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Abstract: The H2O2-assisted oxidation by a peroxidase enzyme takes place to help plants maintain
the concentrations of organic compounds at physiological levels. Cells regulate the oxidation rate by
inhibiting the action of this enzyme. The cells use two inhibitory processes to regulate the enzyme: a
noncompetitive substrate inhibitory process and a competitive substrate inhibitory process. Numer-
ous applications of peroxidase have been developed in clinical biochemistry, enzyme immunoassays,
the treatment of waste water containing phenolic compounds, the synthesis of various aromatic
chemicals, and the removal of peroxide from industrial wastes. The kinetic mechanism of the Spanish
broom peroxidase enzyme is a Ping Pong Bi Bi mechanism with the presence of competitive inhibition
by substrates. A mathematical model may help in identifying the key mechanism from amongst a set
of competing mechanisms. In this study, we developed a fractional mathematical model to describe
the H2O2-supported oxidation by the enzyme Spanish broom peroxidase. Numerical simulations of the
model produced results that are consistent with the known behaviour of Spanish broom peroxidase.
Finally, some future investigations of the study are briefly indicated as well.

Keywords: competitive inhibition; noncompetitive inhibition; enzyme; fractional-order derivative;
mathematical model; peroxidase

MSC: 92-10; 92B99; 92C45; 92E20

1. Introduction

Enzymes, natural proteins found in living organisms, catalyse biochemical reactions
essential for cell metabolism by reducing the activation energy. They are not consumed
during reactions and can be biologically degradable, suggesting an important role in
environmental protection [1–5]. Cells regulate metabolite concentrations through various
mechanisms, including enzymatic inhibition processes such as competitive, noncompetitive,
and uncompetitive inhibition. Competitive inhibition involves substrate and inhibitor
molecules competing for enzyme binding sites, hindering catalytic activity. The competitive
substrate inhibition of an enzyme is a competitive inhibition process in which the substrate
plays the role of inhibitor, and enzymes often are bi-substrate enzymes. Some enzymes, for
example, Spanish broom peroxidase, can be inhibited by their substrates [6,7].

Enzymes offer numerous benefits due to the features of enzymes. Nowadays, scientific
and technological advances facilitate studies on enzymes and their applications [6–8].
Novel enzymes are increasingly being extracted and investigated. A variety of applications
of enzymes have been developed for biotechnology, industry, and medicine. Some common
applications of enzymes take place in pharmaceuticals, food processing, biofuels, and so
on [8–11]. Understanding enzyme mechanisms is crucial for application development,
utilising both experimental and mathematical modelling approaches [12–17].

Plants use oxygen as a terminal electron acceptor. Class III plant peroxidases (EC
1.11.1.7; donor: hydrogen peroxide oxidoreductases) help maintain low levels of hydrogen
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peroxide [18]. Peroxidases are enzymes that catalyse the oxidation of numerous substrates
such as halide, aromatic amines, phenols, and thiosanisoles through H2O2 reduction. The
reducing substrate is dependent on the type of peroxidase enzyme [19]. Enzymatic biocatal-
ysis plays a crucial role in the development of many chemical industries. Due to the catalytic
features of peroxidases, they become attractive enzymes for biotechnological processes.
Investigating substrate specificity and the effectors affecting peroxidase enzyme activities
may assist in developing the use of the catalytic potential of peroxidases [20]. Peroxidases
also play important roles in clinical biochemistry and enzyme immunoassays [21]. Recently,
peroxidases were used in the treatment of waste water containing phenolic compounds,
the synthesis of various aromatic chemicals, and the removal of peroxide from industrial
wastes [22].

In recent years, experimental evidence has increasingly pointed to the relevance
of fractional calculus analysis in understanding dynamic phenomena in nature. This
burgeoning field of research has seen rapid growth, driven by its wide-ranging applications
across diverse areas of engineering and science. From chemical models to physics and signal
and image processing to quantum mechanics and control theory to nonlinear dynamics,
fractional calculus finds utility in a multitude of disciplines. Furthermore, its application
extends to biological population models, optimisation theory, and beyond [23–28].

Alicea [29] and Alawneh [30] independently tackled the integer order-model for the
system of the following chemical reaction:

S + E −⇀↽− ES −→ E + P (1)

using different mathematical methods. Alicea employed the method of multiple time
scales to obtain asymptotic solutions, while Alawneh utilised a generalised differential
transform method with multisteps and discussed estimation analysis using fractional
order derivatives. However, despite their efforts, the solutions obtained mathematically
for the concentrations of E, S, ES, and P at any time t often did not align with those of
the experimental results. To address this discrepancy, alternative approaches have been
explored, including the use of fractional derivatives instead of integer-order derivatives.
Fractional derivatives offer greater flexibility and accuracy compared to classical derivatives,
making them particularly appealing for modelling complex systems. Interested readers
are encouraged to explore the works referenced in [26,31] for further insights into the
advantages of fractional derivatives in mathematical modelling.

In this study, we developed a fractional mathematical model describing hydrogen
peroxide-assisted oxidation by Spanish broom peroxidase enzyme. The model consists of
the Spanish broom peroxidase enzyme, the substrates H2O2 and AH2, and their complexes.
Numerical simulations provided insights into the model behaviour, using Python software
for numerical integration. The notations employed in subsequent sections are elucidated in
Figure 1.

The rest of this paper is organised as follows. In Section 2, we describe the formulation
of the mathematical model and methods used in the current study. Numerical solutions
for the model are presented in Section 3. Finally, we discuss some concluding remarks in
Section 4.
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NOMENCLATURE

[X] − the concentration of a species X; a function of time (mM)

E − a molecule of the enzyme

E′ − a molecule of the intermediate enzyme
H2O2 − a molecule of the substrate H2O2

AH2 − a molecule of the substrate AH2 (Ferulic acid, Guaiacol, Catechol, etc.)
H2O − a molecule of the product H2O
AH• − a molecule of the product AH•

E · H2O2 − an enzyme-H2O2 complex

E′ · AH2 − an intermediate enzyme-AH2 complex
E · AH2 − an enzyme–AH2 complex
E · AH• − an enzyme–AH• complex

E′ · H2O2 − an intermediate enzyme-H2O2 complex
k4 − catalytic rate for the intermediate enzyme acting on a substrate

molecule AH2 (s−1)

k1 − adsorption rate of substrate molecules H2O2 to free enzyme

molecules E (mM−1s−1)

k−1 − desorption rate of substrate molecules from enzyme–substrate

complexes E · H2O2 (s−1)

k2 − catalytic rate for the enzyme acting on a substrate molecule H2O2 (s−1)

k3 − adsorption rate of substrate molecules AH2 to free intermediate enzyme

molecules E′ (mM−1s−1)

k−3 − desorption rate of substrate molecules AH2 from enzyme–substrate

complexes E′ · AH2 (s−1)

k5 − adsorption rate of substrate molecules AH2 to free enzyme

molecules E (mM−1s−1)

k−5 − desorption rate of substrate molecules AH2 from enzyme–substrate

complexes E · AH2 (s−1)

k6 − adsorption rate of substrate molecules H2O2 to free intermediate enzyme

molecules E′ (mM−1s−1)

k−6 − desorption rate of substrate molecules H2O2 from enzyme–substrate

complexes E′ · H2O2 (s−1)

Figure 1. Notations and their descriptions.

2. Materials and Methods
2.1. Mathematical Model

In this section, we present a minimal fractional-order model that describes the H2O2-
assisted oxidation by Spanish broom peroxidase enzyme, in which the substrates competitively
inhibit the enzyme by binding to the enzyme molecule at the binding site for the other
substrate. The fractional derivative operator, which is used in this study, is the Caputo one.
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The fractional derivative of order α in the Caputo sense is defined as the operator Dα
t f (t)

such that

Dα
t f (t) =

1
Γ(m − α)

∫ t

0

f (m)(t)
(t − s)α+1−m ds, m − 1 < α < m,

where Γ is the Gamma function defined as follows:

Γ(α) =
∫ ∞

0
uα−1e−udu, α > 0.

Here, we list several common formulae for the Gamma function as follows:

Γ(α + 1) = αΓ(α),

Γ(α + n) = α(α + 1) · · · (α + n − 1)Γ(α),

Γ(n + 1) = (n + 1)!, n = 0, 1, 2, ...,

Γ(α)Γ(1 − α) =
π

sin(πα)
.

For more details, the readers can find them in [32]. In the current study, we used α ∈ (0, 1).
Next, we provide a brief description of the kinetic mechanism that the model was based on.

2.1.1. The Kinetic Mechanism

It is known that Spanish broom peroxidase catalyses the H2O2-mediated oxidation in a
Ping Pong mechanism with the presence of competitive inhibition by the substrates [6].
The kinetic mechanism for the H2O2-mediated oxidation by Spanish broom peroxidase is
summarised in Figure 2.

E

H2O2

(E ·H2O2 −⇀↽− E′ ·H2O)

H2O

E′

AH2

(E′AH2 −⇀↽− E ·AH•)

AH•

E

AH2

E ·AH2

H2O2

E′ ·H2O2

Figure 2. Diagram of Ping Pong mechanism with competitive inhibition by the substrates. Here
E represents an molecule of Spanish broom peroxidase enzyme, H2O2 and AH2 are the substrates
molecules, H2O and AH• are the products molecules. Further, E′ corresponds to an intermediate
enzyme molecule, E · H2O2, E′ · AH2, E · AH2, E′ · H2O2 substrate-enzyme complexes, and E′ · H2O,
E · AH• product-enzyme complexes.

For convenience, the mechanism in Figure 2 can be illustrated using separated stages
as in Figure 3.
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Stage 1

Enzyme E

.

Substrate

H2O2

Active sites

E ·H2O2 E′ ·H2O Enzyme E′

H2O

Stage 2

Enzyme E′

AH2

Active sites

E′ ·AH2

E ·AH• Enzyme E

AH•

(a) (b) (c)

(d) (e) (f)

(g)

(h)

E inhibited by AH2

E

AH2

E ·AH2

E′ inhibited by H2O2

E′

H2O2

E′ ·H2O2

Figure 3. Illustration of a Ping Pong mechanism with the inhibition by substrates. A double arrow
represents a reversible reaction, whereas a single arrow corresponds to an irreversible reaction. In
Stage 1, (a) an H2O2 substrate molecule binds to a free enzyme molecule E to form an enzyme–
substrate complex molecule E · H2O2, (b) the bound enzyme molecule E catalyses the reactions
to convert a substrate molecule H2O2 into an H2O product molecule and an intermediate form
E′, and (c) the intermediate enzyme molecule releases the product molecule to the medium. In
Stage 2, (d) an AH2 substrate molecule binds to a free intermediate enzyme molecule E′ to form
an enzyme–substrate complex molecule, (e) the bound intermediate enzyme molecule catalyses
specific reactions to convert a AH2 substrate molecule into a product molecule AH• and recover to an
original enzyme molecule E, and (f) the original enzyme molecule irreversibly releases the product
molecule AH• to the medium. In (g), an AH2 substrate molecule temporarily inhibits a free original
enzyme molecule by binding to the binding site of the enzyme molecule for H2O2 substrate molecules
(competitive inhibition). Finally, (h) displays an H2O2 substrate molecule that competitively inhibits
a free intermediate enzyme molecule E′ (reversibly) by binding to the binding site of the enzyme
molecule for AH2 substrate molecules.

In this mechanism, an enzyme molecule has at least two binding sites for its sub-
strates and produces two types of product molecules. The Ping Pong mechanism includes
two stages: Stage 1 and Stage 2. In Stage 1, an enzyme molecule E absorbs a molecule
of substrate H2O2 to form a substrate-enzyme complex E · H2O2. The bound enzyme
molecule catalyses the complex to form a product-enzyme complex E′ · H2O. It should
be noticed that these reactions are reversible reactions. Then, the enzyme releases the
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product molecule H2O and an intermediate enzyme molecule E′ into the medium. This is
an irreversible reaction.

When intermediate enzyme molecules E′ occur at the end of Stage 1, each of them
may be able to initiate Stage 2 by absorbing a substrate molecule AH2 to form a substrate–
enzyme complex E′ · AH2. The bound enzyme molecule catalyses the complex E′ · AH2
to form a product–enzyme complex E · AH•. These reactions are reversible also. The
product molecule AH• and original enzyme molecule E are then irreversibly released into
the medium.

The competitive inhibition by the substrates includes the inhibition by H2O2 and the
inhibition by AH2. First, we explain the competitive inhibition by substrate H2O2. The
inhibition is interpreted as follows: a substrate molecule H2O2 that is able to bind to an
enzyme molecule E′ to form a substrate–enzyme complex E′ · H2O2. The binding of a
molecule H2O2 to an enzyme molecule E′ prevents the AH2 molecules from binding to the
enzyme molecule E′ [6,33,34].

The competitive inhibition by the substrate AH2 is represented as follows: a substrate
molecule AH2 that is capable of binding to an enzyme molecule E to form a substrate–
enzyme complex E · AH2. The binding of a molecule AH2 to an enzyme molecule E
prevents H2O2 molecules from binding to the enzyme molecule E [6,33,34].

To simplify the modelling, we reduced the above kinetic mechanism using a minimal
set of chemical reactions as follows (Figure 4).

E + H2O2
k1

k−1
E· H2O2

k2 E′ + H2O,

E′ + AH2
k3

k−3
E′· AH2

k4 E + AH•,

E + AH2
k5

k−5
E · AH2,

E′ + H2O2
k6

k−6
E′ · H2O2.

Figure 4. A simplified scheme of the Ping Pong mechanism. The notations used here are the same as
those in Figure 2. Furthermore, the parameter kis are the constant rates of the chemical reactions. See
the Nomenclature for more details.

Assumptions are needed for developing a mathematical model. In the next section,
we list some assumptions for the model.

2.1.2. Modelling Assumptions

The model developed here was based on the law of mass action. The system is quite
complex due to the number of binding sites of an enzyme molecule. Here are the necessary
assumptions for the model.

• The mixture of peroxidase enzyme, H2O2, and AH2 (such as Ferulic acid, Guaiacol,
Catechol, etc.) is well stirred throughout. This implies that diffusive effects in the
process can be omitted and that the concentrations of the various species in the mixture
can be described by functions of time only. This further implies that the evolution of
the system can be modelled using a coupled system of nonlinear fractional differential
equations and that a partial differential equation model is not required [15,35].

• We assume that mass action kinetics occur throughout; this implies that the rate of
a reaction is taken to be proportional to the product of the concentrations of the
reactants. We emphasise here that more complex formulas, such as the Michaelis–
Menten formula for the rate of product formation in an enzyme-catalysed reaction,
are derivable from more fundamental mass action considerations under simplifying
assumptions [15,35].
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2.1.3. Construction of the Governing Fractional Differential Equations

For the convenience of modelling, we can rewrite the chemical reactions in Figure 4
as follows:

E + H2O2
k1−−⇀↽−−
k−1

E · H2O2,

E · H2O2
k2−→ E′ + H2O,

E′ + AH2
k3−−⇀↽−−
k−3

E′ · AH2,

E′ · AH2
k4−→ E + AH•,

E + AH2
k5−−⇀↽−−
k−5

E · AH2,

E′ + H2O2
k6−−⇀↽−−
k−6

E′ · H2O2.

Under the above assumptions and using the law of mass action, the model equations that
describe the concentrations of the species in the mixture are given by

Dα
t [E] = −k1[E][H2O2]− k5[E][AH2] + k−1[E · H2O2] + k4[E′ · AH2] + k−5[E · AH2], (2)

Dα
t [H2O2] = −k1[E][H2O2]− k6[E′][H2O2] + k−1[E · H2O2] + k−6[E′ · H2O2], (3)

Dα
t [E · H2O2] = −(k−1 + k2)[E · H2O2] + k1[E][H2O2], (4)

Dα
t [E

′] = −k3[E′][AH2]− k6[E′][H2O2] + k2[E · H2O2]

+ k−3[E′ · AH2] + k−6[E′ · H2O2], (5)

Dα
t [H2O] = k2[E · H2O2], (6)

Dα
t [AH2] = −k3[E′][AH2]− k5[E][AH2] + k−3[E′ · AH2] + k−5[E · AH2], (7)

Dα
t [E

′ · AH2] = −(k−3 + k4)[E′ · AH2] + k3[E′][AH2], (8)

Dα
t [AH•] = k4[E′ · AH2], (9)

Dα
t [E · AH2] = −k−5[E · AH2] + k5[E][AH2], (10)

Dα
t [E

′ · H2O2] = −k−6[E′ · H2O2] + k6[E′][H2O2], (11)

where [X] = [X](t) denotes the concentration of species X at time t.
It is not necessary to provide discussions of these equations here. However, we do

briefly discuss two of them to illustrate how the model equations are constructed. The
chemical reactions for the model are displayed in Figure 4. We begin by considering the
Equation (2) for E given by

Dα
t [E] = −k1[E][H2O2]︸ ︷︷ ︸

1

−k5[E][AH2]︸ ︷︷ ︸
2

+k−1[E · H2O2]︸ ︷︷ ︸
3

+k4[E′ · AH2]︸ ︷︷ ︸
4

+k−5[E · AH2]︸ ︷︷ ︸
5

,

where the numbered parts are described as follows:

1 This term accounts for the reduction in the concentration of E due to substrate
H2O2 binding.

2 The reduction in the concentration of E due to substrate AH2 binding.
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3 The increase in the concentration of E due to the substrate unbinding from the complex
E · H2O2.

4 The increase in the concentration of E due to the enzyme catalysing the complex
E′ · AH2 and releasing the product and the original enzyme molecule.

5 The increase in the concentration of E due to the substrate unbinding from the complex
E · AH2.

Now, we turn our attention to Equation (4) for complex E · H2O2:

Dα
t [E · H2O2] = −(k−1 + k2)[E · H2O2]︸ ︷︷ ︸

a

+k1[E][H2O2]︸ ︷︷ ︸
b

,

where the parts are as follows:

a This accounts for the reduction in the concentration of E · H2O2 due to the substrate
unbinding from E · H2O2 and the enzyme catalysing E · H2O2 to form product H2O.

b The increase in the concentration of E · H2O2 due to the enzyme binding to the
substrate H2O2.

The remaining equations, Equations (3) and (5)–(11), are interpreted similarly.

2.1.4. Initial Conditions

The equations described in the previous subsection are solved under the initial conditions:

[E](t = 0) = e0 mM, [E′](t = 0) = 0.0 mM,
[H2O2](t = 0) = a0 mM, [AH2](t = 0) = b0 mM,
[E · H2O2](t = 0) = 0.0 mM, [E′ · AH2](t = 0) = 0.0 mM,
[H2O](t = 0) = 0.0 mM, [AH•](t = 0) = 0.0 mM,
[E · AH2](t = 0) = 0.0 mM, [E′ · H2O2](t = 0) = 0 mM,

where e0, a0, and b0 give the initial constant concentrations of the enzyme, H2O2, and AH2,
respectively. The initial concentrations for all of the enzyme complexes were taken to be
zero. Finally, the initial concentrations of the rest of the species were set to be zero also.

2.1.5. Conservation Laws

Computing the sum of Equations (2)+ (4)+ (5)+ (8)+ (10)+ (11), (3)+ (4)+ (6)+ (11)
and (7) + (8) + (9) + (10) and integrating both sides yields

[E] + [E · H2O2] + [E′] + [E′ · AH2] + [E · AH2] + [E′ · H2O2] = e0, (12a)

[H2O2] + [E · H2O2] + [H2O] + [E′ · H2O2] = a0, (12b)

[AH2] + [E′ · AH2] + [AH•] + [E · AH2] = b0, (12c)

which are the expressions of the conservation of enzyme E and substrates H2O2 and
AH2, respectively.

2.2. Computational Methods

In this section, we describe the computational tools used to analyse the model equa-
tions. The software developed for this paper was coded using the Python programming
language [36].

2.2.1. Numerical Method for Solving the Fractional Differential Equations

The numerical integration of fractional-order ordinary differential equations was
performed using the fodeint solver, alongside the SciPy and Numpy libraries [37–39].
SciPy [39] is an open-source Python [36] library that provides numerical routines for sci-
entific and engineering applications. The fodeint solver, a Python package, numerically
integrates fractional ordinary differential equations using an explicit one-step Adams–
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Bashforth (Euler) method [40,41]. However, the convergence and accuracy of this method
have not yet been evaluated. Recently, novel numerical methods have been developed to
solve fractional-order ordinary differential equations efficiently, and their analyses have
yielded several interesting results [42,43]. The employment of these methods in creating a
new Python solver for fractional-order ordinary differential equations could lead to intrigu-
ing research opportunities. In the present study, our primary aim involved investigating
a specific phenomenon utilising well-established methodologies, including theoretical
frameworks and computational libraries. Our focus did not extend to creating a compu-
tational library specifically for solving non-integer differential equations. Nevertheless,
we maintained an open-minded approach and may consider exploring such endeavors
opportunistically in the days ahead.

2.2.2. Model Parameter Values

Table 1 shows some of the model parameter values, together with their literature
sources. Typically, the parameter values are rare in the literature, except a few of them.

Table 1. Some model parameter values and their literature sources.

Parameter Value Unit Ref.

k1 9.1 mM−1s−1

k−1 3.2 s−1

k2 14.5 s−1

k3 9.8 mM−1s−1

k−3 2.4 s−1

k4 12.6 s−1 [6]
k5 8.0 mM−1s−1

k−5 2.5 s−1

k6 7.0 mM−1s−1

k−6 1.5 s−1

3. Results and Discussion
3.1. Numerical Results

The Section 2 introduced the mathematical model. It also described the computational
methods used to integrate the model equations, and included some discussion of the
numerical method, the choice of parameter values, and the initial conditions. In the current
section, we describe some of the numerical results obtained some initial conditions. The
initial conditions used here correspond to e0 = 5.0 mM, a0 = 9.0 mM, and b0 = 15.0 mM;
see Section 2.1.4 for details.

The principal purpose of the numerical solutions displayed here was to gain insight
into the H2O2-assisted oxidation by Spanish broom peroxidase. To focus attention on the
oxidation process itself, we made no attempt to model the evolution of the physiological
levels of the species in the mixture. Instead, we simply assumed the constant initial
concentrations of the species and then tracked its subsequent conversion via the enzymatic
reactions. It should be noted that the derivative order used here was α = 0.8. The nearer to
zero that the α is, the longer the time consumption for the computation.

In Figure 5, we plotted the numerical solutions of the model corresponding to the
initial conditions and the parameter values aforementioned. Each line corresponds to the
concentration of one species in the mixture with respect to time t. Some points of discussion
on these numerical results are as follows.
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Figure 5. Numerical solutions of the model. Each line represents the concentration of one species in
the mixture with respect to t. The values of the model parameters are referred to in the main text.
Similarly, the initial conditions of the model are also presented in the main text.

• The line represents the concentration of the enzyme during the process. In the
first stage, the concentration of enzyme drops rapidly due to the binding of substrates
to form substrate–enzyme complexes E · H2O2 and E · AH2. As time goes on, the
enzyme converts the substrates to products. This reduces the concentrations of the
substrates and makes the increases in the concentrations of products continuous. The
concentration of the enzyme goes up and reaches a steady state at the end of the
process. It should be noted that the steady concentration of the enzyme is lower than
its initial concentration.

• The line displays the concentration of the substrate H2O2. The concentra-
tion decreases rapidly and reaches a steady state at the end of the process. This
occurs because the intermediate enzyme E′ cannot convert the product H2O to the
substrate H2O2.

• The line describes the concentration of the substrate–enzyme complex E · H2O2.
It can be seen that the concentration rises up rapidly in the early stage because of the
binding of the substrate to the enzyme. Then, the concentration drops down quickly
since the enzyme catalyses the complex to form product H2O, and the substrate
unbinds from the complex. In the end, the concentration of the complex is completely
catalysed to form the product H2O and tends to zero then. This is because the reaction
is irreversible.

• The line corresponds to the concentration of the intermediate enzyme E′. The
concentration increases gradually and tends to zero at the end of the process. This
agrees with the nature of the process. That is, the intermediate enzyme is incapable of
converting the product H2O to the substrate H2O2 and the original enzyme E, and the
substrate AH2 binds to the enzyme E′ to form complexes E′ · AH2.

• The line shows the concentration of the product H2O. The concentration in-
creases rapidly and reaches a steady state. It is clear that the concentration approaches
the initial concentration of the substrate H2O2. In the end, the substrate H2O2 is
completely converted to the product H2O. This is in line with the nature of the process
since the enzyme is not able to convert the product H2O to the substrate H2O2.

• The line represents the concentration of the substrate AH2. The rapid decrease
in the concentration of AH2 is due to the binding of the substrate AH2 to the interme-
diate enzyme E′ to form the substrate–enzyme complex E′ · AH2. The concentration
tends to the concentration of H2O at the end of the process since this process will not
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take place once the substrate H2O2 is completely consumed. This agrees with the fact
that the enzyme is not able to convert the product AH• to the substrate AH2 at all.

• The line shows the concentration of the substrate–enzyme complex E′ · AH2.
At the early stage, the rapid increase in the concentration is due to the binding of
the substrate AH2 to the intermediate enzyme E′ to form the complex E′ · AH2. The
concentration approaches zero at the end of the process since the complex is totally
catalysed to form the product AH•, and the substrate AH2 is completely converted to
the product AH•. This is in line with the fact that the conversion of the complex to the
product AH• is an irreversible reaction.

• The line displays the concentration of the product AH• with respect to time t.
The concentration increases quickly at the early stage since the concentration of the
complex E′ · AH2 increase quickly and the enzyme rapidly catalyses the complex and
releases the product then. The concentration tends to the initial concentration of the
substrate AH2 or that of H2O2. The reason is that the reactions that form the product
AH2 will be terminated at once if the substrate H2O2 or AH2 is exhausted.

• The line shows the concentration of the substrate–enzyme complex E · AH2.
At the early stage, the rapid increase in the concentration is due to the binding of the
substrate AH2 to the enzyme E to form the complex E · AH2. It should be noted that
this reaction is reversible. The concentration approaches a steady state at the end of
the process since the substrate H2O2 is completely converted to the product H2O. This
means that the enzyme E′ is exhausted.

• The line displays the concentration of the substrate–enzyme complex E′ · H2O2.
At the early stage, the increase in the concentration is due to the binding of the
substrate H2O2 to the enzyme E′ to form the complex E′ · H2O2. It should be noted
that this reaction is reversible. The concentration tends to zero at the end of the process
since the substrate H2O2 is completely converted to the product H2O.

3.2. Further Numerical Results

We now display some further numerical solutions inspired by the fact that the frac-
tional order α is in (0, 1). That is, we conducted some numerical experiments for the
different values of α to obtain insights into the behaviours of the solutions of the model.
These values of α were taken to be α = 0.7, α = 0.8, and α = 0.9 to reduce the computa-
tion time. In these calculations, the default values used for the parameters are shown in
Table 1, and the initial concentrations for the enzyme, H2O2, and AH2 are those used in
Section 3.1. We used the solutions of the model for the product H2O and the substrate AH2
for this investigation.

In Figure 6, the solutions of the model for the product H2O were used to study α = 0.7,
α = 0.8, and α = 0.9. We illustrate how the new numerical results shown in Figure 6 were
generated by considering a particular example. Here, we consider the curves displayed in
Figure 6. The solid blue curve was generated using α = 0.7. The solid orange curve was
generated using α = 0.7, and the dash–dot green curve was generated using α = 0.9. It can
be clearly seen that the higher the value of α, the faster the increase in the concentration
of H2O.

Figure 7 shows the plots of the concentrations of AH2 with respect to time t for
different values α = 0.7, α = 0.8, and α = 0.9. Clearly, the smaller the value of α, the slower
the decrease in the concentration of AH2.
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Figure 6. Numerical solutions of the model for the concentration of H2O. Each line represents the
concentration of H2O in the mixture with respect to t for different values α = 0.7, α = 0.8, and α = 0.9.
The values of the model parameters are in the main text. Similarly, the initial conditions of the model
are also presented in the main text.
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Figure 7. Numerical solutions of the model for the concentration of AH2. Each line represents the
concentration of AH2 in the mixture with respect to t for different values α = 0.7, α = 0.8, and α = 0.9.
The values of the model parameters are in the main text. Similarly, the initial conditions of the model
are also presented in the main text.

4. Conclusions

Peroxidase enzymes facilitate oxidation with the assistance of H2O2 to assist plants
in maintaining optimal concentrations of organic compounds essential for physiological
functions. The cellular regulation of the oxidation rates involves inhibiting the enzyme
activity. Cells employ two inhibitory mechanisms to modulate enzyme activity: a noncom-
petitive substrate inhibition process and a competitive substrate inhibition process. This
paper presents a fractional mathematical model elucidating the H2O2-mediated oxidation
catalysed by Spanish broom peroxidase. Our mathematical model serves to dissect the regula-
tory mechanisms governing the behaviour of Spanish broom peroxidase. The biological
evidence utilised in the modeling process has been previously established. However, this
study marks the first instance where these concepts have been synthesised into a fractional
mathematical model. The model incorporates numerous bound states for the enzyme,
along with their corresponding activation statuses. The model was numerically integrated



Mathematics 2024, 12, 1411 13 of 15

using the fodeint, from the SciPy Python library, and the solutions obtained were found
to align with the established behaviour of Spanish broom peroxidase. Furthermore, the model
output demonstrated sensitivity to the fractional order.

While the model developed in this study was thoroughly investigated, there exists
potential for improvement and future research. For instance, one avenue for further ex-
ploration is the estimation of model parameters using experimental data. Additionally,
within the confines of this study, we did not specifically examine the sensitivity of the
model output to small variations in parameter values [44,45]. Consequently, employing the
homotopy analysis method to derive analytic solutions for the model [46,47] may enhance
the sensitivity analysis, as these analytic solutions could potentially reduce computational
expenses. Furthermore, it may be of interest to conduct a research study aimed at de-
veloping a computational tool for numerically solving the model, based on the methods
proposed in the referenced papers [42,43]. In addition, addressing the positivity of the
solutions of the model is an important consideration [48]. Finally, a notable limitation of
the study lies in the absence of validation against experimental data. While the theoretical
and computational aspects were explored, the lack of empirical validation leaves room for
further investigation and refinement.
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