
Citation: Hu, J.; Rong, F.; Zhang, P.;

Yan, F. Sideslip Angle Estimation for

Distributed Drive Electric Vehicles

Based on Robust Unscented Particle

Filter. Mathematics 2024, 12, 1350.

https://doi.org/10.3390/

math12091350

Academic Editor: Pedro A. Castillo

Valdivieso

Received: 20 March 2024

Revised: 12 April 2024

Accepted: 26 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Sideslip Angle Estimation for Distributed Drive Electric Vehicles
Based on Robust Unscented Particle Filter
Jie Hu 1,2,3,4, Feiyue Rong 1,2,3, Pei Zhang 1,2,3,* and Fuwu Yan 1,2,3

1 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of
Technology, Wuhan 430070, China; auto_hujie@whut.edu.cn (J.H.); rongfy@whut.edu.cn (F.R.);
yanfw@whut.edu.cn (F.Y.)

2 Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of
Technology, Wuhan 430070, China

3 Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of
Technology, Wuhan 430070, China

4 Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China
* Correspondence: zhangpei@whut.edu.cn

Abstract: An accurate and reliable sideslip angle is crucial for active safety control systems and
advanced driver-assistance systems (ADAS). The direct measurement method of the sideslip angle
suffers from challenges of high costs and environmental sensitivity, so sideslip angle estimation
has always been a significant research issue. To improve the precision and robustness of sideslip
angle estimation for distributed drive electric vehicles (DDEV) in extreme maneuvering scenarios,
this paper presents a novel robust unscented particle filter (RUPF) algorithm based on low-cost
onboard sensors. Firstly, a nonlinear dynamics model of DDEV is constructed, providing a theoretical
foundation for the design of the RUPF algorithm. Then, the RUPF algorithm, which incorporates
the unscented Kalman filter (UKF) to update importance density and utilizes systematic random
resampling to mitigate particle degradation, is designed for estimation. Eventually, the availability
of the proposed RUPF algorithm is validated on the co-simulation platform with non-Gaussian
noises. Simulation results demonstrate that RUPF algorithm attains a higher precision and stronger
robustness compared with the traditional PF and UKF algorithms.

Keywords: distributed drive electric vehicles; sideslip angle; state estimation; robust unscented
particle filter

MSC: 93-10

1. Introduction

With the advancement in intelligent connected electric vehicles, active safety con-
trol systems and advanced driver-assistance systems (ADASs) are progressively being
implemented in mass-produced cars. Distributed drive electric vehicle (DDEV) relies on
four in-wheel motors to achieve independent driving, braking, and steering. Due to its
unique structure and the capability to quantify driving/braking forces, DDEV serves as an
excellent platform for implementing active safety control systems and ADASs [1–3]. It is
widely acknowledged that the devising of these active safety control systems and ADASs
necessitates the real-time acquisition of vehicle-inherent information, for instance, yaw rate,
sideslip angle, and vehicle longitudinal speed [4,5]. Among the aforementioned vehicle
state information, the sideslip angle is a pivotal parameter in characterizing the vehicle’s
stability. The need for a precise sideslip angle is particularly pressing for vehicle motion
control. Nevertheless, the direct measurement method of sideslip angles using Global
Positioning System (GPS) and Inertial Navigation System (INS) or non-contact optical
sensors suffers from challenges involving high costs and environmental sensitivity [6].
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Consequently, current strategies predominantly rely on various algorithms for estimation.
The cornerstone of vehicle state estimation involves employing low-cost sensors, leveraging
vehicle dynamics principles, and integrating the unique attributes of DDEV to estimate the
sideslip angle through information fusion.

Vehicle sideslip angle estimation methodologies are principally categorized into three
primary groups, direct integration methods based on kinematics, state observer methods
based on dynamics, and data-driven methods based on neural networks (NN) [7–9], as
illustrated in Figure 1.
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Sideslip angle estimation based on kinematics primarily involves directly integrating
the sensor signals or constructing an estimator via GPS/INS. Li et al. [10] compared the
direct integration method with other estimation techniques in practical experiments. Bevly
et al. [11] built a classic bicycle model and combined INS with GPS measurements to obtain
superior accuracy of the sideslip angle. The methods based on kinematics demonstrate
notable robustness but are heavily dependent on sensor accuracy. The sensor errors tend to
accumulate during integration, particularly for lateral acceleration, which is susceptible to
various internal and external factors [12]. Moreover, model-free neural networks provide
alternative methods for sideslip angle estimation, encompassing artificial neural network
(ANN), hybrid neural network (HNN), recurrent neural network (RNN), radial basis
function (RBF), adaptive neuro-fuzzy inference system (ANFIS), and other deep learning
(DL)-based approaches. Chindamo et al. [13] employed a 5-10-1 ANN architecture to
forecast the vehicle sideslip angle, aimed at enhancing the efficacy of automotive active
safety systems. Gao et al. [14] designed an estimation algorithm based on HNN, leveraging
vehicle dynamics characteristics to achieve precise state estimation without relying on a
dynamic model. Gräber et al. [15] demonstrated how to integrate RNN with kinematic
models, thus proposing a supervised machine learning scheme for sideslip angle estimation.
Zha et al. [16] combined the model-driven algorithm with the data-driven RBF neural
network approach and employed the dichotomy method to implement weighted fusion
of the estimation results, thereby enhancing the accuracy of estimation. Based on cheap
sensors, Boada et al. [17] utilized the ANFIS for sideslip angle estimation. Furthermore,
Ghosh et al. [18] drew an observer based on DL networks for robustly estimating sideslip
angles in all-wheel-drive vehicles. Neural-network-based methods typically yield more
accurate estimation results. However, this kind of estimation method requires substantial
volumes of data for parameter training and consumes more computational resources during
algorithm execution.

Dynamics-based estimation methods for sideslip angle can significantly mitigate re-
liance on sensor accuracy and are currently the predominant methods in the field, involving
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methods such as Luenberger observer (LO), sliding mode observer (SMO), robust observer
(RO), fuzzy logic control, and Kalman filter (KF) and its various variations. Ding et al. [19]
utilized the LO for estimation based on a simplified bicycle model. Chen et al. [20] de-
veloped an SMO by utilizing the accurate UniTire model, which not only lessened the
computational load but also yielded favorable estimation outcomes. Chen et al. [21] de-
veloped an RO with regional stability constraints, and higher estimation accuracy was
achieved compared to the LO. Cheli et al. [22] employed fuzzy logic control to enhance the
estimation accuracy of integrated observers based on kinematics and dynamics.

Among dynamics-based approaches, Kalman filter-based estimation methods have
exhibited good robustness for model inaccuracies and environmental noise and real-time
computation, and have been considered as the leading estimation technique in contem-
porary applications. Anderson et al. [23] integrated GPS and INS measurements via a
KF for estimation. Given that vehicle systems exhibit strong nonlinear behavior, while
traditional Kalman filters are designed for linear systems, several variants of Kalman filter
have emerged, including extended Kalman filter (EKF), unscented Kalman filter (UKF),
and cubature Kalman filter (CKF), etc. The EKF approach linearizes the nonlinear system
and preserves the first-order Taylor expansion term, facilitating the handling of nonlin-
earity. Reina et al. [24] addressed the impact of tire-cornering stiffness on sideslip angle
estimation by proposing an augmented EKF to accommodate model parameter variability.
Nonetheless, the EKF methodology needs to solve the Jacobian matrix and ensure the
continuous accumulation of linearization errors. The UKF employs unscented transfor-
mation (UT) to approximate the probability density distribution (PDF) of functions, and
utilizes a determined set of sample Sigma points to approach posterior probability density.
The second-order Taylor expansion term would be maintained in the linearization of UKF.
Wang et al. [25] developed a UKF algorithm, and also conducted joint simulation tests to
verify the enhanced accuracy of the UKF algorithm across various operational conditions.
Strano et al. [26] implemented a constrained UKF to lighten the impact of measurement
noise and nonlinearity on sideslip angle estimation. The CKF employs special rules to select
volume points, offering a systematic approach to solving high-dimensional challenges [27].
On the basis of a nonlinear three-degrees-of-freedom (3-DOF) vehicle model, Xin et al. [28]
introduced a CKF algorithm for estimating sideslip angle by merely utilizing common
onboard sensors. Furthermore, algorithms such as the fuzzy adaptive robust CKF and the
weighted square root CKF have also been applied for estimation [29,30].

However, the KF and its various derivatives are optimally suited for scenarios where
both process and measurement noises adhere to Gaussian distributions. In fact, the sta-
tistical properties of the noises during actual driving conditions remain uncertain, so the
estimation accuracy of Kalman filter-based methods would significantly diminish in a real-
time estimation of sideslip angle, especially for vehicular nonlinearity without assuming
that noises follow Gaussian distributions.

As a statistical approach founded on sequential Monte Carlo (SMC) methods, the
particle filter (PF) effectively implements the recursive Bayesian filter (RBF) for estimation
in nonlinear, non-Gaussian systems. Therefore, PF has been reckoned as a solution to
address the constraints of vehicle nonlinear systems and non-Gaussian noise that Kalman
filter-based methods have suffered [31]. However, PF faces challenges from importance
density identification and particle degradation [32]. As the number of iterations increases,
most particles with minimal weights become scarce or vanish, and thus particle diversity
diminishes significantly. Particle degradation not only leads to the squandering of substan-
tial computational resources on inconsequential particle computations but also impairs
the accuracy of the outcomes. To mitigate particle degradation, commonly employed
strategies include increasing the amount of particles, implementing resampling techniques,
and designing a reasonable importance density [33–35]. The core idea behind increasing
the number of particles is to enhance particle diversity and decelerate particle degradation.
Nevertheless, the increase in particle quantity will result in a higher computational time,
rendering it unsuitable for real-time vehicular control systems. Resampling techniques
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involve polynomial resampling, systematic random resampling, etc. Systematic random
resampling, noted for its low computational complexity, can enhance the efficacy of the PF
algorithm. Ultimately, choosing an appropriate importance density ensures the validity of
the particles. The traditional PF algorithm selects the posterior PDF of the state transition
as the importance density, making the updates of particle weight at any given moment
only relate to the previous state. Hence, the traditional PF algorithm cannot fully utilize the
latest measurement information, ultimately reducing the estimation accuracy.

To address the identified research deficiencies and increase the precision and robust-
ness of sideslip angle estimation, this study presented a robust unscented particle filter
(RUPF) algorithm by combining PF and UKF. Given the uncertainties associated with
process and measurement noise, the RUPF algorithm adopts the PF algorithm as its core
framework. To overcome the challenge of selecting an appropriate importance density, the
UKF is utilized to update the importance density with real-time observational information.
Additionally, systematic random resampling is implemented to reduce particle degradation,
thereby enhancing the algorithm’s accuracy and robustness in estimating the sideslip angle.

The main contributions are summarized as follows:

(1) A RUPF algorithm, leveraging low-cost onboard sensors, is devised to estimate the
sideslip angle. The importance density is initially updated in real time using the
UKF, followed by the application of systematic stochastic resampling to counteract
particle degradation.

(2) Three performance metrics are introduced to quantitatively assess the precision of the
RUPF algorithm, and the precision and robustness of RUPF are thoroughly validated
through simulation tests under different maneuver scenarios.

The rest of this paper is organized as follows: Section 2 gives a detailed construction
method for a DDEV dynamics model. Section 3 illustrates the design process of the RUPF
algorithm. Simulation comparative analysis is provided to demonstrate the advantage of
the proposed approach with different scenario tests in Section 4. Finally, conclusions and
outlooks are discussed in Section 5.

2. Vehicle Dynamics Model

The vehicle dynamics model is the foundation for vehicle sideslip angle estimation.
The RUPF estimation algorithm necessitates the consideration of the observer’s real-time
capabilities and the model’s precision. Typically, the DDEV dynamics model comprises
two primary components, a vehicle body model and a tire model, which are delineated
separately in the subsequent sections. Based on the DDEV dynamics model, state-of-system
equations and measurement equations necessary for the RUPF algorithm in discrete time
are also illustrated.

2.1. Nonlinear 3-DOF Dynamics Model

Balancing model simplification with real-time algorithm requirements, this paper
develops a nonlinear 3-DOF model that encompasses longitudinal, lateral, and yaw move-
ments. As displayed in Figure 2, the dynamics model restricts vehicle movement to the xoy
plane, and the vehicle’s center of gravity (CoG) aligns with the coordinate system’s origin.
Here, x represents the longitudinal motion, while y corresponds to its lateral direction.
Additionally, the model incorporates the following assumptions [36]: (1) disregarding the
effect of the steering system, input parameter is defined as front wheel steering angle;
(2) the effects of suspension system are neglected, along with vertical wheel runout; (3) the
dynamics of each tire are considered identical; and (4) the influences of air resistance and
rolling resistance are overlooked.
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The equilibrium equations for the nonlinear 3-DOF vehicle dynamics model are
delineated below:

m
( .
vx − vyγ

)
=

(
Fx f l + Fx f r

)
cosδ −

(
Fy f l + Fy f r

)
sinδ + Fxrl + Fxrr (1)

m
( .
vy + vxγ

)
=

(
Fx f l + Fx f r

)
sinδ +

(
Fy f l + Fy f r

)
cosδ + Fyrl + Fyrr (2)

Iz
.
γ =

[(
Fx f r − Fx f l

)
cosδ +

(
Fy f l − Fy f r

)
sinδ

] d f
2 + (Fxrr − Fxrl)

dr
2 +

[(
Fx f l + Fx f r

)
sinδ +

(
Fy f l + Fy f r

)
cosδ

]
a −

(
Fyrl + Fyrr

)
b (3)

where m is vehicle mass; L is wheelbase, L = a + b; a and b are distance from CoG to axles;
d f and dr are track width of axles, respectively; Iz is yaw inertia moment; δ is on behalf of
front wheel steering angle; α f and αr are slip angle of front and rear wheels; vx and vy are
longitudinal and lateral speeds; γ is yaw rate; β is sideslip angle; Fxij is longitudinal force
exerted on wheels; Fyij is lateral force; and ij = f l, f r, rl, rr, which stands for left front, right
front, left rear, and right rear wheels, respectively.

The sideslip angle is deduced from the inverse tangent of the rate of lateral to longitu-
dinal vehicle speeds, and its numerical value is generally small (ranging from −5◦ to 5◦).
For the sake of simplifying calculations, it can be approximated as follows:

β = arctan
(

vy

vx

)
≈

vy

vx
(4)

The linear tire model is more effective in characterizing tire forces in the case of lateral
acceleration within 0.4 g. Consequently, lateral forces can be represented as follows:{

Fy f = k f α f
Fyr = krαr

(5)

where k f and kr represent the cornering stiffnesses of axles; Fy f is the lateral force on the
front axle, Fy f = Fy f l + Fy f r; and Fyr is the lateral force on the rear axle, Fyr = Fyrl + Fyrr.

In the presence of a small tire slip angle, there exists a small-angle approximation. The
slip angle of wheels can be described as below:{

α f =
(
vy + aγ

)
/vy − δ

αr =
(
vy − bγ

)
/vx

(6)

Through Equations (1)–(6), state space equations of DDEV can be simplified as below:
.
γ =

a2k f +b2kr
Izvx

γ +
ak f −bkr

Iz
β − ak f

Iz
δ

.
β =

( ak f −bkr

mv2
x

− 1
)

γ +
k f +kr
mvx

β − k f
mvx

δ
.
vx = γβvx + ax

(7)
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2.2. Tire Model

As the exclusive interface between the vehicle and the ground, tires predominantly
convey the system’s nonlinear properties. The Dugoff model, derived from the Magic
Formula model, effectively encapsulates nonlinear characteristics of vehicle tires. The
Dugoff tire model offers a more streamlined parameter fitting process than the Magic
Formula tire model and boasts computational simplicity compared to the UniTire model.
Thus, this study chose the Dugoff model to simulate the tire, which is articulated as
follows [37]: {

Fx = Cx
λ

1−λ f (L)
Fy = Cy

tan α
1−λ f (L)

(8)

f (L) =
{

1 , L ≥ 1
L(2 − L) , L < 1

(9)

L =
µFz(1 − λ)

2
√

Cx
2λ2 + Cy

2 tan2 α

(
1 − εv

√
Cx

2λ2 + Cy
2 tan2 α

)
(10)

where Cx and Cy are the longitudinal and lateral cornering stiffnesses of tires; µ is the road
adhesion coefficient; and ε is the velocity impact factor.

To enhance the precision of the Dugoff model, the cornering stiffnesses are calculated
by the following equation: {

Cx = a0Bx
(
a1F2

z + a2Fz
)

Cy = b0By
(
b1F2

z + b2Fz
) (11)

where a0, a1, a2, b0, b1, and b2 are the fitting coefficients, and Bx and By are tire stiffness
factors, as represented in Table 1.

Table 1. The fitting coefficients of the Dugoff model.

Coefficient a0 a1 a2 b0 b1 b2 Bx By

Value 1.42 −11.03 1037 1.38 −5.67 976 0.6766 0.1559

Throughout the vehicle’s operation, the vertical load on each wheel varies due to
steering and braking, which can be computed as follows:

Fz f l = mg b
2L − max

hg
2L − may

bhg
Ld f

Fz f r = mg b
2L − max

hg
2L + may

bhg
Ld f

Fzrl = mg a
2L + max

hg
2L − may

bhg
Ld f

Fzrr = mg a
2L + max

hg
2L + may

bhg
Ld f

(12)

The slip angle of each tire is:
α f l = δ − arctan

((
vy + aγ

)
/
(

vx − 0.5d f γ
))

α f r = δ − arctan
((

vy + aγ
)
/
(

vx + 0.5d f γ
))

αrl = −arctan
((

vy − bγ
)
/(vx − 0.5drγ)

)
αrr = −arctan

((
vy − bγ

)
/(vx + 0.5drγ)

) (13)

The longitudinal velocity of each tire is denoted, respectively, as:
v f l = (vx − 0.5dγ) cos δ +

(
vy + aγ

)
sin δ

v f r = (vx + 0.5dγ) cos δ +
(
vy + aγ

)
sin δ

vrl = vx − 0.5dγ
vrr = vx + 0.5dγ

(14)
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The longitudinal tire slip ratios of wheels are denoted, respectively, as:

λij =
ωijR − vij

max
(
ωijR, vij

) (15)

where Fzij is vertical tire load; αij is tire slip angle; λij is slip ratio; ωij is rotational angular
velocity of wheels; hg is height of vehicle’s CoG; R is effective tire radius; g is the acceleration

of gravity; and d is an average value of track width, d =
(

d f + dr

)
/2.

The wheel rotational dynamics model is illustrated in Figure 3. The equation for each
wheel can be denoted as [38]:

J
.

ωij = Tdij − FxijR (16)

where J is wheel moment of inertia and Tdij is motor driving torque.
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2.3. Discretization of System and Measurement Equations

Both system and measurement equations for sideslip angle estimation should be
discretized to implement the subsequent RUPF estimation algorithm.

As outlined in Equation (7), the time-continuous state x can be defined as follows:

x =
[
γ β vx

]T (17)

The continuous-time control input u is defined as:

u =
[
δ ax

]T (18)

Through Equations (2), (4)–(6), the measurement equation is simplified as:

z =
[
ay
]
=

ak f − bkr

mvx
γ +

k f + kr

m
β −

k f

m
δ (19)

where ax and ay are the longitudinal and lateral acceleration.
From Equations (7), (17)–(19), the time-continuous system and measurement formulas

can be derived: { .
x(t) = f (x(t), u(t)) + w(t)
z(t) = h(x(t), u(t)) + v(t)

(20)

Equation (20) can be further discretized as:{
xk+1 = f(xk, uk) + wk
zk = h(xk, uk) + vk

(21)

where xk is discrete system state variable; zk is discrete system measurement variable; uk
is the system input control; wk and vk are process and measurement noises; and k, k + 1
represent sampling moments.
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3. The Design of the RUPF Algorithm for Sideslip Angle Estimation

In this section, the RUPF algorithm incorporating PF and UKF algorithms for sideslip
angle estimation is discussed. The flowchart of the RUPF algorithm is displayed in Figure 4.
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Figure 4. The flowchart of the RUPF algorithm.

For the nonlinear discrete system described in Equation (21), the procedure for the
RUPF algorithm involves the following steps:

(1) Initialization (k = 0): sample N particles
{

xi
0
}N

i=1 with same weights 1/N generated
by the prior PDF p(x0):

x̂i
0 = E

[
xi

0

]
, Pi

0 = E
[(

xi
0 − x̂i

0

)(
xi

0 − x̂i
0

)T
]

(22)

(2) Calculate the importance density using UKF when k = 1, 2, . . .:
Construct Sigma points based on symmetric sampling strategy:

χi
(0) = x̂i

0 , l = 0

χi
(l) = x̂i

0 +

(√
(n + λ)Pi

0

)
l

, l = 1, 2, . . . , n

χi
(l) = x̂i

0 −
(√

(n + λ)Pi
0

)
l

, l = n + 1, . . . , 2n

(23)

Calculate the Sigma points’ weight:
ωim
(0) =

λ
n+λ , l = 0

ωic
(0) =

λ
n+λ +

(
1 − α2 + β

)
, l = 0

ωim
(l) = ωic

(l) =
1

2(n+λ)
, l = 1, 2, . . . , 2n

λ = α2(n + κ)− n

(24)

where x̂i
0 and Pi

0 are the averages of the system states and error covariance matrix; m is the
weight of the states and c is the weight of Pi

0; λ is scaling function; α is utilized to control
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distribution function (10−4 ≤ α ≤ 1); κ is the second-order scaling parameter, κ = 0 when
n > 3, κ = 3 − n when n ≤ 3; and β is the weighting factor, which is defined as 2 according
to a large number of experiences.

The UT is utilized to generate the Sigma points set:

χi
k−1 =

[
x̂i

k−1 x̂i
k−1 +

√
(n + λ)Pi

k−1 x̂i
k−1 −

√
(n + λ)Pi

k−1

]
(25)

One-step prediction of the points is computed as follows:

χi−
k = f

[
χi

k−1, uk−1

]
(26)

Calculate the state mean and error covariance matrix:

x̂i−
k =

2n

∑
j=0

ωimχi−
k (27)

Pi−
k =

2n

∑
j=0

ωic
[
χi−

k − x̂i−
k

][
χi−

k − x̂i−
k

]T
+ Q (28)

Based on the one-step prediction, a new series of points is generated by the UT:

χi
k =

[
x̂i−

k x̂i−
k +

√
(n + λ)Pi−

k x̂i−
k −

√
(n + λ)Pi−

k

]
(29)

Calculate the observed predicted values for the Sigma points:

Zi−
k = h

[
χi

k, uk−1

]
(30)

The observed predictions are weighted to find the mean and error covariance matrix
of the systematic observed predictions:

ẑi−
k =

2n

∑
j=0

ωimZi−
k (31)

Pzz =
2n

∑
j=0

ωic
[

Zi−
k − ẑi−

k

][
Zi−

k − ẑi−
k

]T
+ R (32)

Calculate the inter-correlation error covariance matrix:

Pxz =
2n

∑
j=0

ωic
[
χi

k − x̂i−
k

][
Zi−

k − ẑi−
k

]T
(33)

Calculate the Kalman gain matrix:

Kk = PxzP−1
zz (34)

Update state estimation and error covariance matrix:

x̂i
k = x̂i−

k + Kk

(
zk − ẑi−

k

)
(35)

Pi
k = Pi−

k − KkPzzKT
k (36)

(3) Importance sampling, sampling particles:

x̃i
k ∼ q

(
xi

k

∣∣∣xi
k−1 , zk

)
= N

(
x̂i

k, Pi
k

)
(37)
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where N(·) is a Gaussian function.
(4) Update particle weights and normalize:

ωi
k ∝ ωi

k−1

p
(

zk|x̃i
k
)

p
(

x̃i
k

∣∣∣xi
k−1

)
q
(

x̃i
k

∣∣∣xi
k−1 , zk

) (38)

ω̃i
k = ωi

k/
N

∑
i=0

ωi
k (39)

(5) Systematic random resampling:
1⃝ Initialization of the cumulative distribution function (CDF): c0 = 0;
2⃝ Assign the CDF;

ci = ci−1 + ω̃i
k (40)

3⃝ For N particles, generate random numbers separately:

a ∼ U(0, 1) (41)

Find the integer j that satisfies the following equation, where j = 1, 2, . . . , N:

cj−1 < a < cj (42)

Copy the jth particle once and assign it to the new particle; the particle weights are
reset to 1/N, and a total of N new particles are generated after the resampling;

(6) State the estimation output at the moment k.

x̂k =
N

∑
i=0

ω̃i
k x̃i

k (43)

The pseudocode of the RUPF algorithm is displayed in Algorithm 1.

Algorithm 1: Robust Unscented Particle Filter Algorithm

1: Initialize filter parameters: particle number N; total simulation time t; time step T;
2: Initialize the vehicle parameters to be estimated: x̂i

0, Pi
0;

3: for k = T:T:t do
4: for i = 1:N do
5: generate Sigma points set: χi

k−1;
6: calculate the priori state estimate: χi−

k ;
7: generate a new set of Sigma points: χi

k;
8: calculate the priori measurement: Zi−

k ;
9: calculate the UKF gain: Kk;
10: update the variables of state and error covariance matrix: x̂i

k, Pi
k;

11: end for
12: importance resampling: x̃i

k;
13: update particle weights and normalize: ω̃i

k;
14: initialize the CDF: c0;
15: assign cumulative weights to CDF;
16: for j = 1:N do
17: systematic random resampling;
18: end for
19: state estimation results: x̂k;
20: end for

4. Simulation Results and Discussion

In order to demonstrate the feasibility and effectiveness of the RUPF algorithm, a
co-simulation platform is built as illustrated in Figure 5, which consists of four main sub-
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modules: the distributed drive electric vehicle system, data acquisition system, sideslip
angle estimation system, and evaluation system. Due to the current absence of the DDEV
model within the Carsim software, a virtual model of DDEV based on the Carsim/Simulink
software is constructed in the first submodule. The communication connection between
Carsim and Simulink is realized through the Carsim-S function. Moreover, classical ex-
periments, including double lane change (DLC) and slalom tests, designed to assess the
stability of automobile maneuvering under high- and low-adhesion roads, are executed
on the virtual DDEV. The data acquisition system simulates real unknown noise environ-
ments. Subsequently, the proposed RUPF algorithm and traditional PF and UKF algorithms
are designed for estimation. Estimation results of RUPF, PF, and UKF are quantitatively
evaluated and compared across three performance metrics in the fourth submodule.
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4.1. Simulation Setup

The particular testing criteria are guided by ISO 15037-1:2019 and ISO 3888-1:2018
standards [39,40]. In this study, µ is set to 0.85 for dry and uniform paved road surfaces,
while for icy or snowy road surfaces, it is set to 0.35. For the DLC tests, the vehicle
speeds are set at 80 km/h and 30 km/h, while for slalom tests, they are set at 60 km/h
and 35 km/h, respectively. Considering practical constraints, this study refrained from
conducting high-speed DLC and slalom tests on road surfaces with low adhesion.

The major parameters of the DDEV are sourced from the full-size SUV in Carsim
software, as depicted in Table 2.

Table 2. The major parameters of DDEV.

Parameters Symbol Unit Value

Vehicle mass m kg 2532
Distance from vehicle CoG to front axle a m 1.33
Distance from vehicle CoG to rear axle b m 1.81

Height of vehicle CoG hg m 0.781
Front track width d f m 1.725
Rear track width dr m 1.750

Yaw moment of inertia Iz kg·m2 3524.9
Effective tire radius R m 0.368

Wheel moment of inertia J kg·m2 1.1
Rated power of the motor P kW 30

To further illustrate the superiority of the RUPF algorithm, three performance metrics—
mean absolute error (MAE), maximum absolute error (MaxAE), and root mean square error
(RMSE)—are employed for a quantitative comparison of estimation outcomes. MAE
indicates the average magnitude of the estimation errors, MaxAE assesses the maximum
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deviation between the estimated and reference values, and RMSE evaluates the tracking
accuracy and robustness of the estimation results. Three performance metrics are calculated
using the following formulas:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (44)

MaxAE = max

[
1
N

N

∑
i=1

|yi − ŷi|
]

(45)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (46)

where ŷi is the estimation results of algorithms, yi represents the reference value from the
Carsim, and N represents the number of simulation runs.

4.2. DLC Tests

The DLC test simulates the vehicle’s lane-keeping capability during emergency closed-
loop control in actual driving, involving overtaking and emergency avoidance. It is a
significant test condition for evaluating vehicle handling stability. Inputs for the high-
vehicle-speed DLC test are depicted in Figure 6, while the corresponding simulation
outcomes are depicted in Figure 7.

Figure 7 demonstrates that the UKF, PF, and RUPF algorithms can precisely estimate
the vehicle sideslip angle with an error margin not exceeding 0.21◦. The above prediction
accuracy satisfies the demands of active safety control and ADAS. Additionally, it can
be observed that the RUPF algorithm exhibits a smaller error margin in sideslip angle
estimation. In Figure 7b, there is almost no error in the estimation of the RUPF algorithm
during 0–2 s and 8–12 s, demonstrating a significant improvement over PF and UKF
algorithms. A comparative analysis of three evaluation metrics on the high adhesion road
is presented in Table 3. Regarding the MAE performance metric, the estimation results
obtained by the RUPF algorithm demonstrate an improvement in accuracy of 16.3% and
16.9% compared to UKF and PF algorithms, respectively. Meanwhile, as for MaxAE, the
RUPF algorithm shows enhancements of 16.5% and 17.7%, respectively. Compared with
traditional algorithms, the RMSE has improved by 13.2% and 13.6%.
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Table 3. MAE, MaxAE, and RMSE of the algorithms under high-vehicle-speed DLC test with high
road adhesion coefficient.

80 km/h MAE MaxAE RMSE

UKF 0.0447 0.2028 0.0682
PF 0.0450 0.2059 0.0685

RUPF 0.0374 0.1694 0.0592

Inputs for the low-vehicle-speed DLC test are illustrated in Figure 8, and the associated
simulation outcomes are showcased in Figure 9.
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The simulation results for the low-vehicle-speed DLC test are depicted in Figure 9.
Despite the reduced speed, the three algorithms employed for sideslip angle estimation
closely approximated the reference value, with an algorithmic error not exceeding 0.13◦ and
a relative error below 10%. In Figure 9b,d, the absolute error in sideslip angle estimation
generated by the RUPF algorithm is significantly smaller compared to the UKF and PF
algorithms. At the same time, the errors generated during the DLC test on high-road-
adhesion coefficient surfaces are smaller compared to those on low-adhesion surfaces. This
is because the DDEV exhibits stronger nonlinear characteristics on low-road-adhesion
coefficient surfaces. As indicated in Table 4, on dry and uniform paved roads, the accuracy
and robustness of the RUPF algorithm show improvements of 24.6%, 21.0%, and 10.4%
for three evaluation metrics when compared to the UKF algorithm, and enhancements of
26.1%, 22.2%, and 10.7% in comparison to the PF algorithm. When on icy or snowy road
surfaces, the improvement is 21.9%, 20.6%, 8.7% and 23.3%, 21.8%, 9.0%, respectively. In
relative terms, the estimation efficacy is superior under high-adhesion roads.

Table 4. MAE, MaxAE, and RMSE of the algorithms under low-vehicle-speed DLC tests.

30 km/h
µ = 0.85 µ = 0.35

MAE MaxAE RMSE MAE MaxAE RMSE

UKF 0.0195 0.1146 0.0298 0.0219 0.1295 0.0344
PF 0.0199 0.1163 0.0299 0.0223 0.1314 0.0345

RUPF 0.0147 0.0905 0.0267 0.0171 0.1028 0.0314
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4.3. Slalom Tests

To further underscore the superiority of the RUPF algorithm, slalom simulation tests
are also conducted, representing typical extreme maneuvering scenarios. Inputs of the high
vehicle speed slalom test are displayed in Figure 10.
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Figure 10. The inputs of the high-vehicle-speed slalom test (µ = 0.85). (a) The front wheel steering
angle; (b) longitudinal acceleration and lateral acceleration (with non-Gaussian noise).

The results with high speed are revealed in Figure 11. The vehicle’s peak lateral
acceleration exceeded 4 m · s−2, indicating that the vehicle had entered a distinct phase of
nonlinear control. As seen in Figure 11a, the estimated values from all three estimation
algorithms can track the trend of the actual values. Due to the inherent nonlinear charac-
teristics of the vehicle, the estimation results exhibit a slight deviation from the reference
value. Nevertheless, it is evident that the errors obtained by the RUPF algorithm are the
smallest. More details of the three performance metrics are given in Table 5. The slip angle
estimation using the RUPF algorithm demonstrates improvements of 9.5% and 9.7% in the
MAE. The MaxAE for the UKF and PF algorithms are approximately 0.49◦, while the RUPF
algorithm achieves a lower MaxAE of 0.439◦. Regarding the RMSE, the estimation precision
of the RUPF shows an improvement of 8.5% over the UKF and 8.7% over the PF. Compared
to the high-speed DLC test performance metrics outlined in Table 3, it becomes evident that
the performance metrics for the vehicle during the high-speed slalom test exhibit larger
numerical values, reflecting poorer outcomes. This phenomenon can be attributed to the
more extreme nature of the slalom test.
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Table 5. MAE, MaxAE, and RMSE of the algorithms under the high-vehicle-speed slalom test with
high road adhesion coefficient.

60 km/h MAE MaxAE RMSE

UKF 0.1793 0.4894 0.2259
PF 0.1797 0.4920 0.2263

RUPF 0.1622 0.4390 0.2066

Figure 12 displays the input signals for low-vehicle-speed slalom tests.
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The simulation outcomes for low-vehicle-speed slalom tests are presented in Figure 13.
It is noteworthy that in Figure 13b, at around 20 s, the absolute errors generated by all three
algorithms reach their maximum. This occurrence arises from the vehicle transitioning
from the last turn to straight motion during the test. In general, the three estimation
algorithms closely align with the actual values, with the estimation absolute error being
less than 0.17◦ on high-adhesion roads and 0.18◦ on low-adhesion roads. Among them, the
RUPF algorithm demonstrates the smallest absolute error, consistently remaining below
0.14◦ and 0.16◦, respectively. Table 6 provides a comparison of the three metrics for the
low-speed slalom tests. The estimation precision and robustness of the RUPF algorithm
shows improvements of 7.4%, 19.6%, and 6.8% over the UKF and 7.2%, 20.7%, and 6.6%
over the PF algorithm on the high-adhesion road surface. Meanwhile, under low-adhesion
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road conditions, these metrics demonstrate respective enhancements of 5.3%, 10.0%, and
4.4% for MAE, MaxAE, and RMSE, and 5.2%, 10.4%, and 4.0%, respectively. Relatively
speaking, the estimation performance is notably better on the high-adhesion road surface.
In contrast between the assessment metrics for the low-speed DLC tests and the slalom
tests, as delineated in Tables 4 and 6, the DLC tests manifest superior estimation outcomes.
This disparity can be attributed to the comparatively diminished nonlinear characteristics
of the vehicle during this testing scenario.
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error (µ = 0.35).

Table 6. MAE, MaxAE, and RMSE of the algorithms under low-vehicle-speed slalom tests.

35 km/h
µ = 0.85 µ = 0.35

MAE MaxAE RMSE MAE MaxAE RMSE

UKF 0.0445 0.1703 0.0544 0.0680 0.1797 0.0839
PF 0.0444 0.1728 0.0543 0.0679 0.1806 0.0835

RUPF 0.0412 0.1370 0.0507 0.0644 0.1618 0.0802

Based on the above analysis, the RUPF algorithm demonstrates notable accuracy and
robustness in estimating sideslip angle under both high and low vehicle speeds and road
adhesion coefficient conditions during the DLC tests and slalom tests.
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5. Conclusions

This paper proposes an RUPF algorithm for estimating the vehicle sideslip angle of
DDEVs based on common low-cost sensors. The RUPF algorithm accounts for uncertainties
in process and measurement noises and employs the UKF to update the importance density
with current, significant information in real time. Moreover, systematic random resampling
is utilized to enhance the precision and robustness of the estimation. Thus, the RUPF
algorithm effectively addresses the significant challenges associated with configuring the
importance density and mitigating particle degradation. To validate the availability of
the RUPF algorithm, simulation analyses for DLC and slalom tests were carried out in
the co-simulation platform. The simulation outcomes indicate that the RUPF algorithm
achieves higher precision and stronger robustness in estimating the vehicle sideslip angle
under non-Gaussian noise. Compared to traditional PF and UKF algorithms, the sideslip
angle estimation results of the RUPF exhibit improvements of 5.2–26.1% in MAE, 10.0–22.2%
in MaxAE, and 4.0–13.6% in RMSE across two extreme maneuvering scenarios.

In the future, Hardware-in-the-Loop (HIL) tests or real-car experiments will be con-
ducted to prove the real-time performance of the RUPF algorithm and its applicability
within actual controllers. Furthermore, in order to realize multi-parameter joint estimation,
the mutual influence mechanism between the sideslip angle and other vehicle parameters
should be revealed using a sensitivity analysis.

Author Contributions: J.H.: Writing—review and editing, funding acquisition. F.R.: Methodology,
writing—original draft, writing—review and editing, software. P.Z.: Supervision, funding acquisition,
writing—original draft. F.Y.: supervision, resources. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by the Key R & D project of Hubei Province (2022BAA076),
Independent Innovation Projects of the Hubei Longzhong Laboratory (2022ZZ-21), and the Guangxi
Science and Technology Major Program (2023AA05001).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Guo, N.; Zhang, X.; Zou, Y.; Lenzo, B.; Du, G.; Zhang, T. A supervisory control strategy of distributed drive electric vehicles for

coordinating handling, lateral stability, and energy efficiency. IEEE Trans. Transp. Electrif. 2021, 7, 2488–2504. [CrossRef]
2. Ding, X.; Wang, Z.; Zhang, L.; Wang, C. Longitudinal vehicle speed estimation for four-wheel-independently-actuated electric

vehicles based on multi-sensor fusion. IEEE Trans. Veh. Technol. 2020, 69, 12797–12806. [CrossRef]
3. Xu, T.; Zhao, Y.; Deng, H.; Guo, S.; Lin, F. Integrated optimal control of distributed in-wheel motor drive electric vehicle in

consideration of the stability and economy. Energy 2023, 282, 128990. [CrossRef]
4. Guo, H.; Cao, D.; Chen, H.; Lv, C.; Wang, H.; Yang, S. Vehicle dynamic state estimation: State of the art schemes and perspectives.

IEEE/CAA J. Autom. Sinica. 2018, 5, 418–431. [CrossRef]
5. Jin, X.; Yin, G.; Chen, N. Advanced estimation techniques for vehicle system dynamic state: A survey. Sensors 2019, 19, 4289.

[CrossRef]
6. Park, G.; Choi, S.; Hyun, D.; Lee, J. Integrated observer approach using in-vehicle sensors and GPS for vehicle state estimation.

Mechatronics 2018, 50, 134–147. [CrossRef]
7. Liu, J.; Wang, Z.; Zhang, L.; Walker, P. Sideslip angle estimation of ground vehicles: A comparative study. IET Control Theory Appl.

2020, 14, 3490–3505. [CrossRef]
8. Chindamo, D.; Lenzo, B.; Gadola, M. On the vehicle sideslip angle estimation: A literature review of methods, models, and

innovations. Appl. Sci. 2018, 8, 355. [CrossRef]
9. Song, R.; Fang, Y. Vehicle state estimation for INS/GPS aided by sensors fusion and SCKF-based algorithm. Mech. Syst. Signal

Process. 2021, 150, 107315. [CrossRef]
10. Li, L.; Jia, G.; Ran, X.; Song, J.; Wu, K. A variable structure extended Kalman filter for vehicle sideslip angle estimation on a low

friction road. Veh. Syst. Dyn. 2014, 52, 280–308. [CrossRef]
11. Bevly, D.; Ryu, J.; Gerdes, J. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll,

and tire cornering stiffness. IEEE Trans. Intell. Transp. Syst. 2006, 7, 483–493. [CrossRef]

https://doi.org/10.1109/TTE.2021.3085849
https://doi.org/10.1109/TVT.2020.3026106
https://doi.org/10.1016/j.energy.2023.128990
https://doi.org/10.1109/JAS.2017.7510811
https://doi.org/10.3390/s19194289
https://doi.org/10.1016/j.mechatronics.2018.02.004
https://doi.org/10.1049/iet-cta.2020.0516
https://doi.org/10.3390/app8030355
https://doi.org/10.1016/j.ymssp.2020.107315
https://doi.org/10.1080/00423114.2013.877148
https://doi.org/10.1109/TITS.2006.883110


Mathematics 2024, 12, 1350 19 of 20

12. Chen, W.; Tan, D.; Zhao, L. Vehicle sideslip angle and road friction estimation using online gradient descent algorithm. IEEE
Trans. Veh. Technol. 2018, 67, 11475–11485. [CrossRef]

13. Chindamo, D.; Gadola, M. Estimation of vehicle side-slip angle using an artificial neural network. In Proceedings of the 2nd Inter-
national Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2018), Singapore, 24–26 February 2018.
[CrossRef]

14. Gao, Z.; Wen, W.; Tang, M.; Zhang, J.; Chen, G. Estimation of vehicle motion state based on hybrid neural network. Automot. Eng.
2022, 44, 1527–1536. [CrossRef]

15. Gräber, T.; Lupberger, S.; Unterreiner, M.; Schramm, D. A hybrid approach to side-slip angle estimation with recurrent neural
networks and kinematic vehicle models. IEEE Trans. Intell. Veh. 2019, 4, 39–47. [CrossRef]

16. Zha, Y.; Liu, X.; Ma, F.; Liu, C. Vehicle state estimation based on extended Kalman filter and radial basis function neural networks.
Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221102730. [CrossRef]

17. Boada, B.; Boada, M.; Diaz, V. Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an
Unscented Kalman Filter algorithm. Mech. Syst. Signal Process. 2016, 72–73, 832–845. [CrossRef]

18. Ghosh, J.; Tonoli, A.; Amati, N. A deep learning based virtual sensor for vehicle sideslip angle estimation: Experimental results.
In Proceedings of the Wcx World Congress Experience, Detroit, MI, USA, 10–12 April 2018. [CrossRef]

19. Ding, N.; Chen, W.; Zhang, Y.; Xu, G.; Gao, F. An extended Luenberger observer for estimation of vehicle sideslip angle and road
friction. Int. J. Veh. Des. 2014, 66, 385–414. [CrossRef]

20. Chen, Y.; Ji, Y.; Guo, K. A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces. Veh. Syst. Dyn.
2014, 52, 1716–1728. [CrossRef]

21. Chen, T.; Chen, L.; Cai, Y.; Xu, X. Robust sideslip angle observer with regional stability constraint for an uncertain singular
intelligent vehicle system. IET Control Theory Appl. 2018, 12, 1802–1811. [CrossRef]

22. Cheli, F.; Sabbioni, E.; Pesce, M.; Melzi, S. A methodology for vehicle sideslip angle identification: Comparison with experimental
data. Veh. Syst. Dyn. 2007, 45, 549–563. [CrossRef]

23. Anderson, R.; Bevly, M. Using GPS with a model-based estimator to estimate critical vehicle states. Veh. Syst. Dyn. 2010, 48,
1413–1438. [CrossRef]

24. Reina, G.; Messina, A. Vehicle dynamics estimation via augmented extended Kalman filtering. Measurement 2018, 133, 383–395.
[CrossRef]

25. Wang, P.; Pang, H.; Xu, Z.; Jin, J. On co-estimation and validation of vehicle driving states by a UKF-based approach. Mech. Sci.
2021, 12, 19–30. [CrossRef]

26. Strano, S.; Terzo, M. Constrained nonlinear filter for vehicle sideslip angle estimation with no a priori knowledge of tyre
characteristics. Control Eng. Pract. 2018, 71, 10–17. [CrossRef]

27. Arasaratnam, I.; Haykin, S. Cubature Kalman Filters. IEEE Trans. Autom. Control. 2009, 54, 1254–1269. [CrossRef]
28. Xin, X.; Chen, J.; Zou, J. Vehicle state estimation using cubature Kalman filter. In Proceedings of the 2014 IEEE 17th International

Conference on Computational Science and Engineering, Chengdu, China, 19–21 December 2014; pp. 44–48. [CrossRef]
29. Wang, Y.; Geng, K.; Xu, L.; Ren, Y.; Dong, H.; Yin, G. Estimation of Sideslip Angle and Tire Cornering Stiffness Using Fuzzy

Adaptive Robust Cubature Kalman Filter. IEEE Trans. Syst. Man. Cybern. Syst. 2022, 52, 1451–1462. [CrossRef]
30. Chen, T.; Cai, Y.; Chen, L.; Xu, X.; Jiang, H.; Sun, X. Design of vehicle running states-fused estimation strategy using Kalman

filters and tire force compensation method. IEEE Access 2019, 7, 87273–87287. [CrossRef]
31. Nishida, T.; Kogushi, W.; Takagi, N.; Kurogi, S. Dynamic state estimation using particle filter and adaptive vector quantizer. In

Proceedings of the 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA),
Daejeon, Republic of Korea, 15–18 December 2009; pp. 429–434. [CrossRef]

32. Wang, B.; Cheng, Q.; Victorino, A.; Charara, A. Nonlinear observers of tire forces and sideslip angle estimation applied to road
safety: Simulation and experimental validation. In Proceedings of the 2012 15th International IEEE Conference on Intelligent
Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 1333–1338. [CrossRef]

33. Li, T.; Sbarufatti, C.; Cadini, F. Multiple local particle filter for high-dimensional system identification. Mech. Syst. Signal Process.
2024, 209, 111060. [CrossRef]

34. Kuptametee, C.; Michalopoulou, Z.; Aunsri, N. A review of efficient applications of genetic algorithms to improve particle
filtering optimization problems. Measurement 2024, 224, 113952. [CrossRef]

35. Huang, F.; Gao, Y.; Fu, C.; Gostar, A.K.; Hu, M. Vehicle state estimation based on adaptive state transition model. In Pro-
ceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China,
18–20 December 2020; pp. 92–96. [CrossRef]

36. Zhang, Y.; Li, M.; Zhang, Y.; Hu, Z.; Sun, Q.; Lu, B. An enhanced adaptive unscented Kalman filter for vehicle state estimation.
IEEE Trans. Instrum. Meas. 2022, 71, 6502412. [CrossRef]

37. Fu, Z.; Luo, Z. A vehicle driving state estimation algorithm based on Elman neural network and unscented Kalman filter. In
Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
Chongqing, China, 12–14 March 2021; pp. 415–419. [CrossRef]

38. Chen, T.; Chen, L.; Xu, X.; Cai, Y.; Jiang, H.; Sun, X. Estimation of longitudinal force and sideslip angle for intelligent four-wheel
independent drive electric vehicles by observer iteration and information fusion. Sensors 2018, 18, 1268. [CrossRef] [PubMed]

https://doi.org/10.1109/tvt.2018.2875459
https://doi.org/10.1051/matecconf/201816602001
https://doi.org/10.19562/j.chinasae.qcgc.2022.10.007
https://doi.org/10.1109/TIV.2018.2886687
https://doi.org/10.1177/15501329221102730
https://doi.org/10.1016/j.ymssp.2015.11.003
https://doi.org/10.4271/2018-01-1089
https://doi.org/10.1504/IJVD.2014.066071
https://doi.org/10.1080/00423114.2014.960430
https://doi.org/10.1049/iet-cta.2017.1395
https://doi.org/10.1080/00423110601059112
https://doi.org/10.1080/00423110903461347
https://doi.org/10.1016/j.measurement.2018.10.030
https://doi.org/10.5194/MS-12-19-2021
https://doi.org/10.1016/j.conengprac.2017.10.004
https://doi.org/10.1109/TAC.2009.2019800
https://doi.org/10.1109/CSE.2014.42
https://doi.org/10.1109/TSMC.2020.3020562
https://doi.org/10.1109/ACCESS.2019.2925370
https://doi.org/10.1109/CIRA.2009.5423166
https://doi.org/10.1109/ITSC.2012.6338830
https://doi.org/10.1016/j.ymssp.2023.111060
https://doi.org/10.1016/j.measurement.2023.113952
https://doi.org/10.1109/CVCI51460.2020.9338645
https://doi.org/10.1109/TIM.2022.3180407
https://doi.org/10.1109/IAEAC50856.2021.9390729
https://doi.org/10.3390/s18041268
https://www.ncbi.nlm.nih.gov/pubmed/29677124


Mathematics 2024, 12, 1350 20 of 20

39. ISO 3888-2:2018; Passenger Cars–Test Track For A Severe Lane–Change Manoeuvre–Part 1: Double Lane–Change. International
Organization for Standardization (ISO): Geneva, Switzerland, 2018.

40. ISO 15037-1:2019; Road Vehicles–Vehicle Dynamics Test Methods–Part 1: General Conditions for Passenger Cars. International
Organ-ization for Standardization (ISO): Geneva, Switzerland, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Vehicle Dynamics Model 
	Nonlinear 3-DOF Dynamics Model 
	Tire Model 
	Discretization of System and Measurement Equations 

	The Design of the RUPF Algorithm for Sideslip Angle Estimation 
	Simulation Results and Discussion 
	Simulation Setup 
	DLC Tests 
	Slalom Tests 

	Conclusions 
	References

