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Abstract: The multiple zeta values (MZVs) possess a rich algebraic structure of algebraic
relations, which is conjecturally determined by two different (shuffle and stuffle) products
of a certain algebra of noncommutative words. In a recent work, Bachmann constructed a
q-analogue of the MZVs — the so-called bi-brackets — for which the two products are dual
to each other, in a very natural way. We overview Bachmann’s construction and discuss the
radial asymptotics of the bi-brackets, its links to the MZVs, and related linear (in)dependence
questions of the q-analogue.
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Apart from the “standard” q-model of the multiple zeta values (MZVs),

ζq(s1, . . . , sl) := (1− q)s1+···+sl
∑

n1>···>nl>0

q(s1−1)n1+···+(sl−1)nl

(1− qn1)s1 · · · (1− qnl)sl
,

introduced in the earlier works [1,2], the different q-version

zq(s1, . . . , sl) := (1− q)s1+···+sl
∑

n1>···>nl>0

qn1

(1− qn1)s1 · · · (1− qnl)sl

has received a special attention in the more recent work [3] by Castillo Medina, Ebrahimi-Fard and
Manchon. One of the principal features of the latter q-MZVs is that they are well defined for any
collection of integers s1, . . . , sl, so they do not require regularisation as the former q-MZVs and the
MZVs themselves.
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In the other recent work [4,5] Bachmann and Kühn introduced and studied a different q-analogue of
the MZVs, namely,

[s1, . . . , sl] :=
1

(s1 − 1)! · · · (sl − 1)!

∑
n1>···>nl>0
d1,...,dl>0

ds1−11 · · · dsl−1l qn1d1+···+nldl

=
1

(s1 − 1)! · · · (sl − 1)!

∑
m1,...,ml>0
d1,...,dl>0

ds1−11 · · · dsl−1l q(m1+···+ml)d1+(m2+···+ml)d2+···+mldl . (1)

The series are generating functions of multiple divisor sums, called (mono-)brackets, with the
Q-algebra spanned by them denoted byMD. Note that the q-series (1) can be alternatively written

[s1, . . . , sl] =
1

(s1 − 1)! · · · (sl − 1)!

∑
n1>···>nl>0

Ps1−1(q
n1) · · ·Psl−1(q

nl)

(1− qn1)s1 · · · (1− qnl)sl
,

where Ps−1(q) are the (slightly modified) Eulerian polynomials:

Ps−1(q)

(1− q)s
=

(
q

d

dq

)s−1
q

1− q
=
∞∑
d=1

ds−1qd.

Since Ps−1(1) = (s− 1)! it is not hard to verify that

lim
q→1−

(1− q)s1+···+sl [s1, . . . , sl] = ζ(s1, . . . , sl) :=
∑

n1>···>nl>0

1

ns1
1 · · ·n

sl
l

. (2)

More recently [6] Bachmann introduced a more general model of the brackets[
s1, . . . , sl

r1, . . . , rl

]
:=

1

r1! (s1 − 1)! · · · rl! (sl − 1)!

∑
n1>···>nl>0
d1,...,dl>0

nr1
1 d

s1−1
1 · · ·nrl

l d
sl−1
l qn1d1+···+nldl

=
1

r1! (s1 − 1)! · · · rl! (sl − 1)!

∑
n1>···>nl>0

nr1
1 Ps1−1(q

n1) · · ·nrl
l Psl−1(q

nl)

(1− qn1)s1 · · · (1− qnl)sl
, (3)

which he called bi-brackets, in order to describe, in a natural way, the double shuffle relations of these
q-analogues of MZVs. Note that the stuffle (also known as harmonic or quasi-shuffle) product for the both
models (1) and (3) in Bachmann’s work comes from the standard rearrangement of the multiple sums
obtained from the term-by-term multiplication of two series. The other shuffle product is then interpreted
for the model (3) only, as a dual product to the stuffle one via the partition duality. Bachmann further
conjectures [6] that the Q-algebra BD spanned by the bi-brackets (3) coincides with the Q-algebraMD.

The goal of this note is to make an algebraic setup for Bachmann’s double stuffle relations as well as
to demonstrate that those relations indeed reduce to the corresponding stuffle and shuffle relations in the
limit as q → 1−. We also address the reduction of the bi-brackets to the mono-brackets.
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1. Asymptotics

The following result allows one to control the asymptotic behaviour of the bi-brackets not only as
q → 1− but also as q approaches radially a root of unity. This produces an explicit version of the
asymptotics used in [7] for proving some linear and algebraic results in the case l = 1.

Lemma 1. As q = 1− ε→ 1−,

1

(s− 1)!

Ps−1(q
n)

(1− qn)s
=

1

nsεs
(
(1− ε)Fs−1(ε) + λ̂s · εs

)
− λ̂s +O(ε)

where the polynomials Fk(ε) ∈ Q[ε] of degree max{0, k − 1} are generated by

∞∑
k=0

Fk(ε)xk =
1

1− (1− e−εx)/ε

= 1 + x+

(
−1

2
ε+ 1

)
x2 +

(
1

6
ε2 − ε+ 1

)
x3

+

(
− 1

24
ε3 +

7

12
ε2 − 3

2
ε+ 1

)
x4

+

(
1

120
ε4 − 1

4
ε3 +

5

4
ε2 − 2ε+ 1

)
x5 + · · ·

and
∞∑
s=0

λ̂sx
s = − xex

1− ex
= 1 +

1

2
x+

∞∑
k=1

B2k

(2k)!
x2k

is the generating function of Bernoulli numbers.

Proof. The proof is technical but straightforward.

By moving the constant term λ̂s to the right-hand side, we get

1

2
+
P0(q

n)

1− qn
=

1

n
·
(
ε−1 − 1

2

)
+O(ε)

1

12
+

P1(q
n)

(1− qn)2
=

1

n2
·
(
ε−2 − ε−1 +

1

12

)
+O(ε),

P2(q
n)

(1− qn)3
=

1

n3
·
(
ε−3 − 3

2
ε−2 +

1

2
ε−1
)

+O(ε),

− 1

720
+

P3(q
n)

(1− qn)4
=

1

n4
·
(
ε−4 − 2ε−3 +

7

6
ε−2 − 1

6
ε−1 − 1

720

)
+O(ε),

and so on.

Proposition 1. Assume that s1 > r1 + 1 and sj ≥ rj + 1 for j = 2, . . . , l. Then[
s1, . . . , sl

r1, . . . , rl

]
∼ ζ(s1 − r1, s2 − r2, . . . , sl − rl)

r1! r2! · · · rl!
1

(1− q)s1+s2+···+sl
as q → 1−,

where ζ(s1, . . . , sl) denotes the standard MZV.
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Another way to tackle the asymptotic behaviour of the (bi-)brackets is based on the Mellin transform

ϕ(t) 7→ ϕ̃(s) =

∫ ∞
0

ϕ(t)ts−1dt

which maps

qn1d1+···+nldl
∣∣
q=e−t 7→

Γ(s)

(n1d1 + · · ·+ nldl)s
;

see [8,9]. Note that the bijective correspondence between the bi-brackets and the zeta functions

Γ(s)

r1! (s1 − 1)! · · · rl! (sl − 1)!

∑
n1>···>nl>0
d1,...,dl>0

nr1
1 d

s1−1
1 · · ·nrl

l d
sl−1
l

(n1d1 + · · ·+ nldl)s

can be potentially used for determining the linear relations of the former. A simple illustration is the
linear independence of the depth 1 bi-brackets.

Theorem 1. The bi-brackets
[
s1
r1

]
, where 0 ≤ r1 < s1 ≤ n, s1 + r1 ≤ n, are linearly independent

over Q. Therefore, the dimension dBDn of the Q-space spanned by all bi-brackets of weight at most n is
bounded from below by b(n+ 1)2/4c ≥ n(n+ 2)/4.

Proof. Indeed, the functions

Γ(s)

r1! (s1 − 1)!

∑
n1,d1>0

nr1
1 d

s1−1
1

(n1d1)s
= Γ(s)

ζ(s− s1 + 1)ζ(s− r1)
(s1 − 1)! r1!

,

where 0 ≤ r1 < s1 ≤ n, s1 + r1 ≤ n,

are linearly independent over Q (because of their disjoint sets of poles at s = s1 and s = r1 + 1,
respectively); thus the corresponding bi-brackets

[
s1
r1

]
are Q-linearly independent as well.

A similar (though more involved) analysis can be applied to describe the Mellin transform of the
depth 2 bi-brackets; note that it is more easily done for another q-model we introduce further in Section 3.

2. The Stuffle Product

Consider the alphabetZ = {zs,r : s, r = 1, 2, . . . } on the double-indexed letters zs,r of the pre-defined
weight s+ r − 1. On QZ define the (commutative) product

zs1,r1 � zs2,r2 :=

(
r1 + r2 − 2

r1 − 1

)(
zs1+s2,r1+r2−1

+

s1∑
j=1

(−1)s2−1
(
s1 + s2 − j − 1

s1 − j

)
λs1+s2−jzj,r1+r2−1

+

s2∑
j=1

(−1)s1−1
(
s1 + s2 − j − 1

s2 − j

)
λs1+s2−jzj,r1+r2−1

)
, (4)

where
∞∑
s=0

λsx
s = − x

1− ex
= 1 +

∞∑
s=1

Bs

s!
xs
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is the generating function of Bernoulli numbers. Note that λ̂s = λs for s ≥ 2, while λ̂1 = 1
2

= −λ1 in
the notation of Section 1.

As explained in [4] (after the proof of Proposition 2.9), the product � is also associative. With the
help of (4) define the stuffle product on the Q-algebra Q〈Z〉 recursively by 1 �w = w �1 := w and

aw �bv := a(w �bv) + b(aw �v) + (a � b)(w �v), (5)

for arbitrary w, v ∈ Q〈Z〉 and a, b ∈ Z.

Proposition 2. The evaluation map

[ · ] : zs1,r1 . . . zsl,rl 7→
[

s1, . . . , sl

r1 − 1, . . . , rl − 1

]
(6)

extended to Q〈Z〉 by linearity satisfies [w �v] = [w] · [v], so that it is a homomorphism of the Q-algebra
(Q〈Z〉, �) onto (BD, · ), the latter hence being a Q-algebra as well.

Proof. The proof follows the lines of the proof of ([4] Proposition 2.10) based on the identity

nr1−1Ps1−1(q
n)

(s1 − 1)! (r1 − 1)! (1− qn)s1
· nr2−1Ps2−1(q

n)

(s2 − 1)! (r2 − 1)! (1− qn)s2

=

(
r1 + r2 − 2

r1 − 1

)
nr1+r2−2

(r1 + r2 − 2)!

(
Ps1+s2−1(q

n)

(s1 + s2 − 1)! (1− qn)s1+s2

+

s1∑
j=1

(−1)s2−1
(
s1 + s2 − j − 1

s1 − j

)
λs1+s2−j

Pj−1(q
n)

(j − 1)! (1− qn)j

+

s2∑
j=1

(−1)s1−1
(
s1 + s2 − j − 1

s2 − j

)
λs1+s2−j

Pj−1(q
n)

(j − 1)! (1− qn)j

)
.

Modulo the highest weight, the commutative product (4) on Z assumes the form

zs1,r1 � zs2,r2 ≡
(
r1 + r2 − 2

r1 − 1

)
zs1+s2,r1+r2−1,

so that the stuffle product (5) reads

zs1,r1w

�zs2,r2v ≡ zs1,r1(w

�zs2,r2v) + zs2,r2(zs1,r1w

�v)

+

(
r1 + r2 − 2

r1 − 1

)
zs1+s2,r1+r2−1(w

�v) (7)

for arbitrary w, v ∈ Q〈Z〉 and zs1,r1 , zs2,r2 ∈ Z. If we set zs := zs,1 and further restrict the product to the
subalgebra Q〈Z ′〉, where Z ′ = {zs : s = 1, 2, . . . }, then Proposition 1 results in the following statement.

Theorem 2 ([4]). For admissible words w = zs1 . . . zsl and v = zs′1 · · · zs′m of weight |w| = s1 + · · ·+ sl

and |v| = s′1 + · · ·+ s′m, respectively,

[w �v] ∼ (1− q)−|w|−|v|ζ(w ∗ v) as q → 1−,

where ∗ denotes the standard stuffle (harmonic) product of MZVs on Q〈Z ′〉.
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Since [w] ∼ (1 − q)−|w|ζ(w), [v] ∼ (1 − q)−|v|ζ(v) as q → 1− and [w �v] = [w] · [v], Theorem 2
asserts that the stuffle product (5) of the algebra MD reduces to the stuffle product of the algebra of
MZVs in the limit as q → 1−. This fact has been already established in [4].

3. The Duality

As an alternative extension of the mono-brackets (1) we introduce the multiple q-zeta brackets

Z

[
s1, . . . , sl

r1, . . . , rl

]
= Zq

[
s1, . . . , sl

r1, . . . , rl

]
:= c

∑
m1,...,ml>0
d1,...,dl>0

mr1−1
1 ds1−11 · · ·mrl−1

l dsl−1l q(m1+···+ml)d1+(m2+···+ml)d2+···+mldl

= c
∑

m1,...,ml>0

mr1−1
1 Ps1−1(q

m1+···+ml)mr2−1
2 Ps2−1(q

m2+···+ml) · · ·mrl−1
l Psl−1(q

ml)

(1− qm1+···+ml)s1(1− qm2+···+ml)s2 · · · (1− qml)sl
(8)

where
c =

1

(r1 − 1)! (s1 − 1)! · · · (rl − 1)! (sl − 1)!
.

Then [
s1

r1 − 1

]
= Z

[
s1

r1

]
and [s1, . . . , sl] =

[
s1, . . . , sl

0, . . . , 0

]
= Z

[
s1, . . . , sl

1, . . . , 1

]
.

By applying iteratively the binomial theorem in the forms

(m+ n)r1−1

(r1 − 1)!

nr2−1

(r2 − 1)!
=

r1+r2−1∑
j=1

(
j − 1

r2 − 1

)
mr1+r2−j−1

(r1 + r2 − j − 1)!

nj−1

(j − 1)!

and
(n−m)r−1

(r − 1)!
=

r∑
i=1

(−1)r+i ni−1

(i− 1)!

mr−i

(r − i)!
we see that the Q-algebras spanned by either (3) or (8) coincide. More precisely, the following formulae
link the two versions of brackets.

Proposition 3. We have[
s1, s2, . . . , sl

r1 − 1, r2 − 1, . . . , rl − 1

]
=

r1+r2−1∑
j2=1

(
j2 − 1

r2 − 1

) j2+r3−1∑
j3=1

(
j3 − 1

r3 − 1

)
· · ·

jl−1+rl−1∑
jl=1

(
jl − 1

rl − 1

)

× Z
[

s1, s2, . . . , sl−1, sl

r1 + r2 − j2, j2 + r3 − j3, . . . , jl−1 + rl − jl, jl

]
and

Z

[
s1, . . . , sl

r1, . . . , rl

]
=

r1∑
i1=1

r2∑
i2=1

· · ·
rl−1∑

il−1=1

(−1)r1+···+rl−1−i1−···−il−1

×
(
r1 − i1 + i2 − 1

r1 − i1

)
· · ·
(
rl−2 − il−2 + il−1 − 1

rl−2 − il−2

)(
rl−1 − il−1 + rl − 1

rl−1 − il−1

)
×
[

s1, s2, . . . , sl−1, sl

i1 − 1, r1 − i1 + i2 − 1, . . . , rl−2 − il−2 + il−1 − 1, rl−1 − il−1 + rl − 1

]
.
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Proposition 3 allows us to construct an isomorphism ϕ of the two Q-algebras Q〈Z〉 with two
evaluation maps [ · ] and Z[ · ],

Z[zs1,r1 . . . zsl,rl ] = Z

[
s1, . . . , sl

r1, . . . , rl,

]
such that

[w] = Z[ϕw] and Z[w] = [ϕ−1w].

Note however that the isomorphism breaks the simplicity of defining the stuffle product �from
Section 2.

Another algebraic setup can be used for the Q-algebra Q〈Z〉 with evaluation Z. We can recast it as
the Q-subalgebra H0 := Q + xHy of the Q-algebra H := Q〈x, y〉 by setting Z[1] = 1 and

Z[xs1yr1 . . . xslyrl ] = Z

[
s1, . . . , sl

r1, . . . , rl

]
.

The depth (or length) is defined as the number of appearances of the subword xy, while the weight is
the number of letters minus the length.

Proposition 4 (Duality).

Z

[
s1, s2, . . . , sl

r1, r2, . . . , rl

]
= Z

[
rl, rl−1, . . . , r1

sl, sl−1, . . . , s1

]
.

Proof. This follows from the rearrangement of the summation indices:

l∑
i=1

di

l∑
j=i

mj =
l∑

i=1

d′i

l∑
j=i

m′j

where d′i = ml+1−i and m′j = dl+1−j .

Denote by τ the anti-automorphism of the algebra H, interchanging x and y; for example,
τ(x2yxy) = xyxy2. Clearly, τ is an involution preserving both the weight and depth, and it is also
an automorphism of the subalgebra H0. The duality can be then stated as

Z[τw] = Z[w] for any w ∈ H0. (9)

We also extend τ to Q〈Z〉 by linearity.
The duality in Proposition 4 is exactly the partition duality given earlier by Bachmann for the

model (3).

4. The Dual Stuffle Product

We can now introduce the product which is dual to the stuffle one. Namely, it is the duality composed
with the stuffle product and, again, with the duality:

w �v := ϕ−1τ(τϕw �τϕv) for w, v ∈ Q〈Z〉. (10)

It follows then from Propositions 2 and 4 that
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Proposition 5. The evaluation map (6) on Q〈Z〉 satisfies [w �v] = [w] · [v], so that it is also a
homomorphism of the Q-algebra (Q〈Z〉, �) onto (BD, · ).

Note that (7) is also equivalent to the expansion from the right ([10] Theorem 9):

wzs1,r1

�vzs2,r2 ≡ (w �vzs2,r2)zs1,r1 + (wzs1,r1

�v)zs2,r2

+

(
r1 + r2 − 2

r1 − 1

)
(w �v)zs1+s2,r1+r2−1. (11)

The next statement addresses the structure of the dual stuffle product (10) for the words over the
sub-alphabet Z ′ = {zs = zs,1 : s = 1, 2, . . . } ⊂ Z. Note that the words from Q〈Z ′〉 can be also
presented as the words from Q〈x, xy〉 necessarily ending with xy.

Proposition 6. Modulo the highest weight and depth,

aw �bv ≡ a(w �bv) + b(aw �v) (12)

for arbitrary words w, v ∈ Q + Q〈x, xy〉xy and a, b ∈ {x, xy}.

Proof. First note that restricting (11) further modulo the highest depth implies

wzs1,r1

�vzs2,r2 ≡ (w �vzs2,r2)zs1,r1 + (wzs1,r1

�v)zs2,r2 ,

and that we also have

wzs1,r1+1

�vzs2,r2 ≡ (wzs1,r1

�vzs2,r2)y + (wzs1,r1+1

�v)zs2,r2

wzs1,r1+1

�vzs2,r2+1 ≡ (wzs1,r1

�vzs2,r2+1)y + (wzs1,r1+1

�vzs2,r2)y.

The relations already show that

wa′ �vb′ ≡ (w �vb′)a′ + (wa′ �v)b′ (13)

for arbitrary words w, v ∈ Q + Q〈Z〉 and a′, b′ ∈ Z ∪ {y}, where

zs1,r1 . . . zsl−1,rl−1
zsl,rly = zs1,r1 . . . zsl−1,rl−1

zsl,rl+1.

Secondly note that the isomorphism ϕ of Proposition 3 acts trivially on the words from Q〈Z ′〉.
Therefore, applying τϕ to the both sides of (10) and extracting the homogeneous part of the result
corresponding to the highest weight and depth we arrive at

τ(w �v) ≡ τw �τv for all w, v ∈ Q〈Z ′〉.

Denoting

a = τa =

y if a = x,

xy if a = xy,
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and using (13) we find out that

τ(aw �bv) ≡ τ(aw) �τ(bv) ≡ (τw)a �(τv)b

≡ (τw �(τv)b)a+ ((τw)a �τv)b

≡ (τw �τ(bv))a+ (τ(aw) �τv)b ≡ (τ(w �bv))a+ (τ(aw �v))b

≡ τ(a(w �bv) + b(aw �v)),

which implies the desired result.

Theorem 3. For admissible words w = zs1 . . . zsl and v = zs′1 · · · zs′m of weight |w| = s1 + · · ·+ sl and
|v| = s′1 + · · ·+ s′m, respectively,

[w �v] ∼ (1− q)−|w|−|v|ζ(w� v) as q → 1−,

where� denotes the standard shuffle product of MZVs on Q〈Z ′〉.

Proof. Because both ϕ and τ respect the weight, Proposition 6 shows that the only terms that can
potentially interfere with the asymptotic behaviour as q → 1− correspond to the same weight but lower
depth. However, according to (10) and (11), the ‘shorter’ terms do not belong to Q〈Z ′〉, that is, they are
linear combinations of the monomials zq1,r1 . . . zqn,rn with r1 + · · ·+ rn = l +m > n, hence rj ≥ 2 for
at least one j. The latter circumstance and Proposition 1 then imply

lim
q→1−

(1− q)|w|+|v|[zq1,r1 . . . zqn,rn ] = 0.

Theorem 3 asserts that the dual stuffle product (10) restricted from BD to the subalgebraMD reduces
to the shuffle product of the algebra of MZVs in the limit as q → 1−. This result is implicitly stated
in [6]. More is true: using (7) and Proposition 6 we obtain

Theorem 4. For two words w = zs1 . . . zsl and v = zs′1 · · · zs′m , not necessarily admissible,

[w �v − w �v] ∼ (1− q)−|w|−|v|ζ(w ∗ v − w� v) as q → 1−,

whenever the MZV on the right-hand side makes sense.

In other words, the q-zeta model of bi-brackets provides us with a (far reaching) regularisation of the
MZVs: the former includes the extended double shuffle relations as the limiting q → 1− case.

Conjecture 1 (Bachmann [6]). The resulting double stuffle (that is, stuffle and dual stuffle) relations
exhaust all the relations between the bi-brackets. Equivalently (and simpler), the stuffle relations and the
duality exhaust all the relations between the bi-brackets.

We would like to point out that the duality τ from Section 3 also exists for the algebra of MZVs ([10]
Section 6). However the two dualities are not at all related: the limiting q → 1− process squeezes the
appearances of x before y in the words xs1yxs2y . . . xsly, so that they become xs1−1yxs2−1y . . . xsl−1y.
Furthermore, the duality of MZVs respects the shuffle product: the dual shuffle product coincides with
the shuffle product itself. On the other hand, the dual stuffle product of MZVs is very different from the
stuffle (and shuffle) products. It may be an interesting problem to understand the double stuffle relations
of the algebra of MZVs.
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5. Reduction to Mono-Brackets

In this final section we present some observations towards another conjecture of Bachmann about the
coincidence of the Q-algebras of bi- and mono-brackets.

Conjecture 2 (Bachmann). MD = BD.

Based on the representation of the elements from BD as the polynomials from Q〈x, y〉 (see also the
last paragraph of Section 4), we can loosely interpret this conjecture for the algebra of MZVs as follows:
all MZVs lie in the Q-span of:

ζ(s1, s2, . . . , sl) = ζ(xs1−1yxs2−1y . . . xsl−1y)

with all sj to be at least 2 (so that there is no appearance of yr with r ≥ 2). The latter statement is
already known to be true: Brown [11] proves that one can span the Q-algebra of MZVs by the set with
all sj ∈ {2, 3}.

In what follows we analyse the relations for the model (8), because it makes simpler keeping track of
the duality relation. We point out from the very beginning that the linear relations given below are all
experimentally found (with the check of 500 terms in the corresponding q-expansions) but we believe
that it is possible to establish them rigorously using the double stuffle relations given above.

The first presence of the q-zeta brackets that are not reduced to ones fromMD by the duality relation
happens in weight 3. It is Z

[
2
2

]
and we find out that

Z
[
2
2

]
= 1

2
Z
[
2
1

]
+ Z
[
3
1

]
− Z
[
2,1
1,1

]
.

There are 34 totally q-zeta brackets of weight up to 4,

Z
[ ]∗

, Z
[
1
1

]∗
, Z
[
2
1

]
= Z
[
1
2

]
, Z
[
2
2

]∗
, Z
[
3
1

]
= Z
[
1
3

]
, Z
[
3
2

]
= Z
[
2
3

]
, Z
[
4
1

]
= Z
[
1
4

]
,

Z
[
1,1
1,1

]∗
, Z
[
2,1
1,1

]
= Z
[
1,1
1,2

]
, Z
[
1,2
1,1

]
= Z
[
1,1
2,1

]
, Z
[
2,1
2,1

]
= Z
[
1,2
1,2

]
, Z
[
2,1
1,2

]∗
, Z
[
1,2
2,1

]∗
,

Z
[
2,2
1,1

]
= Z
[
1,1
2,2

]
, Z
[
3,1
1,1

]
= Z
[
1,1
1,3

]
, Z
[
1,3
1,1

]
= Z
[
1,1
3,1

]
,

Z
[
1,1,1
1,1,1

]∗
, Z
[
2,1,1
1,1,1

]
= Z
[
1,1,1
1,1,2

]
, Z
[
1,2,1
1,1,1

]
= Z
[
1,1,1
1,2,1

]
, Z
[
1,1,2
1,1,1

]
= Z
[
1,1,1
2,1,1

]
, Z
[
1,1,1,1
1,1,1,1

]∗
,

where the asterisk marks the self-dual ones. Only 21 of those listed are not dual-equivalent, and only
five of the latter are not reduced to the q-zeta brackets fromMD; besides the already mentioned Z

[
2
2

]
these are Z

[
3
2

]
, Z
[
2,1
2,1

]
, Z
[
2,1
1,2

]
and Z

[
1,2
2,1

]
. We find out that

Z
[
3
2

]
= 1

4
Z
[
2
1

]
+ 3

2
Z
[
4
1

]
− 2Z

[
2,2
1,1

]
,

Z
[
2,1
2,1

]
= Z
[
2,1
1,1

]
+ 1

2
Z
[
1,2
1,1

]
− Z
[
2,2
1,1

]
+ Z
[
1,3
1,1

]
− Z
[
2,1,1
1,1,1

]
− Z
[
1,2,1
1,1,1

]
,

Z
[
2,1
1,2

]
= −1

2
Z
[
2,1
1,1

]
− 1

2
Z
[
1,2
1,1

]
+ 2Z

[
2,2
1,1

]
+ Z
[
3,1
1,1

]
− Z
[
1,3
1,1

]
+ Z
[
1,2,1
1,1,1

]
Z
[
1,2
2,1

]
= −Z

[
2,1
1,1

]
+ 2Z

[
2,2
1,1

]
+ Z
[
2,1,1
1,1,1

]
,

and there is one more relation in this weight between the q-zeta brackets fromMD:

1
3
Z
[
2
1

]
− Z
[
3
1

]
+ Z
[
4
1

]
− 2Z

[
2,2
1,1

]
+ 2Z

[
3,1
1,1

]
= 0.
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The computation implies that the dimension dBD4 of the Q-space spanned by all multiple q-zeta
brackets of weight not more than 4 is equal to the dimension dMD4 of the Q-space spanned by all such
brackets fromMD and that both are equal to 15. A similar analysis demonstrates that

dBD5 = dMD5 = 28 and dBD6 = dMD6 = 51,

and it seems less realistic to compute and verify that dBDn = dMDn for n ≥ 7 though Conjecture 2
and ([4] Conjecture (5.4)) support

∞∑
n=0

dMDn xn
?
=

1− x2 + x4

(1− x)2(1− 2x2 − 2x3)

= 1 + 2x+ 4x2 + 8x3 + 15x4 + 28x5 + 51x6 + 92x7

+ 165x8 + 294x9 + 523x10 +O(x11).

We can compare this with the count cMDn and cBDn of all mono- and bi-brackets of weight ≤ n,

∞∑
n=0

cMDn xn =
1

1− 2x
and

∞∑
n=0

cBDn xn =
1− x

1− 3x+ x2
=
∞∑
n=0

F2nx
n,

where Fn denotes the Fibonacci sequence.
In addition, we would like to point out one more expectation for the algebra of (both mono- and bi-)

brackets, which is not shared by other q-models of MZVs: all linear (hence algebraic) relations between
them seem to be over Q, not over C(q).

Conjecture 3. A collection of (bi-)brackets is linearly dependent over C(q) if and only if it is linearly
dependent over Q.
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