energy reads [31] as

E0(rs) '
c−2
r2s

+
c−1
rs

+ ε(rs) (rs → 0) ,

where the first two terms constitute the Hartree-Fock energy, with

c−2 =
1

2
, c−1 = − 4

√
2

3π
.
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And the last term is the correlation energy

ε(rs) ' c0 + c′1rs ln rs (rs → 0) ,

with the coefficients

c0 = −0.192495 , c′1 = −
√

2

(
10

3π
− 1

)
= −0.0863136 .

In the low-density limit (large rs) the asymptotic expansion for the correlation energy can be
written [26] as

ε(rs) '
b1
rs

+
b2

r
3/2
s

+
b3
r2s

(rs →∞) ,

where
b1 = −0.472189 , b2 = 0.4964 , b3 = 0.5297 .

For intermediate rs, there have been suggested [27,28,30] several phenomenological expressions with
parameters fitted from Monte Carlo calculations. Thus, Gori-Giorgi et al. [28] suggested the form

ε(rs) = A0 +
(
B0rs + C0r

2
s +D0r

3
s

)
ln

(
1 +

1

E0rs + F0r
3/2
s +G0r2s +H0r3s

)
,

with the parameters

A0 = −0.1925 , B1 = 0.0863136 , C0 = 0.057234 , D0 = 0.003362896 .

E0 = 1.0022 , F0 = −0.02069 , G0 = 0.34 , H0 = 0.01747 .

This expression can be used as a numerical result for estimating the accuracy of approximate
analytic formulas.

The root approximant, satisfying all asymptotic expansions reads as

ε∗5(rs) =
b1
rs

((1 +
A1√
rs

)2

+
A2

rs

)3/2

+
A3

rs
ln

(
1 +

1
√
rs

)
+

A4

r
3/2
s

+
A5

r2s

−1/2 ,
where the parameters are

b1 = −0.472189 , A1 = 0.700849 , A2 = 2.723702 ,

A3 = 10.792193 , A4 = −5.764339 , A5 = 6.017150 .

The error of this approximant is about 5%.

6. Systems with Spherical Symmetry

Finite quantum systems often enjoy spherical symmetry. Below, we consider two examples of such
systems that are important for applications.
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6.1. Energy of Harmonium Atoms

An N -electron harmonium atom is described by the Hamiltonian

Ĥ =
1

2

N∑
i=1

(
−∇2

i + ω2r2i
)

+
1

2

N∑
i 6=j

1

rij
,

where dimensionless units are employed and

ri ≡ |ri| , rij ≡ |ri − rj| .

This Hamiltonian provides a rather realistic modeling of trapped ions, quantum dots, and some other
finite systems, such as atomic nuclei and metallic grains [32]. This is why the energy of harmonium
atoms has been intensively studied [33–37]. Here we show that root approximants give a good
approximation for the energy of such systems. We consider the ground-state energy of a two-electron
harmonium.

At a shallow harmonic potential, the energy can be expanded [23] in powers of ω, so that

E(ω) ' Ek(ω) (ω → 0) ,

with the truncated series

Ek(ω) =
k∑

n=0

cnω
(2+n)/3 .

For instance, to third order, we get

E3(ω) = c0ω
2/3 + c1ω + c2ω

4/3 ,

with the coefficients

c0 =
3

24/3
= 1.19055 , c1 =

1

2

(
3 +
√

3
)

= 2.36603 , c2 =
7

36
2−2/3 = 0.122492 .

And for a rigid potential, the energy is approximated [23] as

E(ω) ' E(p)(ω) (ω →∞) ,

where

E(p)(ω) =

p∑
n=0

bnω
(2−n)/2 .

To fourth order, one has

E(4)(ω) = b0ω + b1ω
1/2 + b2 + b3ω

−1/2 ,

where

b0 = 3 , b1 =

√
2

π
= 0.797885 , b2 = − 2

π

(
1− π

2
+ ln 2

)
= −0.077891 ,

b3 =

(
2

π

)3/2 [
2− 2G− 3

2
π + (π + 3) ln 2 +

3

2
(ln 2)2 − π2

24

)
= 0.0112528 ,
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with the Catalan constant

G ≡
∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596559 .

The root approximant, respecting all given small-ω, as well as large-ω expansions, is

E∗6(ω) = c0ω
2/3

((((1 + A1ω
1/3
)1/2

+ A2ω
2/3
)3/4

+ A3ω

)5/6

+ A4ω
4/3

)7/8

+

+A5ω
5/3
)9/10

+ A6ω
2
)1/6

,

with the parameters

c0 = 1.19055 , A1 = 48.4532 , A2 = 564.108 ,

A3 = 1088.39 , A4 = 1221.08 , A5 = 796.791 , A6 = 256 .

We estimate the accuracy of the root approximant comparing it with the numerical data from
Reference [38] and find that its maximal error is only 0.9%. Note that Padé approximants cannot be
used in the case of harmonium, since the small-variable and large-variable asymptotic expansions are
incompatible.

6.2. Energy of Two-Electron Spherium

The two-electron spherium is a system consisting of two electrons that are confined to the surface of a
sphere of radius R. The ground-state energy of the system [23,39] possesses the small-radius expansion

E(R) ' 1

R
+ c0 + c1R + c2R

2 + c3R
3 (R→ 0) ,

in which

c0 = 4 ln 2− 3 = −0.22741128 , c1 = 8(ln 2)2 − 40 ln 2 + 24 = 0.11773689 ,

c2 = −0.05027560 , c3 = 0.01395783 .

The coefficients c2 and c3 can also be expressed in closed forms that, however, are too much
cumbersome [39], because of which we give here only their numerical values.

In the large-radius limit, the energy has the expansion

E(R) ' 1

2R
+

1

2R3/2
− 1

8R2
− 1

128R5/2
(R→∞) .

The root approximant can be writen in the form

E∗5(R) =
1

R
+ c0

((((
(1 + A1R)3/2 + A2R

2
)5/4

+ A3R
3
)7/6

+ A4R
4

)9/8

+ A5R
5

)−1/5
,

where
A1 = 1.05188915 , A2 = 0.56453530 , A3 = 0.36000617 ,
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A4 = 0.12606787 , A5 = 0.01946301 .

Comparing this expression with numerical data [39], we find that the maximal error occurs atR = 20,
being only 0.1%. The best Padé approximant P5/5(

√
R) is much less accurate, having the maximal error,

also at R = 20, but an order larger, 1.5%.

7. Discussion

We have described a simple and general method for interpolating functions between their
small-variable and large-variable asymptotic expansions. The method is based on the construction of
self-similar root approximants enjoying the general form

f ∗k (x) = f0(x)
(((

. . . (1 + A1x)n1 + A2x
2
)n2 + A3x

3
)n3

+ . . .+ Akx
k
)nk

.

All parameters Ai can be uniquely defined through the corresponding asymptotic expansions.
By changing the variable, it is easy to inverse the expansions between the small-variable and
large-variable limits.

Our aim has been to suggest a method that would involve no fitting parameters. This is especially
important in those complicated cases, where numerical data in the whole region of the variable are
not available. The absence of fitting parameters makes our aproach different from other intrepolation
methods, such as the Cioslowski method [23].

We have demonstrated the method of root approximants by several examples, whose structure is
typical for many applications, including the hard-core scattering problem, Debye function, Fermi-Dirac
integral, Fekete-Szegö problem, zero-dimensional oscillator, homogeneous electron gas, harmonium
atom, and spherium.

We have analyzed several more problems, e.g., the interpolation of the polaron mass between
weak-coupling and strong-coupling limits studied earlier by the Feynman variational procedure [40]
and by other methods [41–44]. Our approach provides approximations, whose accuracy is comparable
or better than that of other methods, being at the same time more simple.

Generally, the suggested method provides the accuracy not worse than the method of Padé
approximants and in the majority of cases is more accurate than the latter.

Except the root approximants of the general form (9), we also have considered additive approximants
represented by the sums

f ∗M/N(x) =

(M+N)/2∑
i=1

Ai(1 +Bix)ni .

This type of expressions can be considered either as additive root approximants or an additive variant
resulting from self-similar factor approximants [45].

For example, in the case of one-dimensional electron gas, the correlation energy is approximated as

ε∗2/2(rs) = A1(1 +B1rs)
−1 + A2(1 +B2rs)

−3/2 ,

with the parameters

A1 = −0.044941 , A2 = 0.017526 , B1 = 0.266023 , B2 = 0.133344 .
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This expression has the maximal error of 11%. However, a more detailed analysis of such additive
approximants requires a separate investigation, which is out of the scope of the present paper.

Acknowledgments

One of the authors (V.I.Y.) acknowledges financial support from the Russian Foundation for Basic
Research (grant 14-02-00723) and is grateful for useful discussions to E.P. Yukalova.

Author Contributions

The authors equally contributed to the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Baker, G.A.; Graves-Moris, P. Padé Approximants; Cambridge University: Cambridge, UK, 1996.
2. Gluzman, S.; Yukalov, V.I. Extrapolation of perturbation theory expansions by self-similar

approximants. Eur. J. Appl. Math. 2014, 25, 595–628.
3. Baker, G.A.; Gammel, J.L. The Padé approximant. J. Math. Anal. Appl. 1961, 2, 21–30.
4. Yukalov, V.I. Statistical mechanics of strongly nonideal systems. Phys. Rev. A 1990, 42,

3324–3334.
5. Yukalov, V.I. Self-similar approximations for strongly interacting systems. Phys. A 1990, 167,

833–860.
6. Yukalov, V.I. Method of self-similar approximations. J. Math. Phys. 1991, 32, 1235–1239.
7. Yukalov, V.I. Stability conditions for method of self-similar approximations. J. Math. Phys. 1992,

33, 3994–4001.
8. Yukalov, V.I.; Yukalova, E.P. Temporal dynamics in perturbation theory. Phys. A 1996, 225,

336–362.
9. Yukalov, V.I.; Yukalova, E.P.; Gluzman, S. Self-similar interpolation in quantum mechanics.

Phys. Rev. A 1998, 58, 96–115.
10. Gluzman, S.; Yukalov, V.I. Unified approach to crossover phenomena. Phys. Rev. E 1998, 58,

4197–4209.
11. Yukalov, V.I.; Gluzman, S. Self-similar crossover in statistical physics. Phys. A 1999, 273,

401–415.
12. Yukalov, V.I.; Yukalova, E.P. Self-similar structures and fractal transforms in approximation theory.

Chaos Solit. Fract. 2002, 14, 839–861.
13. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY,

USA, 1965.
14. Dingle, R.B. Asymptotic Expansions: Their Derivation and Interpretation; Academic: London,

UK, 1973.



Mathematics 2015, 3 525

15. Fekete, M.; Szegö, G. A remark about odd simple functions. J. Lond. Math. Soc. 1933, 8, 85–89.
16. Dziok, J. A general solution of the Fekete-Szegö problem. Bound. Value Probl. 2013, 2013, 98.
17. Yukalov, V.I. Self-similar renormalization near unstable fixed points. Int. J. Mod. Phys. B 1993, 7,

1711–1730.
18. Kunihiro, T.; Hatsuda, T. A self-consistent mean-field approach to the dynamical symmetry

breaking. Prog. Theor. Phys. 1984, 71, 1332–1345.
19. Loos, P.F.; Gill, P.M.W. Correlation energy of the spin-polarized uniform electron gas at high

density. Phys. Rev. B 2011, 84, doi:10.1103/PhysRevB.84.033103.
20. Cioslowski, J. Note on the asymptotic isomer count of large fullerenes. J. Math. Chem. 2014, 52,

1–5.
21. Cioslowski, J.; Albin, J. Electrostatic self-energies of discrete charge distributions on Jordan curves.

J. Math. Chem. 2014, 52, 2520–2531.
22. Loos, P.F. High-density correlation energy expansion of the one-dimensional uniform electron gas.

J. Chem. Phys. 2013, 138, 064108.
23. Cioslowski, J. Robust interpolation between weak- and strong-correlation regimes of quantum

systems. J. Chem. Phys. 2012, 136, doi:10.1063/1.3679657.
24. Sim, H.K.; Tao, R.; Wu, F.Y. Ground-state energy of charged fluids in two dimensions. Phys. Rev. B

1986 34, 7123–7128.
25. Tanatar, B.; Ceperley, D.M. Ground state of the two-dimensional electron gas. Phys. Rev. B 1989,

39, 5005–5016.
26. Kwon, Y.; Ceperley, D.M.; Martin, R.M. Effects of three-body and backflow correlations in the

two-dimensional electron gas. Phys. Rev. B 1993, 48, 12037–12046.
27. Attaccalite, C.; Moroni, S.; Gori-Giorgi, P.; Bachelet, G.B. Correlation energy and spin polarization

in the 2D electron gas. Phys. Rev. Lett. 2002, 88, doi:10.1103/PhysRevLett.88.256601.
28. Gori-Giorgi, P.; Attaccalite, C.; Moroni, S.; Bachelet, G.B. Two-dimensional electron gas:

Correlation energy versus density and spin polarization. Int. J. Quant. Chem. 2003, 91, 126–130.
29. Constantin, L.A.; Perdew, J.P.; Pitarke, J.M. Collapse of the electron gas to two dimensions in

density functional theory. 2008, arXiv:0806.1900. arXiv.org e-Print archive. Available online:
http://arxiv.org/abs/0806.1900 (accessed on 15 May 2015).

30. Drummond, N.D.; Needs, R.J. Quantum Monte Carlo study of the ground state of the
two-dimensional Fermi fluid. Phys. Rev. B 2009, 79, doi:10.1103/PhysRevB.79.085414.

31. Loos, P.F.; Gill, P.M.W. Exact energy of the spin-polarized two-dimensional electron gas at high
density. Phys. Rev. B 2011, 83, doi:10.1103/PhysRevB.83.233102.

32. Birman, J.L.; Nazmitdinov, R.G.; Yukalov, V.I. Effects of symmetry breaking in finite quantum
systems. Phys. Rep. 2013, 526, 1–91.

33. Cioslowski, J.; Strasburger, K.; Matito, E. The three-electron harmonium atom: The lowest-energy
doublet and quadruplet states. J. Chem. Phys. 2012, 136, doi:10.1063/1.4717461.

34. Cioslowski, J.; Albin, J. Oscillatory and fluctuating terms in energies of assemblies of equicharged
particles subject to spherically symmetric power-law potentials. J. Chem. Phys. 2013, 139,
doi:10.1063/1.4820246.



Mathematics 2015, 3 526

35. Cioslowski, J.; Albin, J. Asymptotic equivalence of the shell-model and local-density descriptions
of Coulombic systems confined by radially symmetric potentials in two and three dimensions.
J. Chem. Phys. 2013, 139, doi:10.1063/1.4821217.

36. Cioslowski, J. The weak-correlation limit of few-electron harmonium atoms. J. Chem. Phys. 2013,
139, doi:10.1063/1.4837179.

37. Cioslowski, J.; Strasburger, K.; Matito, E. Benchmark calculations on the lowest-energy singlet,
triplet, and quintet states of the four-electron harmonium atom. J. Chem. Phys. 2014, 141,
doi:10.1063/1.4891301.

38. Matito, E.; Cioslowski, J.; Vyboishchikov, S.F. Properties of harmonium atoms from FCI
calculations: Calibration and benchmarks for the ground state of the two-electron species.
Phys. Chem. Chem. Phys. 2010, 12, 6712–6716.

39. Loos, P.F.; Gill, P.M. Ground state of two electrons on a sphere. Phys. Rev. A 2009, 79,
doi:10.1103/PhysRevA.79.062517.

40. Feynman, R.P. Statistical Mechanics; Benjamin: Reading, UK, 1972.
41. Feranchuk, I.D.; Fisher, S.I.; Komarov, L.I. Analytical investigation of the polaron problem.

J. Phys. Solid State 1985, 18, 5083–5094.
42. Alexandrou, C.; Rosenfelder, R. Stochastic solution to highly nonlocal actions: The polaron

problem. Phys. Rep. 1992, 215, 1–48.
43. Kleinert, H. Variational interpolation algorithm between weak- and strong-coupling

expansions—Application to the polaron. Phys. Lett. A, 1995, 207, 133–139.
44. Kornilovitch, P.E.; Pike, E.R. Polaron effective mass from Monte Carlo simulations. Phys. Rev. B

2004, 69, doi:10.1103/PhysRevB.55.R8634.
45. Gluzman, S.; Yukalov, V.I.; Sornette, D. Self-similar factor approximants. Phys. Rev. E 2003, 67,

doi:10.1103/PhysRevE.67.026109.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Self-Similar Root Approximants
	Illustration by Simple Examples
	Hard-Core Scattering Problem
	Debye Function
	Fermi-Dirac Integral
	Fekete-Szegö Problem

	Some Useful Tricks
	Inversion of Expansions
	Example of Inversion
	Dealing with Logarithms

	Ground-State Energy of Electron Gas
	One-Dimensional Electron Gas
	Two-Dimensional Electron Gas

	Systems with Spherical Symmetry
	Energy of Harmonium Atoms
	Energy of Two-Electron Spherium

	Discussion

