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Abstract: We consider the twistor descriptions of harmonic maps of the Riemann sphere
into Kähler manifolds and Yang–Mills fields on four-dimensional Euclidean space. The
motivation to study twistor interpretations of these objects comes from the harmonic spheres
conjecture stating the existence of the bijective correspondence between based harmonic
spheres in the loop space ΩG of a compact Lie group G and the moduli space of Yang–Mills
G-fields on R4.
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1. Introduction

In the first part of this paper, we consider the twistor interpretation of harmonic maps of the Riemann
sphere into Kähler manifolds.

Harmonic maps of the Riemann sphere S := P1 into a given Riemannian manifold M (harmonic
spheres) are the extrema of the energy functional, given by the Dirichlet-type integral. If M is
Kähler, then holomorphic and anti-holomorphic spheres are local minima of the energy. However,
for dimCM > 1, this functional usually has non-minimal critical points. For any even-dimensional
Riemannian manifold M , we can construct a twistor bundle π : Z → M over M , where Z is an almost
complex manifold having the following property: for any pseudoholomorphic sphere ψ : S → Z, its
projection ϕ := π ◦ ψ to M is a harmonic sphere ϕ : S → M . Moreover, in the case when M

coincides with the Grassmann manifold Grr(Cn), any harmonic sphere in this manifold can be obtained
in this way. These results may be extended to infinite-dimensional Kähler manifolds M (cf. [1]). If, in
particular, M coincides with the loop space ΩG of a compact Lie group, we have an infinite-dimensional
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analogue of the above result for the Grassmannian Grr(Cn). Namely, in the paper [2], we prove that any
harmonic sphere in the loop space ΩG, embedded into the Hilbert–Schmidt Grassmannian GrHS(H), may
be obtained as the projection of some pseudoholomorphic sphere in a virtual flag bundle over GrHS(H)

(as is explained in more detail in Section 4).
In the second part of the paper, we consider the Yang–Mills fields on R4 with gauge group G. They

are the extrema of the Yang–Mills action functional. The local minima of this functional are given by
instantons and anti-instantons. Their twistor description was proposed by Atiyah–Ward [3] with the help
of the Hopf bundle π : P3 → S4 over the compactified Euclidean four-space, coinciding with the sphere
S4. In terms of this bundle, instantons correspond to the holomorphic vector bundles over P3, which
are trivial along the fibers of π. Using this description, Atiyah–Hitchin–Drinfeld–Manin [4] gave the
complete description of the moduli space of G-instantons on R4.

However, the structure of the moduli space of all Yang–Mills fields on R4 is still far from being
understood. The twistor description of Yang–Mills fields was proposed in the papers by Manin [5],
Witten [6] and Isenberg-Green-Yasskin [7]. They are interpreted as holomorphic vector bundles over the
incidence quadric in P3 × (P3)∗ with some special properties described below.

We should explain now why we are interested in studying twistor interpretations of harmonic spheres
in ΩG and Yang–Mills fields on R4. The motivation comes from a theorem of Atiyah and Donaldson
(cf. [8,9]) stating the existence of the bijective correspondence between the moduli space ofG-instantons
on R4 and based holomorphic spheres in ΩG. A natural generalization of this theorem leads to the
harmonic spheres conjecture (cf. [10]) asserting that the bijective correspondence should exist between
the moduli space of Yang–Mills G-fields on R4 and based harmonic spheres in ΩG.

Unfortunately, the proof of the Atiyah–Donaldson theorem does not extend to the harmonic case. In
our paper [11], we have proposed an approach to the proof of the harmonic spheres conjecture based
on twistor methods. A key idea is to deduce this conjecture from its twistor version. This version is
obtained by pulling up both objects, entering the harmonic spheres conjecture, i.e., harmonic spheres and
Yang–Mills fields, to the corresponding twistor spaces. Following the general ideology of the Penrose
twistor program, the twistor version of the conjecture may be proven using only holomorphic means.
This motivated the study of the twistor interpretation of these objects.

We should also add that the proof of the harmonic spheres conjecture will give a new information
on Yang–Mills fields, since harmonic maps are much better understood compared to their Yang–Mills
counterpart. For example, one of the corollaries of this conjecture would be the existence of
a Bäcklund-type procedure allowing one to construct any Yang–Mills field from a trivial one by
successively adding instantons and anti-instantons.

We start by recalling basic properties of harmonic maps into Kähler manifolds in Section 1. In
Section 2, we give an overview of the twistor method of the construction of harmonic maps into
Kähler manifolds. This method is applied in Section 3 to the construction of harmonic spheres in
complex projective spaces and Grassmannians Gr(Cn). In Section 4, we extend these results to the
infinite-dimensional situation, namely to the construction of harmonic spheres in the Hilbert–Schmidt
Grassmannian GrHS(H). The loop space ΩG can be isometrically embedded into GrHS(H), so that
harmonic spheres ϕ : S → ΩG can be considered as harmonic spheres in the Grassmannian GrHS(H).
In Section 5, we introduce the Yang–Mills fields and instantons on R4 and give their twistor interpretation
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due to Atiyah and Ward. Section 6 is devoted to the Atiyah–Donaldson interpretation of instantons with
gauge group G as holomorphic spheres in the loop space ΩG. We also formulate here the harmonic
spheres conjecture relating Yang–Mills G-fields on R4 with harmonic spheres in ΩG and overview the
idea of its proof.

2. Harmonic Spheres in Kähler Manifolds

2.1. Complex Structures and Kähler Manifolds

LetM be a smooth manifold of dimension 2n. An almost complex structure onM is a smooth section
J of the bundle End(TM), satisfying the relation J2 = −I .

Denote by TCM = TM ⊗R C the complexified tangent bundle of the manifold M . If we fix a local
basis of the bundle TCM in a neighborhood of a point p ∈M , given by the vector fields of the form:

∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂z̄1
, . . . ,

∂

∂z̄n
,

then any smooth complex vector field, i.e., a local section of the bundle TCM in the neighborhood of p,
will be written in the form:

X =
∑
j

(
Xj ∂

∂zj
+Xj ∂

∂z̄j

)
where Xj, Xj are smooth complex-valued functions in the neighborhood of p.

In analogous way, a local basis of the cotangent complexified bundle T ∗,CM in the neighborhood of
p ∈M is given by one-forms:

dzj = dxj + idyj, dz̄j = dxj − idyj

so that any smooth one-form in the neighborhood of p is represented as:

ω =
∑
j

(ωjdz
j + ωjdz̄

j)

with coefficients, given by the smooth complex-valued functions ωj, ωj .
The chosen local bases of vector and covector fields may be used to represent arbitrary complex tensor

fields, i.e., sections of the bundles of the form:(
TCM

)⊗p ⊗ (T ∗,CM)⊗q .
In particular, any complex r-form ω, which is a smooth section of the bundle Ωr

CM :=
(
T ∗,CM

)∧r, is
written as:

ω = ωr,0 + ωr−1,1 + · · ·+ ω1,r−1 + ω0,r

where the form ωp,q, called the form of type (p, q), is given by:

ωp,q =
∑
i1,...,ip

∑
j1,...,jq

ai1...ipj1...jqdz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

The bundle of forms of type (p, q) is denoted by Ωp,qM .
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Given an almost complex structure J on M , we can extend it complex linearly to a section of the
bundle End(TCM). Denote by T 1,0

p M (resp. T 0,1
p M ) the eigenspace of the operator Jp ∈ End(TC

p M),
corresponding to the eigenvalue i (resp. −i). Then, for the complexified tangent bundle TCM , we obtain
the decomposition:

TCM = T 1,0M ⊕ T 0,1M.

In terms of the local basis of TCM , given by the vector fields ∂
∂z1
, . . . , ∂

∂zn
, ∂
∂z̄1
, . . . , ∂

∂z̄n
, the

corresponding local basis of the subbundle T 1,0M is formed by the fields ∂
∂z1
, . . . , ∂

∂zn
,, and the local

basis of the subbundle T 0,1M is given by the fields ∂
∂z̄1
, . . . , ∂

∂z̄n
.

An almost complex structure J on a smooth manifold M is called integrable if the exterior derivative
operator d : Ωr

CM −→ Ωr+1
C M may be represented as the sum of two operators:

d = d′ + d′′

where the operator d′ : Ωp,qM −→ Ωp+1,qM sends the forms of type (p, q), p + q = r, to the forms of
type (p + 1, q) and the operator d′′ : Ωp,qM −→ Ωp,q+1M sends the forms of type (p, q) to the forms of
type (p, q + 1).

For the integrable almost complex structure J , the following relations are satisfied:

d
′2 = d′d′′ + d′′d′ = d

′′2 = 0,

and each of them may be taken for the definition of the integrability of J .
Equivalently, the almost complex structure J is integrable if the bracket of any two vector fields of

type (1, 0), i.e., smooth sections of the bundle T 1,0M , is again a vector field of type (1, 0).
The importance of the integrability condition is explained by the following:

Theorem 1 (Newlander–Nirenberg). If an almost complex structure J on a smooth manifold M is
integrable, then such a manifold is in fact a complex one. In other words, there exists an atlas of local
complex coordinates on this manifold, in which the operator J is given by the multiplication by i.

This theorem implies that an almost complex manifold (M,J) with an integrable almost complex
structure J has a rich collection of local holomorphic non-constant functions. On the contrary, such
functions on a manifold (M,J) with a non-integrable almost complex structure J may not exist.

Suppose now that an almost complex manifold (M,J) is also a Riemannian one, i.e., it is provided
with a Riemannian metric g. This metric is called Hermitian if it is compatible with J in the sense that:

g(JX, JY ) = g(X, Y )

for any vector fields X, Y on M . In this case, the manifold (M, g, J) is called almost Hermitian or
Hermitian in the case when the almost complex structure J is integrable.

Let (M, g, J) be an almost Hermitian manifold. Consider on it the two-form:

ω(X, Y ) := g(X, JY ).

If this two-form is closed, i.e., dω = 0, such a manifold (M, g, J, ω) is called almost Kähler. If the
form ω is also non-degenerate (in this case, ω defines a symplectic structure on M ) and the almost
complex structure J is integrable, then the form ω is called the Kähler form and (M, g, J, ω) is called the
Kähler manifold.
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Let ϕ : M1 → M2 be a smooth map of almost complex manifolds. It is called almost holomorphic
or pseudoholomorphic if the tangent map ϕ∗ : TM1 → TM2 commutes with almost complex
structures, i.e.,

ϕ∗ ◦ J1 = J2 ◦ ϕ∗
where J1 (resp. J2) is an almost complex structure on M1 (resp. on M2). The map ϕ is called almost
antiholomorphic if ϕ∗ anticommutes with almost complex structures:

ϕ∗ ◦ J1 = −J2 ◦ ϕ∗.

2.2. Harmonic Spheres in Kähler Manifolds

Consider now smooth maps ϕ : S → M from the Riemann sphere S ≡ P1 to an almost
complex manifold (M, g, J). Extend the tangent map ϕ∗ : TS → TM complex linearly to the map
ϕ∗ : TCS → TCM of complexified tangent bundles. The obtained map, in accordance with the
decomposition TCM = T 1,0M ⊕ T 0,1M , may be represented as a sum of the following four operators:

∂′ϕ : T 1,0S −→ T 1,0M, ∂′′ϕ : T 0,1S −→ T 1,0M,

∂′ϕ̄ = ∂′′ϕ : T 1,0S −→ T 0,1M, ∂′′ϕ̄ = ∂′ϕ : T 0,1S −→ T 0,1M.

If we identify ϕ∗ with the differential dϕ, considered as a section of the bundle:

T ∗,CS ⊗ ϕ−1(TCM),

then the introduced operators will admit analogous interpretations as sections of the corresponding
subbundles of the above bundle. For example, the operator ∂′ϕ may be identified with a section of
the bundle Ω1,0S ⊗ ϕ−1(T 1,0M).

In terms of the introduced operators, the map ϕ is almost holomorphic (resp. almost antiholomorphic)
if ∂′′ϕ = 0 (resp. ∂′ϕ = 0).

We define now the energy of a smooth sphere ϕ : S →M by the Dirichlet integral of the form:

E(f) =
1

2

∫
C
‖dϕ(z)‖2 |dz ∧ dz̄|

(1 + |z|2)2

where the norm ‖dϕ(z)‖ is computed with respect to the Riemannian metric g of M and the integral
over the complex plane C is taken with respect to the conformal metric on C. The volume element of
this metric we shall denote by:

dvol =
|dz ∧ dz̄|

(1 + |z|2)2
.

The critical points of the energy functional are called the harmonic spheres in M .
As we have pointed out before, the differential dϕ of a smooth sphere ϕ : S →M may be considered

as a section of the bundle T ∗S ⊗ ϕ−1(TM). Therefore, the Riemannian connection on M generates
a natural connection ∇ on this bundle. In its terms, the Euler–Lagrange equation for ϕ may be written
in the form:

tr (∇ dϕ) = 0

where the vector field τϕ := tr (∇ dϕ) is called otherwise the stress tensor of ϕ.
The energy of a smooth sphere ϕ : S →M in a Kähler manifold M may be represented in the form:
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E(ϕ) = E ′(ϕ) + E ′′(ϕ)

where:
E ′(ϕ) =

∫
C
‖∂′ϕ‖2dvol, E ′′(ϕ) =

∫
C
‖∂′′ϕ‖2dvol.

A map ϕ is almost holomorphic (resp. almost antiholomorphic) if and only if E ′′(ϕ) = 0 (resp.
E ′(ϕ) = 0). We set:

k(ϕ) := E ′(ϕ)− E ′′(ϕ).

This number is a topological invariant, i.e., it depends only on the homotopy class of the map ϕ.
Since:

E(ϕ) = 2E ′(ϕ)− k(ϕ) = 2E ′′(ϕ) + k(ϕ),

the extrema of all three functionals coincide, and we have an estimate:

E(ϕ) ≥ |k(ϕ)|.

Hence, almost holomorphic and almost antiholomorphic maps ϕ realize the minima of the energy
E(ϕ) in a given topological class: for k(ϕ) ≥ 0, the minima are realized on almost holomorphic maps
with E ′′(ϕ) = 0; for k(ϕ) < 0, they are realized on almost antiholomorphic maps with E ′(ϕ) = 0.

2.3. Harmonicity Conditions

We can give another interpretation of the harmonicity condition based on the following:

Theorem 2 (Koszul–Malgrange). Let E → S be a complex vector bundle over a Riemann surface S,
provided with a connection ∇. There exists a unique complex structure on E, compatible with ∇, such
that E → S is a holomorphic vector bundle with respect to this structure.

The compatibility of the complex structure with ∇ means that the ∂̄-operator, associated with this
structure, coincides with ∇0,1. We shall call the complex structure on E, existing according to the
formulated theorem, the Koszul–Malgrange structure, induced by the connection∇, or the KM-structure.
Note that the vector subbundle F ⊂ E is holomorphic under the introduced KM-structure if and only if
the following condition is satisfied: ∇0,1C∞(M,F ) ⊂ C∞(M,F ), where C∞(M,F ) denotes the space
of smooth sections of the bundle F →M .

If ϕ : S → M is a smooth sphere in a Riemannian manifold M , then the complexified tangent map
ϕ∗ : TCS → TCM , considered as a section of the bundle T ∗,CS ⊗ ϕ−1(TCM), is represented in the
form:

dϕ = δϕ+ δ̄ϕ

where δϕ is a section of the bundle Ω1,0S ⊗ ϕ−1(TCM) and δ̄ϕ is a section of the bundle Ω0,1S ⊗
ϕ−1(TCM).

Extend the natural connection ∇ on the bundle T ∗S ⊗ ϕ−1(TM), generated by the Riemannian
connection on M , complex-linearly to the complexified bundle T ∗,CS ⊗ ϕ−1(TCM). Introduce the
operators that act on the sections of this bundle and are given in terms of a local coordinate z on S by
the following formulas:

δ := ∇∂/∂z , δ̄ := ∇∂/∂z̄.
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Then, the condition of harmonicity of a map ϕ : S →M will be written in the form:

δ̄δϕ = ∇∂/∂z̄(δϕ) = ∇∂/∂z̄(∇∂/∂zϕ) = 0 (1)

or in the equivalent form:
δδ̄ϕ = ∇∂/∂z(δ̄ϕ) = ∇∂/∂z(∇∂/∂z̄ϕ) = 0.

In the case when the manifold M is Kähler, the obtained conditions may be further simplified by
using the relations:

δϕ = ∂′ϕ+ ∂′′ϕ, δ̄ϕ = ∂′′ϕ+ ∂′ϕ.

Since for the Kähler manifold M , its Riemannian connection preserves the decomposition
TCM = T 1,0M ⊕ T 0,1M , the harmonicity condition may be rewritten in the form:

δ̄∂′ϕ = 0⇐⇒ δ∂′′ϕ = 0. (2)

In terms of the KM-structure on Ω1,0S ⊗ ϕ−1(TCM), induced by the connection ∇, the harmonicity
condition on ϕ, given by Formula (1), means that δϕ is a holomorphic section of the bundle Ω1,0S ⊗
ϕ−1(TCM). In the case when M Kähler, the harmonicity condition on ϕ, given by Formula (2), means
that ∂′ϕ is a holomorphic section of the bundle Ω1,0S ⊗ ϕ−1(T 1,0M).

3. Twistor Construction of Harmonic Maps

Our goal is to construct harmonic spheres in Kähler manifolds. We shall reduce this problem to
a holomorphic one, namely the construction of holomorphic spheres in such manifolds. For that, we
shall use the twistor method.

3.1. Penrose Twistor Program

We recall a heuristic idea of this approach known under the name of:

Penrose twistor program. Construct for a given Riemannian manifold M the twistor bundle π : Z →
M , where Z is an almost complex manifold and π is a smooth submersion. This bundle should establish
a bijective correspondence between:{

Riemannian geometry
objects on M

}
⇐⇒

{
holomorphic geometry
objects on Z

}
With the help of this twistor bundle, one can study the real geometry of the Riemannian manifold M

via the complex geometry of its twistor space Z.
This formulation of the Penrose twistor program was given in the paper by

Atiyah–Hitchin–Singer [12], where a concrete construction of a twistor bundle π : Z → M over
an arbitrary even-dimensional Riemannian manifold M was also proposed. To explain this, let us start
with a particular, but very important example of the four-dimensional sphere M = S4.
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3.2. Hopf Bundle

Consider the Hopf bundle over S4 of the form:

π : P3 CP1

−→ S4

where P3 is the three-dimensional complex projective twistor space. This bundle is the complex version

of the Hopf bundle π : S7 S3

−→ S4. In order to see that, we pull back the map π to S7 ⊂ C4, using the

bundle C4 C1

−→ P3, associating with a point of the space C4 the complex line, passing through this point.
The bundle:

π : S7 S3

−→ S4

with fiber S3 is the quaternion analogue of the Hopf bundle π : S3 S1

−→ S2, which can be also constructed

from the complex bundle C2 C1

−→ P1.
The restriction of π to the Euclidean four-space R4 = S4 \ {∞} coincides with the bundle:

π : P3 \ P1
∞ −→ R4

where the omitted complex projective line P1
∞ is identified with the fiber π−1(∞) at∞ ∈ S4.

This bundle has the following geometric interpretation due to Atiyah (cf. [13]). Namely, the space
P3 \P1

∞ is foliated by parallel projective planes P2 intersecting in P3 on the projective line P1
∞. Consider

the fiber π−1(p) of our bundle at p ∈ R4. With any point z ∈ π−1(p) of this fiber, we can associate
a complex structure Jz on the tangent space TpR4 ∼= R4 by identifying (with the help of the tangent map
π∗) this space with the complex plane from our family, going through z. In this way, the fiber π−1(p)

of the twistor bundle at p is identified with the space of complex structures on the tangent space TpR4

compatible with the metric.

3.3. Atiyah–Hitchin–Singer Construction

We extend now this construction to an arbitrary even-dimensional Riemannian manifoldM . Consider
the bundle π : J (M) → M of Hermitian structures on M with fiber at p ∈ M given by the space
J (TpM) ∼= J (R2n) of Hermitian structures on the tangent space TpM .

Note that a Hermitian structure on the even-dimensional Euclidean space R2n is a complex structure
on R2n, given by a skew-symmetric linear operator J with the square J2 = −I . The space of such
structures, denoted by J (R2n), is identified with the homogeneous space:

J (R2n) ∼= O(2n)/U(n)

which is the union of two copies of the homogeneous space SO(2n)/U(n).
The bundle π : J (M)→M may be identified with the bundle

J (M) = O(M)×O(2n) J (R2n).

This bundle will play the role of the twistor bundle overM . We show, first of all, that J (M) has a natural
almost complex structure.

The Riemannian connection on M generates a natural connection on the principal O(2n)-bundle
O(M)→M , which determines the vertical-horizontal decomposition of the associated bundle J (M):
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TJ (M) = V ⊕H.

We introduce an almost complex structure J 1 on J (M) by setting:

J 1 = J v ⊕ J h.

The value of the vertical component J v
z ∈ End(Vz) at a point z ∈ J (M) coincides with the canonical

complex structure on the complex homogeneous space Vz ∼= O(2n)/U(n). The value of the horizontal
component J h

z ∈ End(Hz) at z coincides with the complex structure J(z) ↔ z on the space Hz,
identified with Tπ(z)M by the map π∗. Recall that the fiber π−1(p) of the bundle J (M) → M at the
point p = π(z) ∈ M consists of Hermitian structures on TpM , and we denote by J(z) the Hermitian
structure on TpM , corresponding to the point z ∈ π−1(p).

The constructed almost complex structure J 1 on J (M) converts the space J (M) into an almost
complex manifold. This structure was proposed by Atiyah–Hitchin–Singer in [12]. We shall demonstrate
now how one can use it for the construction of harmonic spheres in Riemannian manifolds.

3.4. Harmonic Spheres in Riemannian Manifolds

We start from some heuristic considerations. Recall that, according to the Penrose twistor program,
one can reduce any problem of the Riemannian geometry on a given Riemannian manifold M to some
problem of the complex geometry on the twistor space Z = J (M). If we believe in this Penrose thesis,
we may expect that harmonic spheres ϕ : S → M in M should arise from pseudoholomorphic spheres
ψ : S → (Z,J 1) as projections of these maps to M , i.e., ϕ = π ◦ ψ:

(Z,J 1)

π

��
S

ψ
;;

ϕ
//M

This is almost true. It turns out that projections of pseudoholomorphic spheres ψ : S → Z to M do
satisfy differential equations of second order on M ; however, these equations are not harmonic, but
ultrahyperbolic; in other words, harmonic equations with the “wrong” signature (n, n) instead of the
required signature (2n, 0). For this reason, if we want, justifying the Penrose program, to construct
harmonic spheres ϕ : S →M as projections of pseudoholomorphic spheres ψ : S → Z, then we should
change the definition of the almost complex structure on the twistor space Z = J (M). Namely, in terms
of the vertical-horizontal decomposition:

TJ (M) = V ⊕H

the required almost complex structure J 2 on J (M) should be defined as:

J 2 = (−J v)⊕ J h.

This almost complex structure on J (M) was introduced by Eells and Salamon (cf. [14]) and is suitable
for the twistor construction of harmonic maps.

Concerning the integrability properties of the introduced almost complex structures, we have
the following:
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Theorem 3 (Rawnsley, cf. [15]). The almost complex structure J 1 on the bundle J (M) is integrable
⇐⇒M is conformally flat, i.e., N is conformally equivalent to a flat space.

The second almost complex structure J 2 on J (M) is never integrable. We can explain this fact in
the following way. It is easy to prove, using the definition of the almost complex structure J 2, that if it
is integrable, then the local J 2-holomorphic curves f : U ⊂ C → J (M) may be only horizontal, i.e.,
their tangent planes should belong to the horizontal distribution H . On the other hand, if (J (M),J 2)

is a complex manifold, then it should be possible to issue a local complex curve on it in any complex
tangent direction.

From first glance, these results on the non-integrability of almost complex structures J 1 and J 2

may look disappointing, since non-integrable almost complex structures may be quite “bizarre”, having
no non-constant holomorphic functions, even locally. However, in our problem, we deal not with
holomorphic functions on the twistor space Z = J (M) (i.e., with holomorphic maps f : Z → C), but
with the dual object: holomorphic maps ψ : S → Z from the Riemann sphere S to Z. Such a map ψ is
holomorphic with respect to the almost complex structure J 2 on Z⇐⇒ it satisfies the Cauchy–Riemann
equation ∂̄Jψ = 0 with respect to the induced almost complex structure J := ϕ∗(J 2) on S. However,
on the complex plane C, any almost complex structure is integrable; in particular, the corresponding
∂̄-equation has many local solutions.

The next theorem explains how the twistor bundle can be used to construct harmonic spheres.

Theorem 4 (Eells–Salamon, cf. [14]). The bundle of Hermitian structures:

π : (J (M),J 2) −→M

provided with the almost complex structure J 2 is a twistor bundle in the following sense: projection
ϕ = π ◦ ψ of an arbitrary J 2-holomorphic sphere ψ : S → J (M) is a harmonic sphere in M .

Having this theorem, one can ask whether a converse statement is true. In other words, if any harmonic
sphere ϕ : S → M , is the projection of some J 2-holomorphic sphere ψ : S → J (M)? It turns out
that a map ϕ : S →M , obtained by the projection of a J 2-holomorphic sphere in J (M), is, apart from
being harmonic, also conformal. Recall that a map ϕ : S → M to a Riemannian manifold (M, g) is
conformal if g(∂′ϕ, ∂′′ϕ) = 0.

Returning to the problem, formulated above, it can be proven (cf. [15]) that any harmonic conformal
map ϕ : S → M to an oriented Riemannian manifold M is locally the projection of some
J 2-holomorphic curve ψ : U ⊂ C→ J (M).

3.5. Twistor Bundles over Riemannian Manifolds

The considered bundle of Hermitian structures J (M) → M is not a unique twistor bundle; with the
help of which, it is possible to construct harmonic maps. Other twistor bundles are usually obtained from
the bundle J (M)→M by imposing additional conditions on Hermitian structures in J (M).

For example, one may consider the Hermitian structures, compatible with orientation, and in this case,
we shall obtain the twistor bundle J +(M) → M with the fiber isomorphic to the homogeneous space
SO(2n)/U(n).
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Or, for a Kähler manifold M of dimension m, we can consider the complex Grassmann bundle:

Z := Gr(T
1,0M) −→M

with the fiber at p ∈ M given by the Grassmann manifold Gr(T
1,0
p M) of complex subspaces of

dimension r in the complex vector space T 1,0
p M . If we denote by U(M)→M the principal U(m)-bundle

of unitary frames on M , then:
Z = U(M)⊗U(m) Gr(Cm).

A key idea in the construction of different twistor bundles over Riemannian manifolds M is to choose
for a class of manifolds M , which we are interested in, an appropriate twistor bundle of complex
structures related to the geometry of the manifolds from the considered class. In the next section, we
shall introduce twistor bundles over the complex projective and Grassmann manifolds. They may be
considered as a particular case of twistor bundles over the homogeneous spaces of the form G/H . Such
twistor bundles coincide with the bundles of G-invariant complex structures on G/H .

4. Harmonic Spheres in Projective Spaces

We turn to the description of harmonic spheres ϕ : S → Pn in the n-dimensional complex projective
space Pn.

4.1. Explicit Construction of Harmonic Spheres in Pn

We present first a method of their construction, which formally is not related to the twistor theory (its
twistor interpretation will be given later in this section). This method allows one to construct harmonic
spheres S → Pn from the holomorphic spheres in Pn.

Let f : S → Pn be a holomorphic sphere in Pn. The map f is called full if its image is not contained
in any proper projective subspace in Pn. We shall associate with f the spheres fr : S → Gr+1(Cn+1) in
the Grassmann manifolds Gr+1(Cn+1) with 0 ≤ r ≤ n.

In the lower hemisphere U = U0 of S, we consider the local lift fU of the map f over U . In other
words, fU is the map U → Cn+1 \ {0}, covering f over U , so that f(z) = π(fU(z)) for z ∈ U :

Cn+1 \ {0}
π

��
U

fU
99

f
// CPn

Denote ∂α := ∂α/∂zα for α = 1, 2, . . . , and consider the subspace in Cn+1 of the form:

θr(p) := spanC{∂αfU(z) : 0 ≤ α ≤ r},

spanned by the vectors fU(z), ∂fU(z), . . . , ∂rfU(z). This subspace does not depend on the choice of the
local lift fU of the curve f and is called the osculating space of f of order r. The same construction
applies to the upper hemisphere U∞ of S.

When the point p ∈ S is changing, the dimension of the osculating space can also change, but for
a full sphere, the dimension dim θn(p) should be equal to n + 1, at least in one point p ∈ S (hence, in
its neighborhood).
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Introduce the exceptional set:
E = {p ∈ S : dim θn(p) < n+ 1}

and define a holomorphic map fr : S \ E → Gr+1(Cn+1) by setting:

fr(p) := θr(p).

The set E for a full holomorphic curve f consists of isolated points; hence, the map fr may be extended
to a holomorphic map:

fr : S → Gr+1(Cn+1)

which is called the r-th associated curve of the map f . It is evident that f0 = f , and we set, for
convenience, f−1 : M → G0(Cn+1) equal to zero.

Define for a full holomorphic sphere f : S → Pn its polar map by setting:

g := f⊥n−1 : M
fn−1−→ Gn(Cn+1)

⊥−→ G1(Cn+1) = Pn

where the second map ⊥ associates with a subspace V ∈ Gn(Cn+1) its orthogonal complement V ⊥.
The polar map g : S → Pn is an anti-holomorphic curve in Pn, which is connected with f by the
orthogonality relations:

fα ⊥ gβ for α + β ≤ n− 1,

or in terms of local lifts:
< ∂αfU , ∂

βgU >= 0 for α + β ≤ n− 1.

A construction of harmonic spheres in Pn via holomorphic spheres is given by the following:

Theorem 5 (Eells–Wood, cf. [16]). Let f : S → Pn be a full holomorphic sphere. For a given r,
0 ≤ r ≤ n, define the map ϕ : S → Pn by:

ϕ(p) = fr−1(p)⊥ ∩ fr(p),

i.e., ϕ(p) is the orthogonal complement to fr−1(p) in fr(p). The equivalent definition:

ϕ(p) = [fr−1(p)⊕ gs−1(p)]⊥ , s := n− r,

where g is the polar map of f . The so-defined map ϕ : S → Pn is full and harmonic.

Moreover, the constructed map ϕ : S → Pn is complex isotropic. This notion generalizes the
notion of conformality. Recall that a map ϕ : S → M into a Kähler manifold (M, g) is conformal
if g(∂′ϕ, ∂′′ϕ) = 0. We shall call this map complex isotropic if:

g(δα∂′ϕ, δβ∂′′ϕ) = 0

for all α, β with α + β ≥ 1, where δ is the operator, introduced in Section 1. The maps ϕ : S → Pn,
constructed in the Eells–Wood theorem, are complex isotropic.

The Eells–Wood theorem allows one to construct complex isotropic harmonic spheres ϕ : S → Pn

from full holomorphic spheres f : S → Pn. Moreover, the correspondence:{
full holomorphic sphere f : S →
Pn; number r, 0 ≤ r ≤ n

}
−→

{
full complex isotropic harmonic
spheres ϕ : S → Pn

}
,

constructed in this theorem, is bijective.
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4.2. Interpretation in Terms of Flags

We shall construct explicitly the map, associating with the pair (f, r), where f : S → Pn is a full
holomorphic sphere, the map ψ : S → Gr(T

′) where T ′ := T 1,0Pn and Gr := Gr(T
1,0Pn).

For that, we shall need an interpretation of the bundle Gr(T
1,0Pn) → Pn in terms of flag manifolds.

Define for 0 ≤ r ≤ n the flag manifold Fr as:

Fr := {(V,W ) ∈ Gr(Cn+1)×Gr+1(Cn+1) : V ⊂ W}

which is a bundle over Pn of the form:

π : Fr −→ Pn, (V,W ) 7−→ V ⊥ ∩W.

This bundle is isomorphic to the Grassmann bundle Gr(T
1,0Pn) → Pn. Indeed, the tangent space

T 1,0
w (Pn) at a point w ∈ Pn is isomorphic to the space of linear maps Hom(w,w⊥). We associate with

an r-dimensional complex subspace H in T 1,0
w (Pn) the r-dimensional complex subspace in w⊥, spanned

by the images L(w) of linear maps L ∈ H ⊂ Hom(w,w⊥). In other words, we identify:

Gr(T
1,0Pn)←→ Gr(T

⊥)

where T⊥ → Pn is the bundle, obtained from the tautological bundle T → Pn by taking the
fiber-wise orthogonal complement. However, Gr(T

⊥) can be identified with Fr with the help of the
correspondence:

In other words, we associate with a pair V ⊂ W from Fr the subspace V ⊂ Gr(Cn+1) considered
as a subspace from [w]⊥. The subspace W can be reconstructed from V ∈ Gr(T

⊥)[w] by the formula:
W = span{w, V }.

We have shown that the twistor bundle Gr(T
1,0Pn)→ Pn coincides with the flag bundle Fr → Pn.

We describe now the map:{
(f, r) where f : S → Pn is a full
holomorphic sphere

}
−→

{
holomorphic sphere
ψ : S → Fr

}
.

Namely, we associate with a full holomorphic sphere f : S → Pn the map ψ := (fr−1, fr) : S −→ Fr

where fr−1, fr are the curves, associated with f .

5. Harmonic Spheres in Grassmann Manifolds

We switch now to the twistor description of harmonic spheres in Grassmann manifolds. Here, as in
the case of harmonic spheres in Pn, the role of the twistor spaces will be played by the flag bundles.
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5.1. Flag Manifolds

We define first the flag manifolds in Cn. For that, we fix a decomposition of n into the sum of natural
numbers d = r1 + · · ·+ rm and denote r := (r1, . . . , rm).

A flag manifold F r(Cn) of type r in Cn consists of collections E = (E1, . . . , Em) of mutually
orthogonal linear subspaces Ei of dimension ri in Cn, such that Cn = E1 ⊕ · · · ⊕ Em.

By this definition, a flag is a collection of mutually orthogonal subspaces, rather than a nested
sequence of linear subspaces, associated with the standard image of a flag. However, one can easily
produce a standard flag (V1, . . . , Vm) in Cn with V1 ⊂ · · · ⊂ Vm = Cn from our collection
E = (E1, . . . , Em) by setting Vi := E1 ⊕ · · · ⊕ Ei.

In particular, for r = (r, n− r) the flag manifold:

F(r,n−r)(Cn) = {E = (E,E⊥) : dimE = r} = Gr(Cn)

coincides with the Grassmann manifold of r-dimensional subspaces in Cn.
We have the following homogeneous representation of the flag manifold:

F r(Cn) = U(n)/ U(r1)× · · · × U(rn) .

There is also another, complex homogeneous representation for this manifold:

F r(Cn) = GL(n,C)/Pr,

where P r is the parabolic subgroup of blockwise upper-triangular matrices of the form:

∗ r1 ∗ ∗ . . . ∗
r1

0 ∗ r2 ∗ . . . ∗

r2

... . . . ...
rn

0 0 0 . . . rn ∗


with blocks of dimensions ri × ri in the boxes.

These representations imply that F r(Cn) has a natural complex structure, which we denote by J 1.
Moreover, F r(Cn), provided with this complex structure, is a compact Kähler manifold.

In the particular case r = (r, n− r), we obtain the well-known homogeneous representations for the
Grassmann manifold:

Gr(Cn) = U(n)/U(r)× U(n− r) = GL(n,C)/P(r,n−r).

We construct now a series of homogeneous flag bundles over the Grassmann manifold Gr(Cn). Let
F = F r(Cn) be the flag manifold of type r = (r1, . . . , rm) in Cn with the homogeneous representation:

F = F r(Cn) = U(n)/U(r1)× · · · × U(rm) .

On the Lie algebra level, this representation corresponds to the decomposition of the complexified Lie
algebra uC(n) into the direct orthogonal sum:
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uC(n) ∼= gl(n,C) ∼= Cn ⊗ Cn ∼=
(
Ē1 ⊕ · · · ⊕ Ēm

)
⊗ (E1 ⊕ · · · ⊕ Em) ∼=

∼=
[
uC(r1)⊕ · · · ⊕ uC(rm)

]
⊕

[⊕
i<j

(
ĒiEj ⊕ ĒjEi

)]
.

(In the latter formula, we have omitted the sign of the tensor product in the expression ĒiEj and its
conjugate in order to make the formulas more visible. The same rule will be applied in the sequel.)

The above decomposition of the Lie algebra uC(n) implies that the complexified tangent space TC
o F

at the origin o ∈ F coincides with:

TC
o F =

⊕
i<j

DC
ij :=

⊕
i<j

(
ĒiEj ⊕ ĒjEi

)
.

Every component Dij may be provided with two different complex structures: for one of them, its
(1, 0)-subspace coincides with ĒiEj; for another, with ĒjEi. By the Borel–Hirzebruch theorem [17],
any U(n)-invariant almost complex structure J on F is determined by the choice of one of these two
complex structures on every Dij . The almost complex structure J 1, for which:

T 1,0
o F =

⊕
i<j

ĒiEj ,

is called canonical, and it is the only integrable almost complex structure among the introduced ones.

5.2. Flag Bundles

Fix an ordered subset σ ⊂ {1, . . . ,m}. Denote by σc the complement of σ in {1, . . . ,m}, and set
r :=

∑
i∈σ ri. We can associate with any of such subsets σ a homogeneous bundle:

πσ : F r(Cn) =
U(n)

U(r1)× . . .× U(rm)
−→ U(n)

U(r)× U(n− r)
= Gr(Cn)

by assigning: (E1, . . . , Em) 7−→ E =
⊕

i∈σ Ei.
The complexified tangent bundle TCF r(Cn) is decomposed into the direct sum of vertical and

horizontal subbundles. Namely, the vertical subspace at the origin coincides with
⊕
i,j

DC
ij , where i < j

and either i, j ∈ σ or i, j ∈ σc. Respectively, the horizontal subspace at the origin is equal to
⊕
i,j

DC
ij ,

where i < j and either i ∈ σ, j ∈ σc or i ∈ σc, j ∈ σ.
We introduce by analogy with Eells–Salamon structure from Section 3 an U(n)-invariant almost

complex structure J 2 on F r(Cn), setting it equal to J 1 on horizontal tangent vectors and −J 1 on
vertical tangent vectors.

5.3. Twistor Construction of Harmonic Spheres in Grassmannians

Consider the trivial bundle S × Cn := S × Cn → S, provided with the standard Hermitian metric
on Cn. Any subbundle E ⊂ S × Cn of rank r defines a map ϕE : S −→ Gr(Cn) by setting:
ϕE(p) = the fiber Ep at p ∈ S. Conversely, any map ϕ : S → Gr(Cn) defines a subbundleE ⊂M×Cn

of rank r.



Mathematics 2015, 3 62

For a smooth sphere ϕ : S → Gr(Cn) in the Grassmannian Gr(Cn), we denote by π and π⊥ the
orthogonal projections of S ×Cn onto the subbundle E and its orthogonal complement E⊥. The bundle
E is provided with the complex KM-structure, which is determined by the ∂̄-operator:

∂′′E = π ◦ ∂

∂z
◦ π.

The inverse image ϕ−1
E (TCGr(Cn)) of the complexified tangent bundle of the Grassmannian under the

map ϕE admits a decomposition:

ϕ−1
E (TCGr(Cn)) ∼= ĒE⊥ ⊕ E⊥E .

In terms of this decomposition, the differential of ϕE has local components:

A′E := π⊥ ◦ ∂

∂z
◦ π , A′′E := π⊥ ◦ ∂

∂z̄
◦ π .

(In the sequel, we sometimes omit the sign ◦ to simplify the formulas.) In particular, a bundleE ⊂ S×Cn

is holomorphic ⇐⇒ A′′E = 0, and in this case, the complex KM-structure on E coincides with the
complex structure, induced from S × Cn. The bundle A′E ∈ Hom(E,E⊥) is holomorphic with respect
to KM-structures on E and E⊥.

In general, we call a bundle E ⊂ S × Cn harmonic if:

A′E ◦ ∂′′E = ∂′′E⊥ ◦ A
′
E .

The harmonicity of E is equivalent to the harmonicity of the map ϕE : S → Gr(Cn). Note also that E
is harmonic iff its orthogonal complement E⊥ is harmonic.

In a more general way, consider an arbitrary collection E = (E1, . . . , Em) of mutually orthogonal
subbundles Ei in S×Cn of rank ri with r1 + . . .+ rm = n, which generates a decomposition of S×Cn

into the direct orthogonal sum:

S × Cn =
n⊕
i=1

Ei .

We call such a collection of subbundles E = (E1, . . . , Em) the moving flag on S. It determines, in the
same way as before, a map ψE : S → Fr1...rm = F by assigning to a point p ∈ S the flag, defined
by the subspaces (E1,p, . . . , Em,p). Conversely, any smooth map ψ : S → F determines a moving flag
E = (E1, . . . , Em), where Ei = ψ−1Ti is the pull-back of a natural tautological bundle Ti → Fr: the
fiber of Ti at E ∈ F coincides, by definition, with the subspace Ei for 1 ≤ i ≤ m.

As in the Grassmann case, the differential ψE is determined locally by the components:

A′ij = πi ◦
∂

∂z
◦ πj , A′′ij = πi ◦

∂

∂z̄
◦ πj ,

where πi : S × Cn → Ei is the orthogonal projection.

Theorem 6 (Burstall–Salamon, cf. [18]). The homogeneous flag bundle:

πσ : (F r(Cn),J 2) −→ Gr(Cn)

is a twistor bundle, i.e., for any J 2-holomorphic map ψ : S → F r(Cn), its projection ϕ = πσ ◦ ψ :

S → Gr(Cn) is harmonic.
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The converse of the Theorem 6 is also true.

Theorem 7 (Burstall, cf. [19]). Any harmonic map ϕ : S → Gr(Cn) can be obtained as the projection of
a J 2-holomorphic map ψ : S → F r(Cn) with respect to some twistor bundle πσ : F r(Cn)→ Gr(Cn).

6. Harmonic Spheres in the Hilbert–Schmidt Grassmannian

We switch now to the case of infinite-dimensional Grassmann manifolds and try to extend to this case
the methods developed for finite-dimensional Grassmannians in the previous Section.

6.1. Hilbert–Schmidt Grassmannian

We start from the definition of the Hilbert–Schmidt Grassmannian GrHS(H) of a complex (separable)
Hilbert space H . We take for a model of this Hilbert space the space L2

0(S1,C) of square integrable
complex-valued functions on the circle S1 with zero average over S1.

Suppose that H has a polarization, i.e., a decomposition:

H = H+ ⊕H−
into the direct orthogonal sum of infinite-dimensional closed subspaces. In the case of H = L2

0(S1,C),
one can take for such subspaces:

H± = {γ ∈ H : γ(z) =
∑
±k>0

γkz
k} .

Any bounded linear operator A ∈ L(H) with respect to the given polarization can be written in the
block form:

A =

(
a b

c d

)
=

(
a : H+ → H+ , b : H− → H+

c : H+ → H− , d : H− → H−

)
.

Denote by GL(H) the group of linear bounded operators on H , having a bounded inverse, and
introduce the Hilbert–Schmidt group GLHS(H), consisting of operators A ∈ GL(H), for which the
“off-diagonal” terms b and c are Hilbert–Schmidt operators. In other words, the group GLHS(H) consists
of operators A ∈ GL(H), for which the “off-diagonal” terms b and c are “small” with respect to the
“diagonal” terms a and d. We denote by UHS(H) the intersection of GLHS(H) with the group U(H) of
unitary operators in H .

As in the finite-dimensional situation, there is a Grassmann manifold GrHS(H), called the
Hilbert–Schmidt Grassmannian, associated with the group GLHS(H).

The Hilbert–Schmidt Grassmannian GrHS(H) is the set of all closed subspaces W ⊂ H , such that
the orthogonal projection pr+ : W → H+ is a Fredholm operator, and the orthogonal projection pr− :

W → H− is a Hilbert–Schmidt operator. Equivalently: a subspace W ∈ GrHS(H) iff it coincides with
the image of a linear operator w : H+ → H , such that w+ := pr+ ◦ w is a Fredholm operator and
w− := pr− ◦ w is a Hilbert–Schmidt operator.

In other words, the Hilbert–Schmidt Grassmannian GrHS(H) consists of the subspaces W ⊂ H ,
which differ “little” from the subspace H+ in the sense that the projection pr+ : W → H+ is “close” to
an isomorphism and the projection pr− : W → H− is “small”.

We have the following homogeneous space representation of: GrHS(H):
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GrHS(H) = UHS(H)/ U(H+)× U(H−) .

Since UHS(H) acts transitively on the Grassmannian GrHS(H), we can construct an UHS(H)-invariant
Kähler metric on GrHS(H) from an inner product on the tangent space TH+GrHS(H) at the origin
H+ ∈ GrHS(H), invariant under the action of the isotropy subgroup U(H+)×U(H−). The tangent space
TH+GrHS(H) coincides with the space of Hilbert–Schmidt operators HS(H+, H−), and the invariant
inner product on it is given by the formula:

(A,B) 7−→ Re
{

tr(AB†)
}
, A,B ∈ HS(H+, H−) .

Note that the imaginary part of the complex inner product tr(AB†) determines a non-degenerate invariant
2-form on TH+GrHS(H), which extends to an UHS(H)-invariant symplectic structure on GrHS(H). Hence,
we have a Kähler structure on GrHS(H), which makes it a Kähler Hilbert manifold.

The evident difficulty, related to the extension of the techniques, developed for finite-dimensional
Grassmannians, to the case of GrHS(H), is that the subspaces W ∈ GrHS(H) are infinite-dimensional.
In this sense, they all have the same infinite “dimension”, which does not allow one to compare them.
However, there is a replacement of the notion of dimension, which is more helpful for the study of
such subspaces. Namely, one can compare them by their “relative dimension”, called also the “virtual
dimension”.

In more detail, the manifold GrHS(H) has a countable number of connected components, numerated
by the index of the Fredholm operator w+ for a subspace W ∈ GrHS(H), coinciding with the image of
a linear operator w : H+ → H . We say that a subspace W has the virtual dimension d, if the index of
w+ is equal to d. Denote by Gr(H) the component of GrHS(H), consisting of subspaces W of virtual
dimension r. Then, we have the following decomposition of GrHS(H) into the disjoint union of its
connected components Gr(H):

GrHS(H) =
⋃
r

Gr(H) .

Due to this decomposition, the study of harmonic maps of Riemann surfaces into GrHS(H) is reduced to
the study of harmonic maps into Grassmannians Gr(H) of virtual dimension r, which may be carried on
along the same lines, as in the case of the Grassmann manifold Gr(Cn).

6.2. Harmonic Spheres in Hilbert–Schmidt Grassmannian

Denote by S × H := S × H → S the trivial bundle where H is a complex Hilbert space provided
with polarization. We consider the subbundles E ⊂ S ×H with fibers Ep ∈ GrHS(H) for p ∈ S. As for
finite-dimensional Grassmannians, any bundle E of this type defines a map ϕE : S −→ GrHS(H), and
conversely, any map ϕ : S → GrHS(H) defines a subbundle E ⊂ S × GrHS(H).

Consider a smooth sphere in the Grassmannian GrHS(H). Denote by π and π⊥ the orthogonal
projections of S × H onto the subbundle E and its orthogonal complement E⊥, respectively. The
bundle E is provided with the complex KM-structure, which is determined by the ∂̄-operator:

∂′′E = π ◦ ∂

∂z̄
◦ π.
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The inverse image ϕ−1
E (TCGrHS(H)) of the complexified tangent bundle of GrHS(H) under the map ϕE

admits the decomposition:
ϕ−1
E (TCGrHS(H)) ∼= EE⊥ ⊕ E⊥E .

In terms of this decomposition, the differential of ϕE has local components:

A′E := π⊥ ◦ ∂

∂z
◦ π , A′′E := π⊥ ◦ ∂

∂z̄
◦ π .

In particular, a bundle E ⊂M ×H is holomorphic iff A′′E = 0, and in this case, the KM-structure on E
coincides with the complex structure, induced from M ×H . Then:

0 = π⊥
[
∂

∂z
(π + π⊥)

∂

∂z̄
− ∂

∂z̄
(π + π⊥)

∂

∂z

]
π =

= A′E∂
′′
E + ∂′E⊥A

′′
E − A′′E∂′E − ∂′′E⊥A

′
E = A′E∂

′′
E − ∂′′E⊥A

′
E .

In other words, A′E ∈ Hom(E,E⊥) is holomorphic with respect to the KM-structures on E and E⊥.
As in the finite-dimensional situation, we call a bundle E ⊂M ×H harmonic if:

A′E ◦ ∂′′E = ∂′′E⊥ ◦ A
′
E

and the harmonicity of E is equivalent to the harmonicity of the map ϕE : S → Gr(H).
Now, we generalize this situation to the maps into infinite-dimensional flag manifolds.
Introduce first the Hilbert–Schmidt flag manifolds. For that, fix an n-tuple r = (r1, . . . , rn) of

integers. The Hilbert–Schmidt flag manifold Fr(H) consists of the flags of the form:

E ≡ (E1, . . . Em)

where Ek ≡ Win, El ≡ Wout are closed infinite-dimensional subspaces in H and:

E1, . . . , Ek−1, Ek+1, . . . , El−1, El+1, . . . , Em

are finite-dimensional subspaces having the following properties:

1. the projection pr+ : Win → H+ is a Fredholm operator of index rk, while the projection pr− :

Win → H− is a Hilbert–Schmidt operator;
2. the projection pr− : Wout → H− is a Fredholm operator of index rl, while the projection pr+ :

Wout → H+ is a Hilbert–Schmidt operator;
3. Ei with i = 1, . . . , k− 1, k+ 1, . . . , l− 1, l+ 1, . . . ,m are ri-dimensional vector subspaces in H;
4. all subspaces Ei with i = 1, . . . ,m are pairwise orthogonal, and their direct sum is equal to H:
E1 ⊕ . . .⊕ Em = H .

To simplify the notation, we say that E = (E1, . . . Em) is a virtual flag of virtual dimension
r = (r1, . . . , rm) having in mind that rk (resp. rl) are integers, equal to the virtual dimension of
Ek = Win (resp. El = Wout), while other ri’s are positive integers, equal to the dimensions of Ei’s for
i 6= k, l.

The tangent space to Fr(H) at the origin, as in the finite-dimensional case, is the direct sum of four
different terms:
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TC(Fr(H)) ∼=
⊕

1≤i,j 6=k,l,i<j≤m

[
EiEj ⊕ EjEi

]
⊕

⊕
1≤i≤m,i 6=k

[
W inEi ⊕ EiWin

]
⊕

⊕
1≤i≤m,i 6=l

[
W outEi ⊕ EiWout

]
⊕
[
W inWout ⊕W outWin

]
.

The tangent space to GrHS(H) looks the same if we set Ei = 0 for all Ei’s, except for i = k, l.
Generalizing the finite-dimensional situation, we consider an arbitrary collection E = (E1, . . . , Em)

of mutually orthogonal subbundles Ei in M ×H of virtual dimension r = (r1, . . . , rm), generating the
decomposition of S ×H into the direct orthogonal sum:

S ×H =
n⊕
i=1

Ei.

We call such a collection of subbundles E = (E1, . . . , Em) the moving flag on S. It determines, in the
same way as before, a map ψE : S → Fr(H) ≡ F by assigning to a point p ∈ S the flag defined
by the subspaces (E1,p, . . . , Em,p). Conversely, any smooth map ψ : S → F determines a moving flag
E = (E1, . . . , Em), where Ei = ψ−1Ti is the pull-back of a natural tautological bundle Ti → Fr(H): the
fiber of Ti at E ∈ F coincides, by definition, with the subspace Ei for 1 ≤ i ≤ m.

As for finite-dimensional Grassmannians, the differential ψE is determined locally by the components:

A′ij = πi ◦
∂

∂z
◦ πj , A′′ij = πi ◦

∂

∂z̄
◦ πj ,

where πi : S ×H → Ei is the orthogonal projection. Note that, by construction, A′′ij = −(A′ji)
∗.

Each of the subbundles Ei of the trivial bundle S × H is provided with the KM-structure, which
coincides with the complex structure, induced from S × H . Furthermore, the components A′ij , A

′′
ij

satisfy the same harmonicity and holomorphicity conditions as in the finite-dimensional case.
We introduce now an almost complex structure on the Hilbert–Schmidt flag bundle Fr(H), analogous

to the almost complex structure J 2
σ . As in the finite-dimensional situation, an almost complex structure

on Fr(H) is fixed by choosing the (1, 0)-component in each of the summands of:

TC(Fr(H)) ∼=
⊕

1≤i<j≤m

[
EiEj ⊕ EjEi

]
. (3)

To define an almost complex structure J 2
σ , we fix an ordered subset σ ⊂ {1, . . . ,m}. Then, for the

associated almost complex structure J 2
σ , we choose for i, j ∈ {1, . . . ,m}, i < j, the (1, 0)-component

in the (i, j)-summand in (3), equal to EjEi if i, j ∈ σ or i, j /∈ σ and to EiEj if i ∈ σ, j /∈ σ or i /∈ σ,
j ∈ σ.

We construct now the Hilbert–Schmidt flag bundle over the Hilbert–Schmidt Grassmannian. Suppose
that σ is a fixed ordered subset in {1, . . . ,m}, and set r =

∑
i∈σ ri. Then, we define the Hilbert–Schmidt

flag bundle:
πσ : Fr(H) −→ Gr(H)

by mapping:
E = (E1, . . . , Em) 7−→ E :=

⊕
i∈σ

Ei.

With this definition, we have the following:
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Theorem 8 (Beloshapka–Sergeev, cf. [2]). Let σ be an ordered subset in {1, . . . ,m}, such that k ∈ σ,
l /∈ σ. Then, the map πσ of the Hilbert–Schmidt flag manifold Fr(H), provided with the almost complex
structure J 2

σ to Gr(H):
πσ : Fr(H) −→ Gr(H)

is a twistor bundle, i.e., for any J 2
σ -holomorphic map ψ : S → Fr(H), its projection ϕ = πσ ◦ ψ : S →

Gr(H) is harmonic.

The converse of this theorem is also true.

Theorem 9 (Beloshapka–Sergeev, cf. [2]). Let ϕ : S → Gr(H) be a harmonic sphere. Then, there exist
a Hilbert–Schmidt flag bundle:

πσ : Fr(H) −→ Gr(H)

and a J 2
σ -holomorphic map ψ : S → Fr(H), such that ϕ coincides with the projection πσ ◦ ψ of the

map ψ.

7. Harmonic Maps into Loop Spaces

We can apply the above results to the study of harmonic maps into the loop spaces ΩG of compact
Lie groups G by embedding these loop spaces into the Hilbert–Schmidt Grassmannian. At the end of
this section, we explain, why this case is particularly interesting for us.

7.1. Loop Spaces

Denote by LG = C∞(S1, G) the loop group of G, i.e., the space of C∞-smooth maps S1 → G,
where S1 is identified with the unit circle in C. It is a Lie–Frechet group with respect to the pointwise
multiplication, modeled on the loop algebra Lg = C∞(S1, g), where g is the Lie algebra of the group G.
The loop space ΩG of the group G (or the based loop space) is the homogeneous space of the group LG
of the form:

ΩG = LG/G

where the group G in the denominator is identified with the subgroup of constant maps S1 → g0 ∈ G.
Note that the loop space ΩG may be identified with the space of based maps in LG, sending 1 ∈ S1 to
the unit e of the group G and, so, inheriting a Frechet manifold structure from the loop group LG.

The loop group LG acts on ΩG by left translations. Denote by o the origin in ΩG, represented by the
class of constant maps: o = [G]. The tangent space of ΩG at the origin o is identified with the space
Ωg = Lg/g. We represent vectors of the tangent space To(ΩG) by their Fourier series: an arbitrary
vector ξ of the complexified tangent space TC

o (ΩG) = To(ΩG)⊗ C, having a Fourier decomposition of
the form:

ξ =
∑
k 6=0

ξke
ikθ

where the coefficients ξk belong to the complexified Lie algebra gC. A vector ξ ∈ To(ΩG) iff ξ−k = ξ̄k.
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The loop space ΩG has a natural symplectic structure, invariant under the action of the loop group
LG on ΩG. Due to the invariance, it is sufficient to define its restriction to To(ΩG) = Ωg. For that, we
fix an invariant inner product < · , · > on the Lie algebra g and consider a two-form ω on Lg of the form:

ω(ξ, η) =
1

2π

∫ 2π

0

< ξ(θ), η′(θ) > dθ , ξ, η ∈ Lg .

This formula defines a left-invariant closed two-form on LG, subject to the condition: ω(ξ, η) = 0 iff at
least one of the maps ξ, η is constant. Hence, it can be pushed down to a left-invariant two-form on Ωg,
which is non-degenerate and closed and, so, generates a symplectic structure on ΩG (cf. [20,21]).

An invariant complex structure on ΩG is provided by the “complex” representation of ΩG = LG/G

as a homogeneous space of the complex Lie–Frechet group LGC = C∞(S1, GC), where GC is the
complexification of the Lie group G. This representation has the form:

ΩG = LGC/L+GC , (4)

where L+GC = Hol(∆, GC) is a subgroup of LGC, consisting of the maps S1 → GC, which can be
extended smoothly to holomorphic maps of the disc ∆ := {|z| < 1} → GC.

The invariant complex structure J1 on ΩG, induced by the complex representation (4), has a simple
meaning in terms of Fourier series. Namely, the restriction of J1 to the complexified tangent space
TC
o (ΩG) = ΩgC at the origin is given by the following formula:

ξ =
∑
k 6=0

ξke
ikθ 7−→ J1ξ = −i

∑
k>0

ξke
ikθ + i

∑
k<0

ξke
ikθ .

The introduced symplectic and complex structures on ΩG are compatible in the sense that
ω(J1ξ, J1η) = ω(ξ, η) for all ξ, η ∈ To(ΩG), and the symmetric form:

g1(ξ, η) := ω(ξ, J1η) on To(ΩG)× To(ΩG)

is positive definite. Therefore, this form extends to an invariant Riemannian metric g1 on ΩG (due to the
invariance of ω and J1). In other words, the loop space ΩG is a Kähler Frechet manifold, provided with
the Kähler metric g1.

7.2. Harmonic Spheres in Loop Spaces

We shall study harmonic spheres in the loop spaces ΩG by embedding isometrically ΩG into the
Hilbert–Schmidt Grassmannian GrHS(H).

Assume that G is a subgroup of U(n) for some n. Then, we have an isometric embedding:

LG −→ UHS(H) ,
given by the map:

γ ∈ LG = C∞(S1, G) 7−→Mγ ∈ UHS(H) ,

where the multiplication operator Mγ is defined by:

f ∈ H = L2
0(S1,Cn) 7−→ (Mγf)(z) := γ(z)f(z) for z ∈ S1 .

It is easy to check that Mγ ∈ UHS(H) if γ is smooth.
The constructed embedding of the loop group LG into UHS(H) induces an isometric embedding:

ΩG −→ GrHS(H) .

Therefore, we can consider harmonic spheres S → ΩG as taking values in GrHS(H), thus reducing their
study to the study of harmonic spheres S → GrHS(H), considered above.
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8. Yang–Mills Fields and Instantons

8.1. Yang–Mills Equations

LetG be a compact Lie group (gauge group). A gauge potential on R4 is a connectionA in a principal
G-bundle over R4 identified with a one-form on R4 with values in the Lie algebra g of G. In the case
when G coincides with the group U(n) of unitary (n× n)-matrices, this form can be written as:

A =
4∑

µ=1

Aµ(x)dxµ

where x = (x1, x2, x3, x4) are coordinates on R4 and coefficientsAµ(x) are smooth functions on R4 with
values in the algebra of skew-Hermitian (n× n)-matrices.

A gauge G-field F is the curvature of the connection A given by the two-form on R4 with values in
the Lie algebra g:

F = DA = dA+
1

2
[A,A]

where D : Ω1(R4, g)→ Ω2(R4, g) is the exterior covariant derivative generated by the connection A. In
the case G = U(n), this form is written as:

F =
4∑

µ,ν=1

Fµν(x)dxµ ∧ dxν

where:
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

with ∂µ := ∂/∂xµ, µ = 1, 2, 3, 4.
Introduce the Yang–Mills action functional given by the formula:

S(A) =
1

2

∫
R4

‖F‖2d4x

where the norm ‖F‖ is computed with the help of a given fixed invariant inner product on the Lie algebra
g. In the case G = U(n), one can take for such a product 〈X, Y 〉 := −tr(XY ). In this case, the formula
for the action S(A) will be rewritten in the form:

S(A) = −1

2

∫
R4

tr(∗F ∧ F )

where ∗ is the Hodge star-operator on R4.
The functional S(A) is invariant under gauge transformations given by the smooth mappings g : R4 →

G, tending to the unit e ∈ G at infinity. Under the action of these transformations, gauge potentials and
fields transform according to the following formulas:

A 7−→ Ag := g−1dg + g−1Ag, g : F 7−→ Fg := g−1Fg

where the group G acts on its Lie algebra g by the adjoint representation. In the case G = U(1), a gauge
transform is given by the multiplication by the gauge factor g(x) = eiθ(x), so that the corresponding
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gauge potential transformation coincides with the gradient transform A 7→ A − idθ, while the gauge
field F does not change.

A gauge field F is called the Yang–Mills field if it is extremal for the action functional S(A)

and has finite Yang–Mills action S(A) < ∞. The corresponding gauge potential A is called the
Yang–Mills connection.

The Euler–Lagrange equation for the functional S(A) have the form:

D∗F = 0

where D∗ : Ω2(R4, g) → Ω1(R4, g) is the operator formally adjoint to D. In the case R4, it coincides
with D∗ = − ∗ D∗, where ∗ is the Hodge operator, so that the Euler–Lagrange equations for S(A) are
rewritten in the form:

D ∗ F = 0.

The obtained equation is called the Yang–Mills equation and is often supplemented with the
Bianchi identity:

DF = 0

which is satisfied automatically for gauge fields F .
A gauge field F is called self-dual (resp. anti-self-dual) if:

∗F = F (resp. ∗ F = −F ).

The Bianchi identity implies immediately that solutions of the duality equations:

∗F = ±F

satisfy automatically the Yang–Mills equation.
If we write down the form F as the sum:

F = F+ + F−,

where F± = 1
2
(∗F ± F ), then the formula for the Yang–Mills action will rewrite as:

S(A) =
1

2

∫
R4

(
‖F+‖2 + ‖F−‖2

)
d4x.

For the gauge fields F with finite Yang–Mills action, the quantity:

k(A) =
1

8π2

∫
R4

(
−‖F+‖2 + ‖F−‖2

)
d4x

turns out to be an integer-valued topological invariant called the topological charge of the field F . If
we extend, using the Uhlenbeck compactness theorem, a connection A with finite Yang–Mills action to
a connection in some associated vector bundle E over the compactification S4 of R4, then this invariant
will be expressed in terms of Chern classes of this bundle. For example, in the case of G = SU(2), it
coincides with the second Chern class.

Comparing the above formulas for the action S(A) and topological charge k(A), we arrive at
the estimate:

S(A) ≥ 4π2|k(A)|.
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From the same formulas, we see that the minimum of the action S(A) on the topological class of gauge
fields with finite Yang–Mills action and fixed topological charge k(A) = k is equal to 4π2|k| and is
attained for k > 0 on anti-selfdual fields, while for k < 0, it is attained on self-dual fields.

An anti-self-dual field with finite Yang–Mills action is called the instanton and a self-dual field with
finite Yang–Mills action is called the anti-instanton.

Instantons and anti-instantons realize the local minima of the action S(A); however, this functional
has also non-minimal critical points (cf. [22–25]).

8.2. Yang–Mills Moduli Spaces

One of the main goals of Yang–Mills theory is the investigation of the structure of the moduli space
Mk of Yang–Mills fields with fixed topological charge k given by the quotient:

Mk =
{Yang–Mills fields with fixed topological charge k}

{gauge transforms}

We are still far from the complete understanding of the structure of this space; however, an analogous
problem for the instantons, i.e., the description of the moduli space of instantons on R4, was solved by
Atiyah, Drinfeld, Hitchin and Manin (cf. below) with the help of the twistor approach presented in the
next section.

The moduli space Nk of instantons with the fixed topological charge k, which is defined as:

Nk =
{G-instantons on R4 with topological charge k}

{gauge transforms}
,

admits the following interpretation in terms of the Hopf bundle P3\P1
∞ → R4. According to the theorem

of Atiyah–Ward [3], there exists a bijective correspondence between:{
moduli space of
G-instantons on R4

}
←→

{
equivalence classes of based holomorphic
GC-bundles over CP3, trivial on π-fibers

}
.

Here, GC-bundle over CP3 is called based if it is provided with a fixed trivialization on P1
∞ = π−1(∞).

Using this twistor interpretation of instantons, Atiyah, Drinfeld, Hitchin and Manin gave a full
description of the moduli space of instantons known under the name of ADHM-construction (cf. [4]).

8.3. Twistor Description of Yang–Mills Fields

In order to extend these results to arbitrary Yang–Mills fields, we would like to have the twistor
interpretation of these fields. Such an interpretation was proposed in the papers by Manin [5], Witten [6]
and Isenberg-Green-Yasskin [7]. To present their construction, denote by (P3)∗ the dual projective space
identified with the space of complex projective planes P2 in P3. Consider the space F of flags in P3 ×
(P3)∗, consisting of pairs: (point; plane, containing this point). In homogeneous coordinates ([z]; [ξ]) on
P3 × (P3)∗, this space is identified with the subspace:

Q = {([z]; [ξ]) : (z, ξ) = 0}

where (·, ·) denotes the natural pairing between P3 and (P3)∗. The twistor construction, mentioned
above, gives a description of holomorphic Yang–Mills fields on the complexified space CS4 identified
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with the Grassmann manifold G1(P3) ≡ G2(C4). Namely, such fields correspond to the equivalence
classes of holomorphic GC-bundles over Q, satisfying the following two conditions: (1) they are trivial
on all quadrics of the form:

Q(l) = {(point z; projective plane p, containing this point) : z ∈ l ⊂ p}

where l is a projective line in P3; (2) they extend to holomorphic bundles on the third infinitesimal
neighborhood Q(3) of the subspace Q in P3 × (P3)∗.

9. Atiyah–Donaldson Construction and Harmonic Spheres Conjecture

9.1. Atiyah–Donaldson Theorem

There exists another twistor description of the moduli space of instantons, given by Atiyah [8] and
Donaldson [9], which may be considered as a two-dimensional reduction of the Atiyah–Ward theorem.
According to Atiyah–Donaldson, there exists a bijective correspondence between:{

moduli space of
G-instantons on R4

}
←→

{
equivalence classes of based holomorphic
GC-bundles over P1 × P1, trivial on P1

∞ ∪ P1
∞

}
.

Here,GC-bundle over P1×P1 is called based if it is provided with a fixed trivialization at∞ ≡ (∞,∞) ∈
P1 × P1, and we denote by P1

∞ ∪ P1
∞ the union of two projective lines at infinity of the form:

P1
∞ ∪ P1

∞ = (P1 ×∞) ∪ (∞× P1).

Atiyah has proposed an interpretation of the right-hand side of the correspondence, established by the
Atiyah–Donaldson theorem, in terms of the holomorphic spheres in the loop space ΩG.

The theorem of Atiyah asserts that there exists a 1–1 correspondence between:
equivalence classes of based holomorphic
GC-bundles over P1 × P1, trivial on the union
P1
∞ ∪ P1

∞

←→


based holomorphic
spheres f : S →
ΩG

 .

Here, a map S → ΩG is called based if it sends the point∞ ∈ S into the class [G] ∈ ΩG.
The two given theorems of Atiyah and Donaldson imply that there exists a 1–1

correspondence between:{
moduli space of
G-instantons on R4

}
←→

{
based holomorphic spheres
f : S → ΩG

}
.

9.2. Harmonic Spheres Conjecture

The Atiyah–Donaldson theorem establishes a 1–1 correspondence between the local minima of
two functionals, namely:{

Yang–Mills action on gauge
G-fields on R4

}
and

{
energy of smooth
spheres in ΩG

}
with local minima given respectively by:



Mathematics 2015, 3 73

{
instantons and
anti-instantons

}
←→


holomorphic and
anti-holomorphic
spheres

 .

If we replace here the local minima by arbitrary critical points of the corresponding functionals, then we
arrive at the harmonic spheres conjecture, asserting that a 1–1 correspondence should exist between:

moduli space of
Yang–Mills G-fields on
R4

←→
{

based harmonic spheres
f : S → ΩG

}
.

The described transition from the local minima to the critical points of the functionals may be
also considered as a kind of the “realification” procedure. Indeed, if we replace the smooth spheres
in the right-hand side of the correspondence by smooth functions f : C → C, then the described
procedure will reduce to the trivial transition from holomorphic and anti-holomorphic functions to
arbitrary harmonic functions (being the sums of holomorphic and anti-holomorphic functions). In the
case of smooth spheres in the loop space ΩG, this transition from holomorphic and anti-holomorphic
spheres to harmonic ones becomes non-trivial due to the non-linearity of Euler–Lagrange equations for
the energy functional on spheres.

Apart from the Atiyah–Donaldson theorem and given heuristic considerations, there is one more piece
of evidence in favor of the harmonic spheres conjecture. Namely, in the paper by Friedrich and
Habermann [26], it is proven that there exists a 1–1 correspondence between the moduli space of
Yang–Mills fields on the two-dimensional sphere S2 and harmonic loops in ΩG, being the critical points
of the energy functional on loops. Recall that the energy of a smooth loop γ ∈ ΩG is given by the
Dirichlet integral of the form:

E(γ) =
1

2

∫
S1

‖γ−1(λ)γ′(λ)‖2dλ

where ‖ ·‖ is the invariant norm on the Lie algebra g of the group G. The critical points of this functional
are called the harmonic loops in ΩG.

Representing the space R4 as the product R2 ×R2, we can consider Friedrich–Habermann’s result as
a variant of the harmonic spheres conjecture “at a point” establishing a 1–1 correspondence between:{

moduli space of Yang–Mills
G-fields on R2

}
←→ {harmonic loops in ΩG } .

Therefore, it is not surprising that the Friedrich–Habermann construction uses, instead of the Hopf bundle
P3 → S4, being the complex analogue of the Hopf bundle S7 → S4, another Hopf bundle S3 → S2.

9.3. Twistor Version

Unfortunately, a direct extension of the Atiyah–Donaldson proof to the harmonic case is impossible,
because this proof is purely holomorphic. One can however try to reduce the proof of the harmonic
spheres conjecture to the holomorphic case by “pulling-up” both parts of the correspondence in the
conjecture to their twistor spaces.

The twistor version of the harmonic spheres conjecture should establish a 1–1 correspondence
between holomorphic bundles over P3 × (P3)∗, which are trivial on the quadrics Q(l) and extend
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holomorphically to the third infinitesimal neighborhood of the subspaceQ ⊂ P3×(P3)∗ and holomorphic
spheres in the virtual flag bundles Fl(H). Unfortunately, these two descriptions are given in different
terms, so the first step in the proof of the twistor version of the harmonic spheres conjecture should be
the unification of these descriptions.

We note in conclusion that the harmonic spheres conjecture will imply the existence of
a Bäcklund-type procedure allowing one to construct arbitrary Yang–Mills fields by the successive
adding of instantons and anti-instantons. In particular, this would mean that there exist many more
non-minimal Yang–Mills fields than instantons and anti-instantons separately.
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