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Abstract: In spaces Rn, n ≥ 2, it has been proved that a solenoidal vector field and its rotor
satisfy the series of new integral identities which have covariant form. The interest in them
is explained by hydrodynamics problems for an ideal fluid.
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1. Introduction

In [1] , Dobrokhotov and A. Shafarevich found the interesting property of solutions in the Cauchy
problem for the Navier-Stokes equations in space. If u = (u1, u2, u3) is a fluid velocity then∫

R3

uiukdx =
δki
3

∫
R3

|u|2dx

where δki is the Kronecker symbol. In other words, we have a conservation of some things close to
conformal properties. Later, in [2] , L. Brandolese confirmed this result for dimensions n ≥ 4 (see also
[3]). In fact, this is the property of solenoidal vector fields if a potential part of a mapping

ui
∂u

∂xi
:= uiu, i

is summaable to a power r > 1 (see [4] ). Here, the repeated index means summation.
Now, I would like to consider other things connected with integral identities. A part of them

was studied by author in [4]. Every finite smooth solenoidal vector field u satisfies the following
integral identity: ∫

Rn

ui,juk, iuk,jdx = −
∫
Rn

uiuk, i4ukdx
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(see [4] where some statements connected with this formula are given). This very simple formula implies
some new identities and applications to the 2d Navier-Stokes and Euler equations. In particular, we
obtain exact a priori estimates in Ladyzchenskaya’s and Judovich’s theorems.

1.1. Notations

Let u : Rn → Rn, u = (u1, u2, · · · , un), n ≥ 2, be an arbitrary vector field. Symbols

uk, i =
∂uk
∂xi

, uk, ij =
∂2uk
∂xi∂xj

and so forth mean a partial differentiation or differentiation in distributions. Naturally, ∆ is the Laplace
operator. Below, unless otherwise indicated, the repeated indices mean summation. For example,

uiuj, i =
n∑
i=1

uiuj, i, ui, juj, i =
n∑

i,j=1

ui, juj, i, uiuj, i4uj =
n∑

i,j=1

uiuj, i4uj

etc. Further, I consider rotor coordinates (for dimension n = 2, 3)

cki(u) = uk,i − ui,k (1)

as elements of a skew-symmetric matrix C. The Jacobi matrix in distributions of the vector field u is
denoted by ∇u . As in common practice, the modulus of a matrix A is defined by the equality

|A| =
(∑
i, j

a2ij

) 1
2

(2)

A symbolW l
p(R

n) denotes the Sobolev class of vector fields which have all derivatives in distributions
until an order l and summable to a power p ≥ 1 . The norm in this space is given by formula:

‖v‖W l
p(R

n) =
∑
|α|≤l

‖Dαv‖p

where a symbol ‖h‖p is a norm in space Lp(Rn).
Respectively, a class of infinitely smooth vector fields with a compact support is denoted by C∞0 (Rn)

and a closure of this set in the norm of the space W l
p(R

n) is written by
◦
W l
p(R

n).

2. Solenoidal Vector Fields and Integral Identities for Dimension n ≥ 2

A classical integral identity for these fields goes on the Helmholtz-Weyl theorem about the
decomposition of a smooth vector field by the sum of potential and solenoidal terms. Later, (see [5,6],
p. 339) it was shown that the space L2(R

3) of vector fields has decomposition L2(R
3) = J ⊕ G

where subspaces J and G are closures in L2(R
3) of finite, smooth solenoidal and potential vector

fields respectively.
The main results are described by theorems 1 and 2.
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Theorem 1. Suppose, that solenoidal vector field u ∈
◦
W 3

2 (Rn), n ≥ 2. Then integral identities are true:∫
Rn

∆ui,jcki(u)ckj(u)dx = 0 (3)∫
Rn

(cim,j(u) + cjm,i(u))cki(u)ckj,m(u)dx = 0 (4)∫
Rn

ui,jmuk,imuk,jdx = 0 (5)∫
Rn

(∆ui,juk,iuk,j + ui,j∆uk,iuk,j)dx =

∫
Rn

ui,juk,i∆uk,jdx (6)∫
Rn

ui,jcki(∆u)ckj(u)dx =

∫
Rn

ui,jcki(u)ckj(∆u)dx (7)

If u ∈
◦
W 4

2 (Rn), n ≥ 2, then∫
Rn

uiuk,i∆
2ukdx = −

∫
Rn

(ui,j∆uk,iuk,j + ui,juk,i∆uk,j)dx (8)

The proof of this theorem relies on the following statement.

Lemma 1. If a vector field u ∈ W 2
p (Rn), n ≥ 2, p ≥ 1, then vector field g = (g1, g2, · · · , gn) where

gi = cki,jckj|C|p−2, ckj from formula (1), the matrix C is defined above, is potential i.e., for every smooth
solenoidal vector field v ∈ C∞0 (Rn) the integral identity is fulfilled:∫

Rn

vicki,j(u) ckj(u)|C|p−2dx = 0

Proof of Lemma 1. It is sufficient to see the equality:

cki,j ckj =
1

4

n∑
k,j=1

∂

∂xi

(
uk,j − uj,k

)2
which follows from relations of the type: ui,kjuj,k = ui,jkuk,j .

Proof of Theorem 1. Without any restrictions we assume that a vector field u ∈ C∞0 (Rn) (see [7],
Theorem 1). In the equality of lemma 1 we take: p = 2, v = ∆u. Further, we integrate by
parts with respect to variable xj . Since ckj,j(u) = ∆uk and cki,jj(u) = cki(∆u) then we obtain
equation (3). Applying ∆ui,j = cim,mj(u) for substitution to equation (3) and integrating by parts
with respect to variable xm we exchange summation indices i and j in the first product. Then it follows
equation (4).

For the proof of equation (5) we note sums equality: ui,jmuk,imuk,j = ui,mjuk,ijuk,m. Then

2

∫
Rn

ui,jmuk,imuk,jdx =

∫
Rn

ui,jm(uk,muk,j),idx = 0

since div u,jm = 0.
Now, we write equation (3) by expanded form:∫

Rn

(∆ui,juk,iuk,j −∆ui,juk,iuj,k −∆ui,jui,kuk,j + ∆ui,jui,kuj,k)dx = 0
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In the third term we exchange summation indices i and k. In the forth term we make it twice. By the
first step we exchange i and k, after that i and j. The second term vanishes because∫

Rn

∆ui,juk,iuj,kdx = −
∫
Rn

∆uiuk,ijuj,kdx =

= −1

2

∫
Rn

∆ui
∂

∂xi
(uk,juj,k)dx = 0

Therefore, the previous equality reduces to formula (6).
For verification (8) we use identity: ∫

Rn

uiuk,jmiuk,jmdx = 0

where we integrate by parts. Then∫
Rn

ui,muk,jiuk,jmdx+

∫
Rn

uiuk,ji∆uk,jdx = 0

Here, for every integral we apply the integration by parts with respect to variable xj . As the result we get:∫
Rn

uiuk,i∆
2ukdx = −

∫
Rn

ui,j∆uk,iuk,jdx−
∫
Rn

ui,mjuk,imuk,jdx−

−
∫
Rn

ui,muk,i∆uk,mdx

On the right hand side, the middle integral vanishes by formula (5). In the third integral in the same
place we exchange index m by index j. Hence, we have equation (8).

Corollary 1. Let u ∈
◦
W 6

2 (Rn), n ≥ 2, be a solenoidal vector field. Then the integral identity is true:∫
Rn

(uk,i∆
2ui,j + 2∆ui,j∆uk,i + ui,j∆

2uk,i)uk,jdx =

∫
Rn

ui,juk,i∆
2uk,jdx

Proof of Corollary 1. Let T = T (t, x) be a solution of equation
·
T = ν∆T with an initial data

T (0, x) = u(x). Now, we rewrite equation (6) for the solenoidal vector field T and differentiate it
with respect to t. A passage to the limit as t→ 0 gives the necessary equality.

3. Solenoidal Vector Fields and Integral Identities for Dimension n = 2

In this case we can give more precise identities. Applying them we can obtain the exact estimates for
solutions in the Cauchy problem for the Navier-Stokes equations and Euler equations.

Theorem 2. Let u, v be solenoidal vector fields in R2.
(1) If u, v ∈ W 1

2 (R2) then almost everywhere there are fulfilled:

ui,juk,ivk,j = 0, vi,jcki(u)ckj(u) = 0 (9)

(2) If u, v ∈
◦
W 3

2 (R2) then the following integral identities are true:∫
R2

vicki(u)∆ukdx = 0 (10)
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∫
R2

(∆ui,juk,iuk,j + ui,j∆uk,iuk,j)dx = 0 (11)

(3) If u ∈
◦
W 5

2 (R2) then ∫
R2

(∆2ui,juk,iuk,j + ui,j∆
2uk,iuk,j)dx = 0 (12)

∫
R2

uiuk,i∆
2ukdx = −

∫
R2

ui,j∆uk,iuk,jdx =

∫
R2

∆ui,juk,iuk,jdx (13)

Proof of Theorem 2. Direct calculations and equalities div u = 0, div v = 0 prove equation (9). Since∫
R2

vi,jcki(u)ckj(u)dx = 0

then integrating by parts we get equation (10). Formula (11) follows from equations (9) and (6) where
v = ∆u. Identity (12) we obtain from corollary 1 and equation (9) where we must replace u by ∆u, v
by u. Finally, equation (13) we have from equation (8) and the first identity from equation (9).

4. Applications

Let us consider the Cauchy problem for the Navier–Stokes equations
·
u+ uiu,i = ν∆u−∇p (14)

divu = 0, u(0, x) = ϕ(x) (15)

if dimension n = 2 or n = 3. We also suppose that an initial data ϕ ∈ C∞0 (Rn). An existence of a
weak solutions for small time interval was proved in [8] (their regularity it was shown in [9]). There are
some conditions of an existence of global regular solutions.

Now, we note only monotonicity properties of regular solutions. Every regular solution
satisfies the conditions:

1

2

d

dt
‖∇u‖22 =

∫
R2

uiuk, i∆ukdx− ν‖∆u‖22 (16)

1

2

d

dt
‖∆u‖22 = −

∫
R3

uiuk, i∆
2ukdx− ν‖∇∆u‖22 (17)

Integrals finiteness in these formulas follows from [10].

Theorem 3. Let be an initial data ϕ ∈ C∞0 (Rn). Suppose, that u is a regular solution of the problem (14)
and (15). If n = 2 then a function

η(t) = ‖∇u‖22
is a decreasing function.

If n = 3 and

‖ϕ‖32‖∆ϕ‖2 ≤
4
√

3

3
ν4

then a function
ω(t) = ‖u‖32‖∆u‖2

is a decreasing function.
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Proof. We take v = u in formula (10) then from (16) it can be deduced the inequality

1

2

d

dt
‖∇u‖22 = −ν‖∆u‖22

Hence, we have the first statement.
To prove the second part we combine (16) and (13). Then∫

R3

uiuk, i∆
2ukdx = −2

∫
R3

ui,juk, imuk,jmdx

Further, we apply Hölder’s inequality. Therefore,

1

2

d

dt
‖∆u‖22 ≤ 2

∫
R3

|∇u||∇(∇u)|2dx− ν‖∇∆u‖22 ≤

≤ 2‖∇u‖2‖∇(∇u)‖24 − ν‖∇∆u‖22

Use the estimate from [9] (see p. 74). Then

‖v‖24 ≤
√

2 · 3−3/4‖v‖1/22 ‖∇v‖
3/2
2

where v = ∇(∇u). (For n = 3 the factor 2 is omitted among intermediate calculations there.) Since
‖∇∇u‖2 = ‖∆u‖2, ‖∇(∇(∇u))‖2 = ‖∇∆u‖2, then finding a function maximum f(z) = bz3/2 − νz2,
where z = ‖∇∆u‖2, we get:

1

2

d

dt
‖∆u‖22 ≤

3
√

3

4
‖∇u‖42‖∆u‖22 ≤

3
√

3

4
‖u‖2‖∇u‖22‖∆u‖32

Then for the function ω(t) = ‖u‖32‖∆u‖2 we have:

dω

dt
≤ 3‖u‖2‖∇u‖2‖∆u‖2

(
−ν +

√
3

4ν
ω(t)

)
The inequality follows from a nonpositiveness of the derivative ω′.

Remark 1. Monotonicity properties are very important for the exact a priory estimates for solutions of
Navier-Stokes equations. For example, if dimension n = 2, we get

‖∇u‖22 ≤ ‖∇ϕ‖22

in the problem (14) and (15).

Remark 2. Obvious and exact estimates may be obtained for weak solutions of Euler equations (see [4])
and Navier-Stokes equations with an outer force.

Remark 3. If dimension n = 3 then from Gagliardo’s and Nirenberg’s inequalities (see [11] and [12])
with some constant C we get for solution in the problem (14) and (15) the following uniform estimate

‖∇u‖22 ≤ C‖ϕ‖2‖∆ϕ‖2
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Theorem 4. Let be dimension n = 2 and a solenoidal vector field u ∈
◦
W 2

2 (R2). Then a vector field

w = ∆uiu,i + ui,ju,ij

is a potential field in distributions.

Proof. It follows from the first equality (9) where a solenoidal vector field v ∈ C∞0 (R2). Since∫
R2

ui,juk,ivk,jdx = 0

then ∫
R2

wkvkdx = 0.

Therefore, the statement is proved.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Dobrokhotov, S.J.; Shafarevich, A.I. On the behavior of an incompressible fluid velocity field at
infinity. Fluid Dyn. 1996, 4, 511–514.

2. Brandolese, L. On the localization of symmetric and asymmetric solutions of the Navier–Stokes
equations in Rn. Comptes Rendus Acad. Sci. Ser. I 2001, 332, 125–130.

3. Pukhnachev, V.V. Integral of motions of ideal liquid in the whole space. J. Appl. Mech. Tech. Phys.
2004, 2, 22–27, (in Russian).

4. Semenov, V.I. Some general properties of solenoidal vector fields and their applications to the 2d
Navier-Stokes and Euler equations. Nauchnye Vedom. Belgorodskogo Gos. Univ. Ser. Mat. 2008,
13, 109–129, (in Russian).

5. Sobolev, S.L. One new problem of mathematical physics. Izv. Akad. Nauk SSSR Ser. Mat. 1954,
18, 3–50, (in Russian).

6. Sobolev S.L. One new problem of mathematical physics. In: Izbrannye Trudy, 1 (in Russian);
Sobolev Institute of Mathematics: Novosibirsk, Russia, 2003; pp. 32–58.

7. Maslennikova, V.N.; Bogovskij, M.E. Approximation of potential and solenoidal vector fields.
Sib. Math. J. 1983, 24, 768–787.

8. Kiselev, A.A.; Ladyzhenskaya, O.A. On existence and uniqueness of solution in nonstationary
problem for viscous incompressible fluid. Izv. Akad. Nauk SSSR Ser. Mat. 1957, 21, 655–680,
(in Russian).

9. Serrin, J. The initial value problem for the Navier–Stokes equations. In Nonlinear Problems;
Langer, R., Ed.; University of Wisconsin Press: Madison, WI, USA, 1963; pp. 69–98.

10. Fabes, E.; Jones, B.; Riviere, N. The initial value problem for the Navier-Stokes equations with
data in Rn. Arch. Ration. Mech. Anal. 1972, 45, 222–240.



Mathematics 2014, 2 36
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