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Abstract: We compare the Riemann–Liouville fractional integral (fI) of a function f(z)

with the Liouville fI of the same function and show that there are cases in which the
asymptotic expansion of the former is obtained from those of the latter and the difference
of the two fIs. When this happens, this fact occurs also for the fractional derivative (fD).
This method is applied to the derivation of the asymptotic expansion of the confluent
hypergeometric function, which is a solution of Kummer’s differential equation. In the
present paper, the solutions of the equation in the forms of the Riemann–Liouville fI or
fD and the Liouville fI or fD are obtained by using the method, which Nishimoto used in
solving the hypergeometric differential equation in terms of the Liouville fD.
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1. Introduction

We study the asymptotic expansion of the Riemann–Liouville fractional integral (fI) and fractional
derivative (fD) of a function f(z), by using their relations with the corresponding Liouville fI and fD,
respectively. We then present a method of deriving the asymptotic expansion of a function, when this is
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expressed by the Riemann–Liouville fI or fD of a function, which is analytic in a domain in the complex
plane. As an example, we take up the confluent hypergeometric function.

We adopt the following definition of the Riemann–Liouville fI [1,2] (Section 2.3.2).

Definition 1. Let c ∈ C, z ∈ C, f(ζ) ∈ L1(P (c, z)) and f(ζ) be continuous in a neighborhood of
ζ = z. Then, the Riemann–Liouville fI of order λ ∈ +C is defined by:

RD
−λ
c f(z) =

1

Γ(λ)

∫ z

c

(z − ζ)λ−1f(ζ) dζ =
1

Γ(λ)

∫ z−c

0

ηλ−1f(z − η) dη (1)

Here, P (c, z) is the path of integration from c to z, f(ζ) ∈ L1(P (c, z)) denotes that the function f(ζ)

is integrable on P (c, z) and C, R and Z represent the sets of all complex numbers, of all real numbers and
of all integers, respectively. We also use notations +C := {z ∈ C|Re z > 0}, Z>a := {n ∈ Z|n > a},
Z<b := {n ∈ Z|n < b}, Z[a,b] := {n ∈ Z|a ≤ n ≤ b} for a ∈ Z and b ∈ Z and R>0 := {x ∈ R|x > 0}.

In [1], the φ-dependent (φ-dept) Liouville fI : LD−λφ f(z) of order λ ∈ +C is defined for φ ∈ R.
It was mentioned that it is equal to (1) if c is chosen to be z +∞ · eiφ, in [3]. We now consider the paths
of integration Pφ(z) and Pφ(c), which are from z to z+∞·eiφ and from c to c+∞·eiφ, respectively, as
shown in Figure 1. Here, we consider the cases in which f(z) satisfies one of the following conditions.

Condition A. (a) f(ζ) is analytic on neighborhoods of the paths P (c, z], Pφ[z] and Pφ(c), and (b) it is
analytic also in the region enclosed by them.

P (c)
P (z)

P(c,z)c

z

φ

φ
φ

Figure 1. The paths of integration P (c, z), Pφ(z) and Pφ(c).

Condition B. f(ζ) is expressed as f(ζ) = fγ(ζ) := (ζ − c)γ · f0(ζ), where γ ∈ C\Z and f0(ζ) satisfies
Condition A with P (c, z] replaced by P [c, z].

Here, notations P (c, z], Pφ[z] and Pφ(c) are used to denote that f(ζ) is analytic at the point ζ = z,
but not so at ζ = c, and P [c, z] and Pφ[c] are used when f(ζ) is analytic also at the point ζ = c .

If the φ-dept Liouville fI exists, the difference of the Riemann–Liouville and φ-dept Liouville fIs
is expressed by the path integral along the path Pφ(c). When the asymptotic expansions of the φ-dept
Liouville fI and the last path integral are given, the asymptotic expansion of the Riemann–Liouville fI
is obtained.

In [1], the fD corresponding to an fI is defined in the form of a contour integral, for a
function f(z), which is analytic on a neighborhood of the path of integration. They are analytic
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continuations of the corresponding fI. As a consequence, the relation between the Riemann–Liouville
fI and the corresponding φ-dept Liouville fI is analytically continued to the relation between
the corresponding fDs. It follows that the same recipe is useful in obtaining the asymptotic expansion of
the Riemann–Liouville fD.

In Section 2, we first recall the expressions of the Riemann–Liouville fD, which are expressed by
a contour integral. As examples of functions that are expressed by the Riemann–Liouville fD, we
consider the incomplete gamma function γ(λ, z) and the confluent hypergeometric function 1F1(a; b; z),
in Sections 2.3 and 3, respectively.

In Section 4, we recall the expressions of the φ-dept Liouville fD, which are expressed by a contour
integral. We then present the φ-dept Liouville fD of the functions of which the Riemann–Liouville fD
is studied, in Sections 4.4 and 5.

We show the list of fI and fD, which we use in the present paper, with the places where they
are defined.

Table 1. List of the fractional integral (fI) and fractional derivative (fD) and the places of
their definitions.

Riemann–Liouville fI and fD φ-dept Liouville fI and fD

fI RD
−λ
c f(z) Definition 1 Section 1 LD

−λ
φ f(z) Definition 6 Section 4.1

fD RD
ν
c f(z) Definition 2 Section 2.1 LD

ν
φf(z) Definition 8 Section 4.2

CD
ν
c f(z) Definition 3 Section 2.2 HD

ν
φf(z) Definition 9 Section 4.3

PD
ν
c fγ(z) Definition 4 Section 2.2 HD

ν
φfγ(z) Definition 10 Section 4.3

In Section 6, we deform the path or contour of integration, which appears in the Riemann–Liouville
fD, and show that the Riemann–Liouville fD of a function f(z) is expressed as a sum of the φ-dept
Liouville fD of f(z) and a path or contour integral of f(z). By writing the asymptotic expansions of the
φ-dept Liouville fD, as well as of the path or contour integral that appears, we obtain the asymptotic
expansions of the Riemann–Liouville fD under consideration. We confirm that we can obtain the
asymptotic expansions of γ(λ, z) and 1F1(a; b; z), by this procedure in Sections 6.1∼7.

The function 1F1(a; b; z) treated in Sections 3 and 7 is a solution of Kummer’s differential equation
(DE), and is expressed by a Riemann–Liouville fD. In Sections 5 and 7, we treat Kummer’s function
U(a, b, z), which is another solution of Kummer’s DE and is expressed by φ-dept Liouville fD.
In Sections 3.1 and 5, we show that the expressions of these functions in the form of fD are obtained
by the method, which Nishimoto [4] (Chapter 5, Section 2) used in obtaining the solution of the
hypergeometric DE, that is the hypergeometric function, in the form of φ-dept Liouville fI. Concluding
remarks are given in Section 8.
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2. Riemann–Liouville fI and Its Analytic Continuations

2.1. Definition of Riemann–Liouville fD and the Index Law of Riemann–Liouville fI

Definition 2. The Riemann–Liouville fD of order ν ∈ C satisfying Re ν ≥ 0 is defined by:

RD
ν
c f(z) = Dm[RD

ν−m
c f(z)] (2)

when the right-hand side (rhs) exists, where m = bRe νc + 1, and Dmf(z) = dm

dzm
f(z) = f (m)(z) for

m ∈ Z>−1.

Here, bxc for x ∈ R denotes the greatest integer not exceeding x.

Lemma 1. Let z = c+ ζ and g(ζ) := f(c+ ζ) = f(z) for c 6= 0. Then, RDν
c f(z) = RD

ν
0g(z − c).

Proof When ν = −λ, (1) is expressed as:

RD
−λ
c f(z) =

1

Γ(λ)

∫ z−c

0

ηλ−1f(z − η) dη =
1

Γ(λ)

∫ ζ

0

ηλ−1g(ζ − η) dη = RD
−λ
0 g(ζ)

whose rhs represents RD−λ0 g(z − c). �

We use the following index law and Leibniz’s rule, in Section 3.2.

Lemma 2. Let λ ∈ +C, ν ∈ C satisfy Re ν ≤ Re λ and RD
−λ
c f(z) exist. Then:

RD
ν
c [RD

−λ
c f(z)] = RD

ν−λ
c f(z), RD

λ
c [RD

−λ
c f(z)] = f(z) (3)

A proof of this lemma for λ ∈ R>0 and ν ∈ R is found in [2] (Section 2.6.6).

Remark 1. In [5,6], the distribution theory in the space D′R was developed, in which the index law
DνDµh(t) = Dν+µh(t) is always valid for ν ∈ C, µ ∈ C and h(t) ∈ D′R, where D is the operator of
differentiation in this space. Noting that all of the function and its fI and fD, which appear in (3), are
regarded as regular distributions in D′R, we confirm the equalities in (3) in this standpoint.

Lemma 3. Let λ ∈ +C and RD
−λ
c f(z) exist. Then:

RD
−λ
c [z · f(z)] = z · RD−λc f(z)− λ · RD−λ−1

c f(z) (4)

Proof We see that the both sides are equal to 1
Γ(λ)

∫ z−c
0

ηλ−1(z − η)f(z − η) dη. �

This Leibniz’s rule is given in [7] (Section 5.5).

2.2. Analytic Continuations of Riemann–Liouville fI

In [1,8,9], analytic continuations of the Riemann–Liouville fI via contour integrals are discussed.
In [1], CDν

c f(z) and PD
ν
c f(z) are defined as follows.
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Definition 3. Let f(ζ) be analytic on a neighborhood of the path P (c, z] and be integrable on P (c, z).
Then, CDν

c f(z) is defined by:

CD
ν
c f(z) =

Γ(ν + 1)

2πi

∫ (z+)

c

(ζ − z)−ν−1f(ζ)dζ (5)

for ν ∈ C\Z<0 where the contour of integration is the Cauchy contour C(c, z+) shown in Figure 2a,
which starts from c, encircles the point z counterclockwise and goes back to c, without crossing the path
P (c, z). When −n ∈ Z<0, we put CD−nc f(z) := limν→−n CD

ν
c f(z), where ν ∈ C\Z.

( a )

C (c,z   )+

c

z
( b )

C  (c,z)
P

c

z

Figure 2. The contours of integration: (a) C(c, z+), (b) CP (c, z).

Definition 4. Let fγ(ζ) = (ζ − c)γ · f0(ζ), γ ∈ C\Z and f0(ζ) be analytic on a neighborhood of the
path P [c, z]. Then, PDν

c fγ(z) is defined by:

PD
ν
c fγ(z) = e−iγπ

Γ(ν + 1)

4π sin γπ

∫
CP (c,z)

(ζ − z)−ν−1fγ(ζ)dζ (6)

for ν ∈ C\Z<0, where CP (c, z) is the Pochhammer contour shown in Figure 2b. When −n ∈ Z<0,
we put PD−nc fγ(z) := limν→−n PD

ν
c fγ(z), where ν ∈ C\Z. When n ∈ Z>−1, we put PDν

c fn(z) :=

limγ→n PD
ν
c fγ(z).

The following lemmas follow from the arguments there.

Lemma 4. CD
ν
c f(z) is an analytic function of ν on C.

Lemma 5. PD
ν
c fγ(z) is analytic with respect to ν ∈ C, as well as to γ ∈ C\Z.

Lemma 6. Let CDν
c f(z) exist. Then, RDν

c f(z) exists, and CD
ν
c f(z) = RD

ν
c f(z).

Lemma 7. Let PDν
c fγ(z) exist. Then, if γ + 1 ∈ +C, CDν

c fγ(z) exists and PD
ν
c fγ(z) = CD

ν
c fγ(z).

In the following sections, we use CD
ν
c f(z) and PD

ν
c fγ(z) for the Riemann–Liouville fD.

2.3. Incomplete Gamma Function

The incomplete gamma function γ(λ, z), for z ∈ C, is defined by:

γ(λ, z) =

∫ z

0

ζλ−1e−ζdζ (7)
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when λ ∈ +C and by its analytic continuation when Re λ ≤ 0 [10] (Section 12.22).
By comparing (7) and (1), we confirm the following lemma with the aid of Lemmas 6 and 4.

Lemma 8. Let λ ∈ C\Z<1, ν ∈ C\Z>−1, z ∈ C and a ∈ C\{0}. Then:

γ(λ, z) = Γ(λ)e−z · CD−λ0 ez, CD
ν
0e
az =

1

Γ(−ν)
aνeaz · γ(−ν, az) (8)

When n ∈ Z>−1, (5) shows that CDn
0 e

az = dn

dzn
eaz = aneaz.

3. Confluent Hypergeometric Function in Terms of Riemann–Liouville fD

For a ∈ C, z ∈ C and b ∈ C\Z<1, the confluent hypergeometric series 1F1(a; b; z) is defined by:

1F1(a; b; z) =
∞∑
k=0

(a)k
k!(b)k

zk (9)

where (z)k for z ∈ C and k ∈ Z>−1 denotes
∏k−1

l=0 (z + l) if k ≥ 1 and one if k = 0. The integral
representation of 1F1(a; b; z) is given by:

1F1(a; b; z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

eztta−1(1− t)b−a−1dt (10)

when Re a > 0 and Re (b− a) > 0, in [11] (Section 13.2.1).
This function is a solution of Kummer’s DE for a ∈ C, b ∈ C and z ∈ C:

z
d2w

dz2
+ (b− z)

dw

dz
− a · w = 0 (11)

This DE has also another solution given by:

z1−b · 1F1(a− b+ 1; 2− b; z) (12)

see [11] (Section 13.1.13).

3.1. Solution of Kummer’s DE in Terms of Riemann–Liouville fD

The function 1F1(a; b; z) is known to be expressed in the form of (13) given below, in [8]. We now
obtain the solutions of (11) expressed in terms of the Riemann–Liouville fD, by using the method that
Nishimoto [4] adopted in deriving the solution of the hypergeometric DE, that is the hypergeometric
function, in the form of the Liouville fD.

Proofs of the following two lemmas are presented in the following section.

Lemma 9. There exist the following solutions of (11):

wl(z) = pl(z)ul(z), l ∈ Z[1,4] (13)

where:

p1(z) = 1, p2(z) = ez, p3(z) = z1−b, p4(z) = z1−bez (14)

ul(z) =
Γ(2− bl)

Γ(al − bl + 1)
PD

al−1
0 [zal−bleδl·z] (15)
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The values of al, bl, δl and their linear combinations are given in Table 2.

Table 2. Values of al, bl, δl and their linear combinations.

l al bl δl al − bl al − bl + 1 2− bl

1 a b 1 a− b a− b+ 1 2− b
2 b− a b −1 −a −a+ 1 2− b
3 1 + a− b 2− b 1 a− 1 a b

4 1− a 2− b −1 b− a− 1 b− a b

Lemma 10.

w1(z) = z1−b · 1F1(a− b+ 1; 2− b; z), w2(z) = z1−bez · 1F1(1− a; 2− b;−z) (16)

w3(z) = 1F1(a; b; z), w4(z) = ez · 1F1(b− a; b;−z) (17)

The following lemma is well known [11] (Sections 13.1.27, 13.1.28).

Remark 2. The relations w1(z) = w2(z) and w3(z) = w4(z) are well known [11] (Sections 13.1.27,
13.1.28).

3.2. Proofs of Lemmas 9 and 10

In place of (11), we now consider the solution of the equation:

z
d2w

dz2
+ (b− δ · z)

dw

dz
− δ · a · w = 0 (18)

where δ ∈ C. In the proof of Lemma 9 given below, ul(z) in (13) are the solutions of (18) for a = al,
b = bl and δ = δl, which are listed in Table 2.

The following lemma is obtained by using the method of Nishimoto [4] mentioned above.

Lemma 11. Let Re a < −1 and Re (a− b) ≥ 0. Then, a solution of (18) is given by:

w(z) = RD
a−1
0 [za−beδ·z] (19)

Proof We assume that a solution of (18) is expressed as w(z) = RD
−λ
0 v(z) for λ ∈ C satisfying

Re λ > 2. Substituting this w(z) in (18) and using Leibniz’s rule given in Lemma 3, we obtain:

RD
2−λ
0 [z · v(z)] + RD

1−λ
0 [(λ− 2 + b− δ · z) · v(z)]− δ · (λ− 1 + a) · RD−λ0 v(z) = 0 (20)

Putting λ = 1− a and hence assuming Re a < −1, and applying RD
λ−2
0 to (20), we obtain:

z · v(z) + RD
−1
0 [(b− a− 1− δ · z) · v(z)] = 0 (21)

with the aid of Lemma 2. This equation requires that:

d

dz
[z · v(z)] + (b− a− 1− δ · z) · v(z) = 0 (22)
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and z · v(z) = 0 when z = 0. Now, we obtain v(z) = za−beδ·z. Thus, we obtain (19). �

Proof of Lemma 9 The formula for w1(z) in (13) follows from Lemma 11 with the aid of Lemmas 5, 6
and 7. We next give a derivation of the formulas for w2(z) and w3(z) in (13). For l = 2 and l = 3, we put
w(z) = pl(z)ul(z) in (11) and obtain (18) with w, a, b and δ replaced by ul, al, bl and δl, respectively. We
next give a derivation of the formula for w4(z) in (13). We put w(z) = p4(z)u4(z) = p3(z)p2(z)u4(z) in
(11), and then, we obtain (18) with w, a, b and δ replaced by u4, a4 = b3 − a3 = 1− a, b4 = b3 = 2− b
and δ4 = −δ3 = −1, respectively. �

Proof of Lemma 10 We put ql = Γ(2−bl)
Γ(al−bl+1)Γ(−al+1)

. By using Lemmas 7 and 6 and the last member of
(1), (15) is expressed as:

ul(z) = ql

∫ z

0

ηal−bl(z − η)−aleδl·ηdη = qlz
1−bl

∫ 1

0

tal−bl(1− t)−aleδl·ztdt (23)

when 1 + Re (al − bl) > 0 and 1− Re al > 0. This gives:

ul(z) = qlz
1−bl

∞∑
k=0

δkl · zk

k!

∫ 1

0

tal−bl+k(1− t)−aldt = qlz
1−blΓ(−al + 1)

∞∑
k=0

Γ(al − bl + 1 + k) · δkl
k!Γ(2− bl + k)

zk

= z1−bl
∞∑
k=0

(al − bl + 1)k · δkl
k!(2− bl)k

zk = z1−bl · 1F1(al − bl + 1; 2− bl; δl · z) (24)

By using (24) in (13), we obtain (16)∼(17). �

4. The φ-dept Liouville fI and Its Analytic Continuations

4.1. Definitions of φ-dept Liouville fI

Let z ∈ C and φ ∈ R. We denote the half line {z + teiφ| 0 < t < ∞}, as shown in Figure 1b, by
Pφ(z). When f(z + teiφ) is locally integrable as a function of t in the interval (0,∞), we denote this by
f(z) ∈ L1

loc(Pφ(z)).

Definition 5. Let z ∈ C, φ ∈ R, s ∈ R and f(ζ) ∈ L1
loc(Pφ(z)). Let s1 be such that

∫∞
1
t−s−1|f(z +

teiφ)|dt converges for s > s1 and diverges for s < s1. We then call s1 the abscissa of convergence, and
denote it by s1[f ] or s1[f(z)]. We then have s1 ∈ R or s1 = −∞.

We note that there exists such a series {tl}l∈Z>0 of tl ∈ R>0, such that t−sl |f(z + tle
iφ)| → 0 and

tl →∞ as l→∞, if s > s1[f ].

Definition 6. Let z ∈ C, φ ∈ R, f(ζ) ∈ L1
loc(Pφ(z)) and f(ζ) be continuous in a neighborhood of

ζ = z. Let λ ∈ +C, s1[f ] < 0 and Re λ < −s1[f ]. Then, we define two types of fI, WD−λφ f(z) and

LD
−λ
φ f(z), by:

WD
−λ
φ f(z) =

1

Γ(λ)

∫
Pφ(z)

(ζ − z)λ−1f(ζ)dζ = eiφλ
1

Γ(λ)

∫ ∞
0

tλ−1f(z + teiφ)dt (25)
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LD
−λ
φ f(z) = eiπλ · WD−λφ f(z) = − 1

Γ(λ)

∫
Pφ(z)

(z − ζ)λ−1f(ζ)dζ

= ei(φ+π)λ 1

Γ(λ)

∫ ∞
0

tλ−1f(z − tei(φ+π))dt (26)

We call LD−λφ f(z) the φ-dept Liouville fI of f(z).

4.2. Definitions of φ-dept Liouville fD

Let z ∈ C and φ ∈ R. When f(z + teiφ) is infinitely differentiable as a function of t in the interval
(0,∞), we denote this by f(z) ∈ C∞(Pφ(z)).

Definition 7. Let f(z) ∈ L1
loc(Pφ(z))\C∞(Pφ(z)). We denote by m2[f ], the supremum of n ∈ Z>−1 for

which n > s1[f ] and Dnf(z) exists on Pφ(z). When f(z) ∈ C∞(Pφ(z)), we put m2[f ] =∞.

We note that if n ∈ Z>0 satisfies s1[f ] < n ≤ m2[f ], then m2[f (n)] = m2[f ]− n.

Definition 8. Let f(z) ∈ L1
loc(Pφ(z)). Let ν ∈ C satisfy Re ν ≥ 0 and Re ν > s1[f ], and m =

bRe νc+ 1. We then define fD, WDν
φf(z), by:

WD
ν
φf(z) = WD

ν−m
φ [Dm

Wf(z)], if m ≤ m2[f ] (27)

WD
ν
φf(z) = DW [WD

ν−1
φ f(z)]

= DW [WD
ν−m
φ [Dm−1

W f(z)]], if m = m2[f ] + 1 (28)

where Dm
Wf(z) = (−1)m · Dmf(z) for m ∈ Z>−1. Formula (28) applies when Re ν − 1 > s1[f ] and

the rhs exists. When WD
ν
φf(z) exists, LDν

φf(z) also exists and is given by:

LD
ν
φf(z) = e−iπν · WDν

φf(z) (29)

We call LDν
φf(z) the φ-dept Liouville fD of f(z).

4.3. Analytic Continuations of φ-dept Liouville fI

In [1,4,12,13], analytic continuations of φ-dept Liouville fI via contour integrals are discussed.
The analytic continuation via Hankel’s contour Cφ(z), which is shown in Figure 3, is defined as follows.

Definition 9. Let f(ζ) be analytic on a neighborhood of Pφ[z], and ν ∈ C satisfy Re ν > s1[f ]. Then:

HD
ν
φf(z) =

Γ(ν + 1)

2πi

∫ (z+)

z+∞·eiφ
(ζ − z)−ν−1f(ζ)dζ

=
Γ(ν + 1)

2πi
e−iφν

∫ (0+)

∞
t−ν−1f(z + teiφ)dt, ν /∈ Z<0 (30)

HD
−n
φ f(z) = lim

ν→−n H
Dν

φf(z), −n ∈ Z<0 (31)
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z

φ

ζ

Figure 3. The contour of integration Cφ(z).

Definition 10. Let fγ(ζ) = (ζ − c)γ · f0(ζ) where γ ∈ C\Z and f0(ζ) is analytic on a neighborhood of
Pφ[z]. Then, HDν

φfγ(z) is defined by Definition 9.

The following lemmas follow from the arguments there.

Lemma 12. HD
ν
φf(z) is an analytic function of ν on the domain Re ν > s1[f ].

Lemma 13. HD
ν
φfγ(z) is analytic with respect to γ ∈ C, as well as to ν ∈ C on the domain Re ν >

s1[f ].

Lemma 14. Let HDν
φf(z) exist. Then, LDν

φf(z) exists, and HD
ν
φf(z) = LD

ν
φf(z) holds.

Lemma 15. Let HDν
φfγ(z) exist. Then, LDν

φfγ(z) exists, and HD
ν
φfγ(z) = LD

ν
φfγ(z) holds.

We now present the index law and Leibniz’s rule corresponding to Lemmas 2 and 3.

Lemma 16. If Re ν > s1[f ] and Re (µ+ ν) > s1[f ] for µ ∈ C, ν ∈ C and φ ∈ R, then:

HD
µ
φ[HD

ν
φf(z)] = HD

µ+ν
φ f(z) (32)

This index law is Theorem 4.3 in [1].

Lemma 17. Let ν ∈ C, φ ∈ R and f(z) satisfy −1 + Re ν > s1[f ]. Then:

HD
ν
φ[z · f(z)] = z · HDν

φf(z) + ν · HDν−1
φ f(z) (33)

Proof We see that both sides are equal to:

Γ(ν + 1)

2πi
e−iφν

∫ (0+)

∞
t−ν−1(z + teiφ) · f(z + teiφ)dt

�

In the following sections, we use HD
ν
φf(z) for the Liouville fD.
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4.4. The φ-dept Liouville fD of the Exponential Function

Lemma 18. Let z ∈ C, a ∈ C, ν ∈ C, and φ ∈ R satisfy Re (aeiφ) > 0. Then, the abscissa of
convergence of e−az is given by s1[e−az] = −∞, and:

WD
ν
φe
−az = aνe−az, HD

ν
φe
−az = (−a)νe−az (34)

In particular,

HD
ν
φ−πe

z = ez, |φ| < π

2
(35)

Proof When λ ∈ +C, Re (aeiφ) > 0,

WD
−λ
φ e−az = eiφλ

1

Γ(λ)

∫ ∞
0

tλ−1e−a(z+teiφ)dt = a−λe−az (36)

by using (25). The proof of the second equation of (34) is finished by using (26) and Lemma 14. �

We present the following lemma, but we will not use it later.

Lemma 19. Let b ∈ R\{0}, f(z) = eibz. Then, s1[f ] = 0 and if ν ∈ +C and x ∈ R>0, there exist:

HD
ν
0e
ibx := lim

ε→0+
HD

ν
0e

(−ε+ib)x, HD
ν
−πe

ibx := lim
ε→0+

HD
ν
−πe

(ε+ib)x (37)

and:

HD
ν
0e
ibx = (ib)νeibx, HD

ν
−πe

ibx = (ib)νeibx (38)

Proof We put φ = 0, f(z) = e(−ε+ib)z in (30) and take the limit ε → 0+. We then note that we can
exchange the order of the limit and the integration, by Lebesgue’s theorem [14] (p. 37), obtaining the
first equation in (37). By using (34) in the rhs of that equation, we obtain the first equation in (38). �

5. Solution of Kummer’s DE in Terms of φ-dept Liouville fD

1F1(a; b; z) is a solution of Kummer’s DE (11), as stated in Section 3. Kummer’s function U(a, b, z)

is another solution of (11), which has the integral representation given by:

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt (39)

when Re a > 0 and Re z > 0 [11] (Section 13.2.5).
We now give a solution of (11), following the method adopted in Section 3.1 for the

Riemann–Liouville fD. Proofs of the lemmas in this section are presented in the following section.
Corresponding to Lemma 9, we now have the following lemma.

Lemma 20. There exist the following solutions of (11):

w̃l(z) = pl(z)ũl(z), l ∈ Z[1,4] (40)
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where pl(z) are given in (14), and:

ũl(z) = eiπ(al−1) · HDal−1
φ−(1+δl)π/2

[zal−bleδl·z] (41)

The values of al, bl, δl, and their linear combinations are given in Table 2.

Lemma 21.

w̃1(z) = e−i(1−b)πz1−bez · U(1− a, 2− b, e−iπz), w̃2(z) = z1−b · U(a− b+ 1, 2− b, z), (42)

w̃3(z) = ez · U(b− a, b, e−iπz), w̃4(z) = U(a, b, z) (43)

Remark 3. We find a solution of Kummer’s DE in [15] (Chapter VII, Section 8), where a solution is
first obtained for the equation adjoint to Kummer’s DE, by the method we adopted above, and then, a
relation connecting the two solutions is used to give the above solution w̃4(z) = U(a, b, z).

5.1. Proofs of Lemmas 20 and 21

The following lemma is obtained by using the method of Nishimoto [4], which is mentioned in
Section 3.1.

Lemma 22. A solution of (18) for δ = 1 or −1 is:

w(z) = HD
a−1
φ−π(δ+1)/2[za−beδ·z], |φ| < π

2
(44)

Proof We assume that a solution of (18) is expressed as w(z) = HD
ν
φv(z) for ν ∈ C. Substituting this

w(z) in (18) and using Leibniz’s rule given in Lemma 17, we obtain (20) with λ, R and zero replaced by
−ν, H and φ, respectively. Putting ν = a − 1 and then applying HD

−ν−1
φ , we obtain (22), with the aid

of Lemma 16. If we adopt v(z) = za−beδ·z, then s1[v] = −∞ if δ = 1 and |φ + π| < π
2
, or if δ = −1

and |φ| < π
2
, and we obtain (44). �

Proof of Lemma 20 Equation (40) for l = 1 follows from Lemma 22. For l = 2, 3 and 4, see the proof
of Lemma 9. For φ − (1 + δl)π/2, see the last part of the proof of Lemma 22. The factors eiπ(al−1) are
so chosen that (40) gives Lemma 21. �

Proof of Lemma 21 By using Lemmas 15 and 14 and the last member of (26), (41) is expressed as:

ũl(z) = eiπ(al−1) 1

Γ(1− al)

∫ ∞
0

eδl(z−δl·η)η−al(z − δl · η)al−bldη (45)

when −Re al > −1. By putting η = e−iπδl · zt, we obtain:

ũl(z) =
1

Γ(1− al)
z1−bleδl·z

∫ ∞
0

e−e
−iπδl·ztt−al(1− e−iπt)al−bldt (46)

when −Re al + 1 > 0 and −δl · Re z > 0. The integral in (39) is equal to that in (46) with a, b and z
replaced by 1− al, 2− bl and e−iπδl · z, respectively, and hence, we have:

ũl(z) = z1−bleδl·z · U(1− al, 2− bl, e−iπδl · z) (47)

By using this in (40), we obtain (42)∼(43). �
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6. Asymptotic Expansions of Riemann–Liouville fD

Comparing the third member of (26) with (1) and Figure 1, we have the following lemma.

Lemma 23. Let Condition A in Section 1 be satisfied, f(ζ) ∈ L1(P (c, z)), s1[f ] < 0 and s1[f ] <

−Re λ < 0. Then:

RD
−λ
c f(z) = LD

−λ
φ f(z) +

1

Γ(λ)

∫
Pφ(c)

(z − ζ)λ−1f(ζ)dζ (48)

Comparing (5) and (30), Figures 2a and 4a, we have the following lemma.

Lemma 24. Let Condition A be satisfied, f(ζ) ∈ L1(P (c, z)), and ν ∈ C\Z>−1 satisfy Re ν > s1[f ].
Then:

CD
ν
c f(z) = HD

ν
φf(z) +

1

Γ(−ν)

∫
Pφ(c)

(z − ζ)−ν−1f(ζ)dζ (49)

Remark 4. Let Condition A be satisfied, f(ζ) ∈ L1(P (c, z)), and n ∈ Z>−1 satisfy n > s1[f ]. Then,

CD
n
c f(z) = HD

n
φf(z) = dn

dzn
f(z).

( a )

c

z

φ

( b )

c

z

φ

Figure 4. The contours of integration: (a) deformed C(c, z+); (b) deformed CP (c, z).

Comparing (6) and (30), Figures 2b and 4b, we have the following lemma.

Lemma 25. Let fγ(ζ) satisfy Condition B, and ν ∈ C\Z>−1 satisfy Re ν > s1[fγ]. Then:

PD
ν
c fγ(z) = HD

ν
φfγ(z) +

1

Γ(−ν)

eiγπ

2i sin γπ

∫ (c+)

c+∞·eiφ
(z − ζ)−ν−1fγ(ζ)dζ (50)

Remark 5. Let fγ(ζ) satisfy Condition B, and n ∈ Z>−1 satisfy n > s1[fγ]. Then, PD
n
c fγ(z) =

HD
n
φfγ(z) = dn

dzn
fγ(z).

We express the integral on the rhs of (49) as:∫
Pφ(0)

(y − η)−ν−1f(c+ η)dη, (51)

where y = z − c and η = ζ − c. We now obtain the asymptotic expansion of (51) as a function of y.
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We use the Taylor series given in [10] (Section 5.4):

(a+ h)µ =
n−1∑
k=0

(
µ

k

)
aµ−khk +Rn(a, h) (52)

for a ∈ C, h ∈ C, µ ∈ C and n ∈ Z>0, where:

Rn(a, h) =
hn

2πi

∫
C

ξµ

(ξ − a− h)(ξ − a)n
dξ (53)

Here, C is a contour, including a and a+ h, but not zero.
We now choose α ∈ R>0 and β ∈ R>0 satisfying α < 1 and β < 1, and choose C, such that ξ ∈ C

on C satisfies:

α|a| < |ξ − a| < |h|+ β|a|, β|a| < |ξ − a− h|, (1− α)|a| < |ξ| < (1 + β)|a|+ |h| (54)

We then choose r ∈ R>0, such that:

|ξ|Re µ · 1

r
≤ |ξµ| ≤ |ξ|Re µ · r, ξ ∈ C (55)

Remark 6. In using the Taylor series (52), we put a = z − c, h being on Pφ(0) or Cφ(0), which are
shown in Figures 1 and 3, respectively, and hence, a+h is on Pφ(z−c) or Cφ(z−c). If we see Figure 4a
with c and z replaced by zero and z − c, respectively, we can easily choose a contour C, as described
above.

Remark 7. If | arg ξ| ≤ π, we may choose r = eπ|Im µ|.

We then obtain:

|Rn(a, h)| < R∗n(a, h) (56)

where:

R∗n(a, h) =

{
2Re µ+1·r
αnβ

|h|n
|a|n {(1 + 2β)(1 + β)Re µ|a|Re µ + |h|Re µ+1

|a| }, Re µ > 0
2

rα(1−α)−Re µ

|h|n
|a|n−Re µ (1 + |h|

β|a|), Re µ ≤ 0
(57)

Using (52) with (56), we obtain the following lemma.

Lemma 26. Let g(ζ) ∈ L1
loc(Pφ(0)), Re ν > s1[g], δ = 1 or −1, and n ∈ Z>0. Then:

I(1 + ν, δ, g(η)) :=

∫
Pφ(0)

(y − δ · η)−ν−1g(η)dη = y−ν−1

n−1∑
k=0

(1 + ν)k δ
kAk

k!

1

yk
+ ∆n(y) (58)

where:

|∆n(y)| < ∆∗n(y) :=
∣∣∣∫
Pφ(0)

R∗n(y, η)|g(η)|dη
∣∣∣ (59)

∆∗n(y) =

{
2−Re ν ·r
αnβ

1
|y|n{(1 + 2β)(1 + β)−Re ν−1A∗n|y|−Re ν−1 +

A∗
n−Re ν

|y| }, Re ν + 1 < 0
2

rα(1−α)Re ν+1
1

|y|n+Re ν+1 (A∗n +
A∗
n+1

β|y| ), Re ν + 1 ≥ 0
(60)
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Ak :=

∫
Pφ(0)

ηkg(η)dη, A∗ρ :=
∣∣∣∫
Pφ(0)

|η|ρ|g(η)|dη
∣∣∣ (61)

for k ∈ Z>−1 and ρ ∈ R>0.

Theorem 1. Let Condition A be satisfied, f(ζ) ∈ L1(P (c, z)), ν ∈ C\Z>−1 satisfy Re ν > s1[f ] and
n ∈ Z>0. Then:

CD
ν
c f(z) = HD

ν
φf(z) +

1

Γ(−ν)

n−1∑
k=0

(1 + ν)k · Ak
k!

1

(z − c)ν+k+1
+

1

Γ(−ν)
·∆n(z − c) (62)

where ∆n(z − c) is estimated by (59) and (60), and Ak and A∗ρ are given by (61) with g(η) replaced by
f(c+ η).

Proof We express the integral on the rhs of (49) as (51). Putting g(η) = f(c+ η) and using (58) in (49),
we obtain (62). �

Theorem 2. Let fγ(ζ) satisfy Condition B, ν ∈ C\Z>−1 satisfy Re ν > s1[fγ] and n ∈ Z>0. Then:

PD
ν
c f(z) = HD

ν
φf(z) +

1

Γ(−ν)

n−1∑
k=0

(1 + ν)k ·Bk

k!

1

(z − c)ν+k+1
+

1

Γ(−ν)
·∆n(z − c) (63)

where:

Bk = Bk(c) :=
eiγπ

2i sin γπ

∫
Cφ(c)

(ζ − c)kf(ζ)dζ =
eiγπ

2i sin γπ

∫
Cφ(0)

ηkf(c+ η)dη (64)

Remark 8. If n + γ > −1, ∆n(z − c) is estimated by (59) and (60) and if k + γ > −1, Bk is equal to
Ak given by (61) with g(η) replaced by f(c+ η).

Remark 9. When φ satisfies z−c = |z−c|·ei(φ+π), Theorems 1 and 2 are valid even when the Condition
(b) in Condition A is not satisfied. Formula (68) given below is a trivial example.

6.1. fD of the Exponential Function

We now apply Theorem 1 to the function f(z) = e−az. By using (34), we obtain the following results.

Corollary 1. Let a ∈ C\{0}, ν ∈ C\Z>−1 and n ∈ Z>0. Then:

CD
ν
0e
−az = (−a)νe−az +

1

Γ(−ν)

n−1∑
k=0

(1 + ν)k
ak+1

1

zν+k+1
+

1

Γ(−ν)
∆n(z) (65)

where:

|∆n(z)| <

{
2n!(1+2β)r[2(1+β)|z|]−Re ν−1+O(|z|−1)

αnβ|a|n+1
1
|z|n , Re ν + 1 < 0

2n!(1+O(|z|−1))
αnr|a|n+1[(1−α)|z|]Re ν+1

1
|z|n Re ν + 1 ≥ 0

(66)

Proof We choose φ, such that aeiφ = |a|, and obtain Ak = eiφ(k+1) ·
∫∞

0
tke−|a|tdt = k!

ak+1 . �
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Remark 10. In the above derivation of the second term on the rhs of (65), we use (52) in the integral∫∞
0

(x + s)−ν−1e−asds. This derivation is the one given in [10] (Section 16.3), for Whittaker’s function
Wk,m(z).

When a = −ib, we have:

Corollary 2. Let b ∈ R\{0}, x ∈ R and ν ∈ C\Z>−1. Then, the asymptotic expansion of CDν
0e
ibx is

given by (65) with −a and z replaced by ib and x, respectively.

Remark 11. Sakakibara [16] used the fact that the leading term of the asymptotic expansion of

CD
1/2
0 eiγx for γ ∈ R and x� 1 is

√
iγeiγx.

6.2. Incomplete Gamma Function

We now put f(z) = ez and φ = −π in (49). Then, we obtain:

CD
−λ
0 ez = HD

−λ
−πe

z − 1

Γ(λ)

∫ ∞
0

(z + t)λ−1e−tdt (67)

By multiplying this by Γ(λ)e−z and comparing it with (8) and (35), we obtain a well-known formula:

γ(λ, z) = Γ(λ)− Γ(λ, z) (68)

where Γ(λ, z) =
∫ z+∞
z

ηλ−1e−ηdη.
The asymptotic expansion of (67) is obtained by putting a = −1 and ν = −λ in (65) with (66). By

multiplying Γ(λ)e−z to the result, we obtain the asymptotic expansion of (68).

7. Asymptotic Expansions of the Confluent Hypergeometric Function and Kummer’s Function

Lemma 27. Let a ∈ C\Z<1, b ∈ C, b− a /∈ Z<1, z ∈ C and |φ| < π
2
. Then:

PD
−a
0 [zb−a−1e−z] = HD

−a
φ [zb−a−1e−z] +

Γ(b− a)

Γ(a)
e−zHD

a−b
φ−π[za−1ez] (69)

Proofs of the lemmas in the present section are given in the following section.

Lemma 28. Let a ∈ C\Z<1, b ∈ C\Z<1 and b− a /∈ Z<1. Then:

1F1(a; b; z) = eiaπ
Γ(b)

Γ(b− a)
U(a, b, z) + e−i(b−a)π Γ(b)

Γ(a)
ez · U(b− a, b, e−iπz) (70)

Remark 12. When a = −m ∈ Z<1, 1F1(a; b; z) is a polynomial of degree m in z, by (9).

Lemma 29. We have the following asymptotic expansions:

U(a, b, z) = z−a
n−1∑
k=0

(−1)k(1 + a− b)k(a)k
k!

1

zk
+ εn(a, b, z) (71)



Mathematics 2015, 3 187

U(b− a, b, e−iπz) = ei(b−a)πza−b
m−1∑
k=0

(1− a)k(b− a)k
k!

1

zk
+ εm(b− a, b, z) (72)

where n ∈ Z>0, m ∈ Z>0, and:

|εn(a, b, z)| <

{
2(1+2β)[2(1+β)]Re (b−a)−1(a)nr+O(|z|−Re (b−a))

αn
1

|z|n+Re a , Re (b− a)− 1 > 0,
2(a)n(1+O(z−1))

rαn(1−α)Re (a−b)+1
1

|z|n+Re a , Re (a− b) + 1 ≥ 0
(73)

Here, α, β and r are those defined by (54) and (55).

Theorem 3. Let the conditions in Lemma 28 be satisfied. Then, the asymptotic expansion of 1F1(a; b; z)

is obtained by using (71) and (72) in the rhs of (70).

The expansion agrees with the formula given in [11] (Section 13.5.1).

7.1. Proofs of Lemmas 27, 28 and 29

Proof of Lemma 27 We put ν = −a and f(z) = zb−a−1e−z in (49), and then, the last term in (49) is:

1

Γ(a)

∫
Pφ(0)

(z − ζ)a−1ζb−a−1e−ζdζ = eiφ
1

Γ(a)

∫ ∞
0

(z − teiφ)a−1(teiφ)b−a−1e−te
iφ

dt

when Re (b − a) > 0. By comparing this with the last member on the rhs of (26), we see that this is
equal to the last term on the rhs of (69) with H replaced by L. By analytic continuation of the obtained
equation, we obtain (69) with the aid of Lemmas 7 and 15. �

Proof of Lemma 28 Multiplying (69) by Γ(b)
Γ(b−a)

z1−bez, we obtain (70), with the aid of (13) with (17)
on the lhs and (43) on the rhs. �

Proof of Lemma 29 Comparing (40) with (45) and (58), we obtain:

w̃l(z) =
1

Γ(1− al)
pl(z)ei(al−1)πeδl·z · I(−al + bl, δl, η

−ale−η) (74)

When l = 3 and l = 4, this is expressed as:

w̃3(z) =
1

Γ(b− a)
z1−bei(a−b)πez · I(1− a, 1, ηb−a−1e−η) (75)

w̃4(z) =
1

Γ(a)
z1−be−iaπ · I(1− b+ a,−1, ηa−1e−η) (76)

We obtain (71) from (76) by using (43) on the lhs and (58) on the rhs, where we note that Ak given by
(61), for g(η) = e−ηηa−1, is:

Ak =

∫ ∞
0

ηke−ηηa−1dη = Γ(a+ k) = (a)k · Γ(a),

We obtain (72) from (75) by using (43) on the lhs and (58) on the rhs, where we note that Ak given by
(61), for g(η) = e−ηηb−a−1, is Ak = Γ(b− a+ k) = (b− a)k · Γ(b− a). �
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8. Concluding Remarks

We presented a method of deriving the asymptotic expansion of a function, which is expressed by the
Riemann–Liouville fI or fD, when these are given by contour integrals. The derivation of the formulas
is done by using contour integrals, and yet, the final formulas are mostly useful for the functions of real
variable.

Here, we mention [17] reviewing recent developments on fractional calculus.
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