
Citation: Zhang, L.; Li, Y.; Li, Q. A

Graph-Based Keyword Extraction

Method for Academic Literature

Knowledge Graph Construction.

Mathematics 2024, 12, 1349. https://

doi.org/10.3390/math12091349

Academic Editors: Ravil Muhamedyev

and Evgeny Nikulchev

Received: 14 March 2024

Revised: 21 April 2024

Accepted: 23 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Graph-Based Keyword Extraction Method for Academic
Literature Knowledge Graph Construction
Lin Zhang *, Yanan Li and Qinru Li

School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China;
jemmali@dlmu.edu.cn (Y.L.); liqinru@dlmu.edu.cn (Q.L.)
* Correspondence: zhanglin@dlmu.edu.cn

Abstract: In this paper, we construct an academic literature knowledge graph based on the relation-
ship between documents to facilitate the storage and research of academic literature data. Keywords
are an important type of node in the knowledge graph. To solve the problem that there are no
keywords in some documents for several reasons in the process of knowledge graph construction,
an improved keyword extraction algorithm called TP-CoGlo-TextRank is proposed by using word
frequency, position, word co-occurrence frequency, and a word embedding model. By combining
the word frequency and position in the document, the importance of words is distinguished. By
introducing the GloVe word-embedding model, which brings the external knowledge of documents
into the TextRank algorithm, and combining the internal word co-occurrence frequency in the doc-
uments, the word-adjacency relationship is transferred non-uniformly. Finally, the words with the
highest scores are combined into phrases if they are adjacent in the original text. The validity of the
TP-CoGlo-TextRank algorithm is verified by experiments. On this basis, the Neo4j graph database
is used to store and display the academic literature knowledge graph, to provide data support for
research tasks such as text clustering, automatic summarization, and question-answering systems.

Keywords: keyword extraction; TextRank; word embedding; text statistical features; academic
literature knowledge graph

MSC: 68T50

1. Introduction

With the wide application and continuous development of Internet technology, the
information contained in the academic literature available online has shown explosive
growth. This has posed great challenges for researchers concerning their ability to quickly
and accurately discover desired information from a large amount of material and to use
the information to support and enrich their research.

To help users find accurate answers within the shortest possible time and improve user
experience, Google launched the Knowledge Graph in 2012 [1]. Essentially, a knowledge
graph is a semantic network composed of entities as nodes and relationships as edges
representing the semantic relationships between entities [2]. A knowledge graph uses
semantic retrieval methods to collect information from a variety of sources and provides
answers with a complete body of knowledge to user’s queries. As an intelligent and
efficient means of knowledge organization, knowledge graphs have been widely used in
fields such as question-answering, recommendation systems, medicine, and biology [3].

Therefore, to help researchers develop a comprehensive and clear understanding of
the entire research field within the shortest possible time, so as to provide possibilities for
more in-depth knowledge mining, this paper prepares to construct an academic literature
knowledge graph based on the relationships between academic documents. Based on the
context-rich heterogeneous graph generated via full-text publications by Liu et al. [4], this
paper develops a revised graph schema [5] for an academic literature knowledge graph to
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show the relationship between paper P1 and P2, as shown in Figure 1. It can be seen that
keywords are a very important type of node in the academic literature graph schema.
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Keywords provide a compact representation of documents and can be used as a
substitute for documents in applications such as automatic summarization, classification,
clustering, and sentiment analysis. At present, most journals or conferences require authors
to provide keywords when submitting academic papers, but this part is often missing
in papers published earlier. In addition, in the process of converting documents from
PDF to plain text, the keywords of some documents may also be lost due to problems
such as document encoding and character processing. Therefore, to construct a more
comprehensive academic literature knowledge graph and provide high-quality data sources
for the following studies, it is necessary to carry out keyword extraction for the documents
without keywords.

TextRank [6] is a popular graph-based unsupervised algorithm that only uses the
internal word structure information of a document to extract keywords. On the basis
of the TextRank algorithm, this paper proposes a keyword extraction algorithm called
TP-CoGlo-TextRank by using word frequency, position, word co-occurrence frequency,
and the GloVe word embedding model. The main contributions of this paper are as
follows: (1) We use word frequency and position to distinguish the difference in word
importance, then combine the two parts of importance to form the overall importance
of words; (2) We propose to use the internal and external word co-occurrence frequency
information of documents to compute the influence transferred from the adjacent words
and combine the two parts of influences to form the overall transition probability matrix of
the candidate keywords.

The rest of the paper is organized as follows. Section 2 provides an overview of related
studies. Section 3 presents our methodology and design in detail. Section 4 describes
the experiments and discusses the results. Section 5 constructs the academic literature
knowledge graph. Section 6 concludes the paper.



Mathematics 2024, 12, 1349 3 of 25

2. Related Work
2.1. Automatic Keyword Extraction

Over the past fifty years, scholars have studied keyword extraction from multiple
perspectives, including statistics, automatic term indexing, information retrieval, natural
language processing (NLP), and the emerging neural paradigm [7]. Keyword extraction
algorithms are mainly categorized as supervised algorithms and unsupervised algorithms [8].
Compared with supervised algorithms, which are costly, time-consuming, and overfitting,
unsupervised algorithms are more widely used. At present, the commonly used unsuper-
vised keyword extraction algorithms can be broadly classified into three categories: statistical
feature-based algorithms, graph-based algorithms, and topic model-based algorithms.

Statistical feature-based keyword extraction algorithms usually determine text key-
words by quantifying statistical features such as part-of-speech, term frequency (TF),
term frequency-inverse document frequency (TF-IDF), word position, and word length.
Wang et al. [9] proposed a keyword extraction model, SRP-TF-IDF, for the field of scientific
research by introducing a weight balance algorithm. SRP-TF-IDF combines the TF-IDF val-
ues of words with the semantic similarity between words and information on the scientific
research project, such as the project title, research fields, and subproject titles, to obtain
the weights of words. Rathi et al. [10] proposed a unigram keyword extraction method
using features such as relative entropy, variance, and displacement of terms in a document.
The proposed method is competitive compared with TF and YAKE! [11,12], which uses
five text statistical features, such as word casting, word position, word frequency, word
relatedness to context, and word different sentences, to extract keywords from individual
documents. Among the three features, variance and relative entropy are dominant in
weighting terms. Lu et al. [13] proposed an incremental TF-IDF keyword feature extraction
method, ITFIDF-LP, which takes word position and part of speech into account.

Graph-based keyword extraction algorithms regard text words as nodes, perform
the importance ranking of nodes according to their relationship, and select the most
important words as keywords. Goz et al. [14] proposed a keyword extraction method,
MGRank, based on weighted complete multigraphs. MGRank eliminates the sliding
window size parameter, allows for the establishment of multiple relationships between
candidate keywords, and weighs edges according to the positional distance of candidate
keywords, thereby representing the text document as a multigraph-based graph-of-word
structure. Jain et al. [15] proposed the keyword extraction method F-GAKE based on fuzzy
graph connectivity measures to solve the problem that many graph-based methods take
co-occurrence as an edge weight and neglect the semantic relationship between words.
Compared with the state-of-the-art methods, F-GAKE has higher precision and recall in
keyword extraction from short messages. Yan et al. [16] proposed a graph-based method
incorporating with clustering algorithm for keyword extraction, which takes the impact of
sentences on word importance into consideration and measures the importance of words
by building three graphs—namely a word-to-word graph, a sentence-to-sentence graph,
and a sentence-to-word graph—and selects keywords combined with the centroids of
the K-means algorithm. The proposed method outperforms TF-IDF and TextRank on
datasets of Hulth2003 and DUC2001. Abimbola et al. [17] proposed a graph-based noun-
centric keyword extraction method, which integrates the TextRank algorithm, noun phrase
identifier, AP algorithm, K-means algorithm, and cosine similarity to extract keywords.
Precision, recall, and the F1-measure are all improved by more than 5% compared to the
method proposed by Yan et al. [16].

A document is usually composed of several topics, and a topic is composed of a group
of words. The topic model-based keyword extraction algorithms extract the words with
the best topic coverage from the document as keywords by analyzing the document topic
distributions and the word topic distributions. Liu et al. [18] proposed Topical PageRank
(TPR) for keyword extraction by integrating the LDA topic model and the PageRank
algorithm. By calculating the PageRank value of words on different topics and combining
with the topic distribution of the document, the TPR method obtains the final ranking of
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words and extracts the top-ranked words as keywords. Compared with TF-IDF, PageRank,
and LDA, TPR performs best in keyword extraction. Based on TPR [18], Teneva et al. [19]
proposed the Salience Rank (SR) method, which balances the topic specificity and corpus
specificity of words by introducing word salience. The SR method extracts comparable or
better keywords than TPR; also, it runs PageRank only once when ranking words, so it is
more efficient than TPR. Lu et al. [13] proposed a subject word feature extraction method,
LDA-SLP, based on LDA, Word2Vec-based similarity, word position, and the part of speech.

With the development and application of deep learning technology in the field of
NLP, some scholars have begun to apply deep learning models to keyword extraction tasks
in recent years, to better capture the semantic information of keywords by automatically
learning the deep semantic features of text. Sarracén et al. [20] proposed a keyword
extraction method for offensive tweets, which uses the weights learned by the multi-head
self-attention mechanism of BERT to generate a word graph and then extracts keywords
according to eigenvector centrality. Duan et al. [21] proposed OILog, an online incremental
log keyword extraction method based on deep LSTM. OILog can accurately capture high-
frequency log keywords and new log keywords generated by the system to help assist the
operations staff in effectively maintaining and monitoring the system. Based on the LSTM
model and combined with contextual information on the target word, Zhang et al. [22]
proposed a target center-based LSTM (TC-LSTM) model with a self-attention mechanism,
which has good performance in keyword extraction.

To improve the extraction effect of keywords, scholars usually use a combination of
multiple methods—one of which is the main method supplemented by others—to extract
keywords, such as the studies mentioned above by Lu et al. [13], Jain et al. [15], Abimobola
et al. [17], Liu et al. [18], and Teneva et al. [19]. Deep learning-based methods have become
important means of keyword extraction because of their high accuracy, adaptability, and
generalization performance. However, deep learning models are more dependent on the
high memory and computing power of terminal devices than other models because they
need large-scale datasets to train parameters, and the more parameters there are, the higher
the computational complexity and time complexity. Graph-based keyword extraction
methods are widely used and effective, so this paper conducts an in-depth study on the
TextRank algorithm, a graph-based method.

2.2. Automatic Keyword Extraction Based on TextRank

TextRank [6] is a classic graph-based ranking algorithm inspired by Google’s PageR-
ank [23]. It splits up the document into words, represented by nodes, and constructs edges
between nodes based on word co-occurrence relationships. Thus, the document words are
converted into a graph G = <V, E>, where V is a set of word nodes and E is a set of edges
connecting the nodes. The word co-occurrence relationship refers to the co-occurrence of
words within a sliding window of a given size in the same document. The importance of a
node in the word graph is determined by the importance of other nodes pointing to it—that
is, the importance of a word is related to its co-occurring words within the sliding window.

The formula of TextRank is shown in Equation (1), where S(Vi) represents the impor-
tance score of the word node Vi, N represents the total number of words in the document,
In(Vi) represents the set of nodes pointing to Vi, Out(Vj) represents the set of nodes pointed
to by Vj, and d is the damping factor, which is usually set to 0.85.

S(Vi) =
1 − d

N
+ d × ∑

Vj∈In(Vi)

1∣∣Out
(
Vj
)∣∣S

(
Vj
)

(1)

The TextRank algorithm has some major advantages, such as simplicity and high
efficiency. However, it treats all co-occurring words of the target word as equally important
and uniformly assigns the importance score of the target word to its co-occurring words,
resulting in poorer keyword extraction. Scholars have conducted extensive and in-depth
studies on this problem and put forward many improved methods.
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Liu et al. [24] proposed a TextRank_Revised algorithm by taking the conditional
probability of co-occurring words in the same sentence as the weight of the edge between
nodes. TextRank_Revised achieves good keyword extraction performance on both labeled
and unlabeled samples. Gu et al. [25] combined the LDA topic model and TextRank
algorithm for keyword extraction. LDA is used to obtain the topic influence of words in the
document, which is incorporated into the construction of the transition probability matrix
to realize the non-uniform transfer of word importance according to topic influences and
adjacency relationships. Experiments show that the combination of LDA and TextRank
can extract better keywords than LDA and TextRank alone. Xia [26] proposed a weighted
TextRank algorithm based on word vector clustering. The improved method takes the
distance between words and cluster centroids as the clustering influence between words
and combines the coverage influence and position influence of words to construct the
transition probability matrix. Experiments show that the improved method can extract
keywords effectively. When using the TextRank algorithm to extract key information from
forestry text, Chen et al. [27] take the comprehensive weight of words obtained based on
features such as word length, word span, and title as the initial weight of nodes, and the
cosine similarity between nodes as the edge weight. Xiong et al. [28] proposed a semantic
clustering news keyword extraction algorithm, SCTR, based on TextRank. SCTR uses
word vectors generated by the BERT model to carry out k-means clustering and constructs
the TextRank weight transition probability according to the clustering results. Based on
TextRank, Guo et al. [29] optimize the state transition probability matrix by using multiple
features, such as BERT semantic similarity features, word position features, and word
coverage features. Qiu et al. [30] improved TextRank by using the membership of words
to each document obtained by the tolerance rough set theory as the initial word weight
and the fuzzy membership of words to each word tolerance class to optimize the transfer
probability between nodes.

The above studies mainly focus on optimizing the transition probabilities between
words by combining other models or text features. Based on these studies, this paper
proposes the TP-CoGlo-TextRank algorithm for keyword extraction by using statistical
features-based approaches and graph-based approaches. Specifically, in the iterative process
of the TP-CoGlo-TextRank algorithm, words are weighted by text statistical features, such
as word frequency and position, and ranked by the graph-based TextRank algorithm. In
addition, a word embedding model is introduced to add external knowledge vectors from
a corpus to TextRank, and word co-occurrence frequency and the word embedding model
are combined to realize the non-uniform transfer of word scores to the co-occurring words.

3. TP-CoGlo-TextRank Keyword Extraction Algorithm
3.1. Word Frequency

Term frequency (TF) refers to the number of occurrences of words in a document,
which is an indicator for measuring word importance in the document from a global
perspective. It is generally believed that the more occurrences of a word there are in a
document, the higher the word’s relevance to the document topic and the more likely it is
to become a keyword [31].

The traditional TextRank algorithm is limited to taking co-occurrence word pairs in
the sliding window, which can only consider the local adjacency relationship between
words—that is, the extracted keywords can only reflect the local, not the global, infor-
mation of the document. Therefore, to measure the importance of words in the word
graph from a global perspective, this paper introduces word frequency into the traditional
TextRank algorithm.

Considering the influence of text length on word frequency, when computing word
frequency, this paper standardizes the number of occurrences of words in a document
using the document length (i.e., the total number of words in the document), as shown in
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Equation (2), where count(i) represents the number of occurrences of word i in the document
and doc_length represents the length of the document.

t f (i) =
count(i)

doc_length
(2)

3.2. Word Position Importance

The title of an academic document is a one-sentence summary of the core contents of
the document. Compared with the words appearing in other parts of the document, the
effective words (such as nouns, verbs, and adjectives) appearing in the title often better
express the research topics of the document and are more likely to become keywords.
Therefore, when using TextRank to extract keywords from documents, the title words in the
word graph should be given higher weights [32]. This paper uses Equation (3) to measure
the position importance of words.

pos(i) =
{

1, word i in the title.
β, word i in the abstract. 0 < β ≤ 1

(3)

When word i appears in the title, its weight is 1. When word i appears in the abstract,
its weight is β, 0 < β ≤ 1. The value of β will be determined by experiments in Section 4.3.2.

3.3. Word Co-Occurrence Frequency

It can be seen from Equation (1) that the traditional TextRank algorithm uses the word
co-occurrence relationship within the document and assigns the importance score of the
word uniformly to its co-occurring words when measuring word importance, ignoring the
differences between these words. For word Vi, in general, words with more co-occurrences
with Vi in the sliding window of a given size are more correlated with Vi than words
with less co-occurrences with Vi. In other words, words with more co-occurrences with Vi
should be assigned higher scores by Vi. Therefore, to better assign the importance scores of
words to their co-occurring words, this paper improves the transition probability of the
TextRank algorithm by using the word co-occurrence frequency within the document.

The formula used to calculate the co-occurrence frequency of words Vj and Vi within
the sliding window in the document is shown in Equation (4), where Out(Vi) represents
the set of words co-occurring with Vi, and co-occurrences(Vi, Vj) represents the number of
co-occurrences of Vi and Vj.

Co
(
Vi, Vj

)
=

co-occurrences
(
Vi, Vj

)
∑

Vk∈Out(Vi)
co-occurrences(Vi, Vk)

(4)

3.4. GloVe Word Embedding

GloVe (Global Vectors for Word Representation) [33] is a distributed word represen-
tation model that combines the advantages of prior statistics extracted from the global
word co-occurrence matrix and the local context windows. It overcomes the problems
related to the high computational complexity of the LSA model computing singular value
decomposition (SVD) for large matrices and the drawbacks of the Word2Vec model, which
does not make full use of the global corpus.

GloVe is an unsupervised learning algorithm for obtaining word vector representations.
It first creates a word-context co-occurrence matrix based on a given corpus. Each element
in the matrix represents how often two words co-occur within a context window of a specific
size. Then it constructs a loss function that is optimized by regression. GloVe essentially
learns word vectors by performing dimensionality reduction on the co-occurrence matrix.

As mentioned in Section 3.3, the traditional TextRank algorithm uses the co-occurrence
relationship between words within the document to assign word importance scores, with-
out considering the differences in the similarities between the word and all its co-occurring
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words. For word Vj, in general, words with higher similarity to Vj within the sliding
window of a given size are more correlated with Vj and should be assigned higher scores
by Vj. Considering that the GloVe model is a distributed representation method of words
based on global word-word co-occurrence statistics from a corpus, to better measure
word importance, this paper uses external knowledge of documents, that is, the GloVe
model, to optimize the transition probabilities between words when using the traditional
TextRank algorithm.

The similarity of the words Vi and Vj is calculated using cosine similarity and GloVe

word embedding, as shown in Equation (5), where
→
Vi represents the word vector of Vi

based on the GloVe model and
∥∥∥∥→

Vi

∥∥∥∥ represents the magnitude of vector
→
Vi.

sim
(
Vi, Vj

)′
=

→
Vi·

→
Vj∥∥∥∥→

Vi

∥∥∥∥·∥∥∥∥→
Vj

∥∥∥∥ (5)

The cosine similarity takes values between −1 and 1. Considering that the transition
probability is non-negative and unbounded, to assign word importance scores based on
similarity, we normalize the cosine similarity between words Vi and Vj to [0, 1] using
Equation (6), where min

Vp ,Vq∈D
sim

(
Vp, Vq

)′ and max
Vp ,Vq∈D

sim
(
Vp, Vq

)′ represent the minimum

and maximum cosine similarity between words in the dataset, respectively. Based on the
value range of cosine similarity, the minimum similarity between words is set to −1 and the
maximum similarity is set to 1, that is, min

Vp ,Vq∈D
sim

(
Vp, Vq

)′
= −1, max

Vp ,Vq∈D
sim

(
Vp, Vq

)′
= 1.

Therefore, Equation (6) can be transformed into Equation (7).

sim
(
Vi, Vj

)
=

sim
(
Vi, Vj

)′ − min
Vp ,Vq∈D

sim
(
Vp, Vq

)′
max

Vp ,Vq∈D
sim

(
Vp, Vq

)′ − min
Vp ,Vq∈D

sim
(
Vp, Vq

)′ (6)

sim
(
Vi, Vj

)
=

sim
(
Vi, Vj

)′
+ 1

2
(7)

On this basis, the proportion of the similarity between words Vj and Vi in the total
similarities between Vi and all of its co-occurring words can be obtained, as shown in
Equation (8), where sim(Vi, Vj) represents the similarity between Vi and Vj obtained by
Equation (7), and the meaning of Out(Vi) is given in Equation (4).

Glo
(
Vi, Vj

)
=

sim
(
Vi, Vj

)
∑

Vk∈Out(Vi)
sim(Vi, Vk)

(8)

3.5. TP-CoGlo-TextRank Algorithm

Based on the traditional TextRank algorithm, the TP-CoGlo-TextRank keyword extrac-
tion algorithm is proposed by combining word frequency, position, word co-occurrence
frequency, and a word embedding model, as shown in Equation (9).

S(Vi) = wt(Vi)×

 (1 − d)
N

+ d × ∑
Vj∈In(Vi)

we
(
Vj, Vi

)
S
(
Vj
) (9)

In Equation (9), wt(Vi) represents the overall weighting coefficient of the word Vi,
as shown in Equation (10). tf (Vi) and pos(Vi) represent the word frequency and position
importance of the word Vi, as shown in Equations (2) and (3), respectively. λ is the
proportion of the position importance in the overall weighting coefficient of the word Vi,
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0 ≤ λ ≤ 1. we(Vj, Vi) represents the transition probability from Vj to Vi, which is optimized
by utilizing the internal word co-occurrence frequency information and the external word
embedding model, as shown in Equation (11), where Co(Vj, Vi) and Glo(Vj, Vi) are shown
in Equations (4) and (8), respectively. γ represents the proportion of the co-occurrence
frequency in the total transition probability from Vj to Vi, 0 ≤ γ ≤ 1.

wt(Vi) = λpos(Vi) + (1 − λ)t f (Vi) (10)

we
(
Vj, Vi

)
= γCo

(
Vj, Vi

)
+ (1 − γ)Glo

(
Vj, Vi

)
(11)

The TP-CoGlo-TextRank algorithm is language-independent. When using this algo-
rithm for keyword extraction, we only need to train the GloVe model or select a publicly
available pre-trained GloVe model for the language used in the text dataset.

The procedure of the TP-CoGlo-TextRank algorithm is shown in Algorithm 1.

Algorithm 1 TP-CoGlo-TextRank Algorithm

Input: document, GloVe.model, sliding window size sw, damping factor d, iteration threshold θ,
max_iterations, the number of words to be extracted k
Output: keywords extracted from document

1: #(Step 1) Preprocessing
2: document = lowercase(document)
3: sentences = split up document into sentences
4: words = split up document into words
5: for each word in words do
6: is_stopword (word), is_singleword (word), is_specialsymbol (word), postagging (word)
7: end for
8: #(Step 2) Text features extraction
9: for each word in words do
10: compute term frequenty tf (word) by Equation (2)
11: compute position importance pos(word) by Equation (3)
12: compute the overall weighting coefficient wt(word) by Equation (10)
13: end for
14: #(Step 3) Candidate keyword score
15: compute word co-occurrence frequency matrix M within a given sliding window size sw
16: construct the word graph G = <V, E>
17: for each (Vi, Vj) in M do
18: compute word co-occurrence frequency-based transition probability Co(Vi, Vj) by

Equation (4)
19: compute similarity-based transition probability Glo(Vi, Vj) by Equation (8)
20: get the final transition probability we(Vi, Vj) by Equation (11)
21: end for
22: for each word in words do
23: compute word score by Equation (9)
24: end for
25: #(Step 4) Ranking
26: sort words by descending scores
27: initial_keywords = top k words with the highest scores
28: #(Step 5) Combining adjacent keywords into phrases
29: for each sentence in sentences do
30: if two or more keywords adjacent in sentence
31: combine them into a phrase as a new keyword
32: end if
33: end for

Zhang et al. [34] evaluated the influence of the sliding window size on the performance
of the TextRank algorithm in keyword extraction by extracting the top (k = 5, 10, 15) most
important words as keywords on the Hulth2003 and Krapivin2009 datasets; they concluded
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that the TextRank algorithm had the best performance when the sliding window size was
3. Therefore, when using the TP-CoGlo-TextRank algorithm to extract keywords from
documents, this paper will follow the research results of Zhang et al. [34] and set the sliding
window size to 3.

4. Experiment and Discussion
4.1. Experimental Dataset

Considering that the number of keywords in a document is generally between three
and five, we selected 10,000 documents published after 2010 with a title, abstract, and three
to five keywords from the DBLP-Citation-network V14 [35] available from the AMiner
website at https://www.aminer.cn/billboard/citation (accessed on 19 February 2024) as
the experimental dataset. We used a five-fold cross-validation method to divide the dataset
into five equal parts and used four of them as the training set and the other one as the test
set. The training set was used to determine the values of the model parameters β, γ, and λ,
while the test set was used to verify the effectiveness of the TP-CoGlo-TextRank algorithm
in keyword extraction.

Table 1 shows the number of documents with three to five keywords in the experimen-
tal dataset, with an average of 4.2044 keywords. Each keyword in the experimental dataset
was composed of at least one word and at most nine different words, with an average of
2.1071 different words. Table 2 shows the number of keywords composed of one to nine
different words. It can be seen that most keywords are composed of one to four words.
Table 3 shows the minimum and maximum total number of different words in all keywords
of a document in the experimental dataset, as well as the minimum and maximum average
number of different words in each keyword. Therefore, in the following experiments, ac-
cording to the average number of keywords in each document (i.e., 4.2044) and the number
of different words in each keyword (at least one word, with an average of 2.1071 words),
this paper will extract four to nine words with the highest scores from the abstract of each
document, and compare them with the keywords provided by the document itself, to
verify the validity of the features such as word frequency, position, co-occurrence frequency,
and similarity (see Section 4.3.1); to determine the values of the model parameters (see
Section 4.3.2); and to verify the effectiveness of the proposed algorithm (see Section 4.3.3).

Table 1. The number of documents with three to five keywords in the experimental dataset.

Number of Keywords Number of Documents

3 2153

4 3650

5 4197

Table 2. The number of keywords composed of one to nine words in the experimental dataset.

Number of Words Number of Keywords

1 9303

2 22,489

3 7725

4 1882

5 467

6 132

7 33

8 9

9 4

https://www.aminer.cn/billboard/citation
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Table 3. The number of different words in all keywords or each keyword in a document.

Minimum Total Number of
Different Words in All

Keywords in a Document

Maximum Total Number of
Different Words in All

Keywords in a Document

Minimum Average Number
of Different Words in Each

Keyword in a Document

Maximum Average Number
of Different Words in Each

Keyword in a Document

3 22 1 5.5

This paper uses Stanford CoreNLP [36], a natural language processing toolkit from
Stanford University, to segment the abstract of each document. The segmentation results
are filtered by stop words, single words, and special symbols such as @ and $, as well
as part-of-speech tagging. Only verbs, nouns, and adjectives are reserved as candidate
keywords. After preprocessing, the experimental dataset had an average of 82.1598 words
per document.

4.2. Measurement for Evaluation

Precision (P), recall (R), and the F1-measure (F1) are employed to evaluate the perfor-
mance of the proposed TP-CoGlo-TextRank algorithm. Precision quantifies the proportion
of the number of keywords correctly extracted by the algorithm to the total number of
keywords extracted by the algorithm, as shown in Equation (12). Recall measures the
proportion of the number of keywords correctly extracted by the algorithm to the number
of keywords provided by the document, as shown in Equation (13). The meanings of TP,
FP, and FN are shown in Table 4. The values of precision and recall are between 0 and 1,
and the closer they are to 1, the better the algorithm performance is. F1 is calculated as the
harmonic mean of precision and recall, as shown in Equation (14).

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

F1 =
2 × P × R

P + R
(14)

Table 4. Contingency table of keywords extracted by the algorithm and keywords provided by
the document.

Keywords Provided by the Document Not Keywords Provided by the
Document

Keywords Extracted by the Algorithm TP FP
Not Keywords Extracted by the Algorithm FN TN

When counting TP, FP, and FN, the traditional method is to perfectly match the
keywords extracted by the algorithm with the keywords provided by the document. Con-
sidering that the keywords provided by the document are not necessarily the words in the
abstract, which may be synonyms or near-synonyms, to better measure the performance
of the keyword extraction algorithm, this paper uses the GloVe model to judge whether a
keyword is correctly extracted by setting a similarity threshold. That is, as long as the simi-
larity between the extracted keyword and the document keyword exceeds this threshold, it
is considered that the algorithm has correctly extracted the keyword.

For a dataset of n documents, this paper first calculates the precision and recall of
the keyword extraction algorithm for each document and then obtains the AP (Average
Precision, see Equation (15)) and AR (Average Recall, see Equation (16)) by averaging the
precision and recall of n documents, respectively. Based on AP and AR, AF1 (Average F1) is
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expressed by Equation (17). In this paper, AP, AR, and AF1 are employed to evaluate the
performance of the keyword extraction algorithm for a dataset of n documents.

AP =
1
n

n

∑
i=1

Pi (15)

AR =
1
n

n

∑
i=1

Ri (16)

AF1 =
2 × AP × AR

AP + AR
(17)

4.3. Results and Analysis
4.3.1. Validity Verification of Word Frequency, Position, Co-Occurrence Frequency,
and Similarity

In the process of extracting keywords based on the TextRank algorithm, this paper
introduces the word frequency and position in the document to distinguish the importance
of words and assigns the score of the word non-uniformly to its co-occurring words based
on their co-occurrence frequency and similarity. This section verifies the validity of the
above four features based on the AF1 metric.

(1) Validity verification of word frequency

TF-TextRank: Based on the TextRank algorithm, word frequency is introduced to
weight the words in the word graph, as shown in Equation (18), where tf (Vi) is shown in
Equation (2).

S(Vi) = t f (Vi)×

1 − d
N

+ d × ∑
Vj∈In(Vi)

1∣∣Out
(
Vj
)∣∣S

(
Vj
) (18)

The AF1 comparison of TextRank and TF-TextRank in extracting keywords from the
test document set is shown in Figure 2. TF-TextRank is 0.47% higher than TextRank
on average in terms of AF1, indicating that word frequency has a certain influence on
measuring word importance.
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As for why TF-TextRank is not significantly better than TextRank, we believe that it is
mainly because words with higher frequency in a document are more likely to co-occur
with other words, and there are more edges connected to them in the word graph. That is,
the influence of word frequency on word importance has been reflected in the TextRank
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algorithm, so when word frequency is used again to measure the importance of words, the
performance is not particularly outstanding.

(2) Validity verification of word position

Pos-TextRank: Based on the TextRank algorithm, word position is introduced to
weight the words in the word graph, as shown in Equation (19), where pos(Vi) is shown in
Equation (3) and β is set to 0.4, which is determined in Section 4.3.2.

S(Vi) = pos(Vi)×

1 − d
N

+ d × ∑
Vj∈In(Vi)

1∣∣Out
(
Vj
)∣∣S

(
Vj
) (19)

The AF1 comparison of TextRank and Pos-TextRank in extracting keywords from
the test document set is shown in Figure 3. Pos-TextRank is 8.30% higher than TextRank
on average in terms of AF1, indicating that word position has a great influence on mea-
suring word importance and can significantly improve the performance of TextRank in
extracting keywords.
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(3) Validity verification of word co-occurrence frequency

Co-occur-TextRank: Based on the TextRank algorithm, the co-occurrence frequency
between words is used as the probability of transitioning from one word to another, as
shown in Equation (20), where Co(Vj, Vi) is shown in Equation (4).

S(Vi) =
(1 − d)

N
+ d × ∑

Vj∈In(Vi)

Co
(
Vj, Vi

)
S
(
Vj
)

(20)

The AF1 comparison of TextRank and Co-occur-TextRank in extracting keywords
from the test document set is shown in Figure 4. Co-occur-TextRank is slightly better than
TextRank, with an average increase of 0.64% in AF1 value, indicating that assigning the
importance score of the target word to its co-occurring words based on word co-occurrence
frequency can highlight the importance of topic-related words to a certain extent.
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As for why Co-occur-TextRank is not significantly better than TextRank, we believe
that it is mainly because, in this paper, keywords are extracted from the document abstract,
which is usually short and concise, so the co-occurrences of words in the abstract cannot
well reflect their co-occurrences in the full text of the document. When the sliding window
size is set to 3, the mean, median, and mode of the number of co-occurrences between
words in the 10,000 experimental documents are 1.1294, 1, and 1, respectively, which
means the number of co-occurrences between most words is 1. This makes the transition
probability from word Vj to Vi obtained by Equation (4) similar to that obtained according
to the adjacency of Vj (i.e., 1

|Out(Vj)| ), meaning that Co-occur-TextRank is not significantly

superior to TextRank.

(4) Validity verification of the similarity between words

CoGlo-TextRank: Based on the Co-occur-TextRank algorithm, GloVe-based similar-
ity is used to transfer word importance score to the co-occurring words, as shown in
Equation (21), where ω represents the proportion of the co-occurrence frequency of Vj and
Vi in the transition probability from Vj to Vi, and Co(Vj, Vi) and Glo(Vj, Vi) are shown in
Equation (4) and Equation (8), respectively.

S(Vi) =
(1 − d)

N
+ d × ∑

Vj∈In(Vi)

(
ωCo

(
Vj, Vi

)
+ (1 − ω)Glo

(
Vj, Vi

))
S
(
Vj
)

(21)

To determine the value of ω, this paper tests the changes in AF1 when using the
CoGlo-TextRank algorithm to extract four to nine words with the highest scores from each
document in the training set as keywords, with ω varying from 0 to 1 in steps of 0.1, as
shown in Figure 5. It can be seen that AF1 is optimal at ω = 0.8 when k = 5, 6, 7, 8, or 9 and
the third-best at ω = 0.8 when k = 4. Therefore, when using the CoGlo-TextRank algorithm
to extract keywords from documents, ω is set to 0.8.

The AF1 comparison of Co-occur-TextRank and CoGlo-TextRank in extracting key-
words from the test document set is shown in Figure 6. It can be seen that there is no
significant difference between CoGlo-TextRank and Co-occur-TextRank in terms of the AF1
value. CoGlo-TextRank is 0.03% higher than Co-occur-TextRank on average, indicating
that the CoGlo-TextRank algorithm, with the introduction of the external knowledge of
documents, has achieved a relatively small improvement in keyword extraction.
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As for why CoGlo-TextRank is not significantly better than Co-occur-TextRank, we
believe that it is mainly because when assigning the importance score of a word to its co-
occurring words according to the similarity in the iterative process, to ensure the similarity is
not less than 0, this paper standardizes it by the min-max normalization method, which will
lead to fewer similarity differences between words. For example, V1 has two co-occurring
words, V2 and V3, in the sliding window, and the similarities between V1 and V2, and V1 and
V3 according to Equation (5) are sim(V1, V2)

′ = 0.05 and sim(V1, V3)
′ = 0.5. The two similari-

ties are normalized by Equation (7) as sim(V1, V2) = 0.525 and sim(V1, V3) = 0.75. It can be
seen that the similarity ratio of V1 and V2 increases from 9.09% (0.05/(0.05 + 0.5) = 9.09%)
to 41.18% (0.525/(0.525 + 0.75) = 41.18%), making the similarity difference between V1/V2
and V1/V3 decrease, which leads to no significant improvement in the CoGlo-TextRank
algorithm in keyword extraction performance with the introduction of word similarity.

4.3.2. Determination of Model Parameters

Since AF1 takes AP and AR into account, we mainly use the AF1 metric to determine
the values of the parameters β, γ and λ in this paper.
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(1) Determination of the parameter β of word position importance

According to Equation (3), the position importance of the abstract words appearing in
the title is 1, and that of other abstract words is β (0 < β ≤ 1). To determine the value of
β, this paper tests the changes in AF1 when using the Pos-TextRank algorithm (as shown
in Equation (19)) to extract four to nine words with the highest scores from each training
document as keywords and combining the adjacent keywords in the original text into
phrases, with β varying from 0 to 1 in steps of 0.1, as shown in Figure 7.
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The k in Figure 7 represents the number of words extracted from each training doc-
ument. As can be seen from Figure 7, the variation trend of AF1 with β is basically the
same when extracting the top four to nine words with the highest scores as keywords—
that is, with the increase in β, AF1 slightly increases, reaches the maximum value, and
then decreases. When k = 4, 5, 6, 7, 8, or 9, AF1 is optimal at β = 0.4. Therefore, when
using the TP-CoGlo-TextRank algorithm to extract keywords from documents, the position
importance parameter β is set to 0.4.

When β = 1, the importance of the title word and the abstract word is the same—that is,
the position importance of the word is not taken into account. In this case, the Pos-TextRank
algorithm is the TextRank algorithm. It can be seen from Figure 7 that the Pos-TextRank
algorithm at 0 < β < 1 has better performance in extracting keywords from the training
documents than at β = 1. As described in Section 4.3.1, this also shows that word position
can help improve the performance of the TextRank algorithm in extracting keywords.

(2) Determination of the parameter γ in the transition probability and the parameter λ in
the overall weighting

In Equation (10), λ (0 ≤ λ ≤ 1) represents the proportion of the position importance
in the overall weighting of word Vi, and in Equation (11), γ (0 ≤ γ ≤ 1) represents the
proportion of the co-occurrence frequency in the total transition probability from word Vj
to word Vi. To determine the values of λ and γ, this paper tests the changes in AF1 when
using the TP-CoGlo-TextRank algorithm to extract four to nine words with the highest
scores from each document in the training set as keywords and combining the adjacent
keywords in the original text into phrases, with λ and γ respectively varying from 0 to 1 in
steps of 0.1, as shown in Figure 8.
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The three-dimensional coordinate system is shown in the lower part of Figure 8, where
the x-axis refers to γ, the y-axis refers to λ, and the z-axis refers to AF1. In Figure 8, the
dots represent the AF1 values of the TP-CoGlo-TextRank algorithm as λ and γ change,
the triangles on the zx-plane are the projections of the AF1 values as λ changes, and the
stars on the zy-plane are the projections of the AF1 values as γ changes. The orange, pink,
green, blue, and gray dots represent the AF1 value at λ = 0, λ = 1, γ = 0, γ = 1, 0 < λ < 1 and
0 < γ < 1, respectively. Correspondingly, the orange, pink, green, blue, and gray triangles
on the zx-plane represent the projections of the AF1 values at λ = 0, λ = 1, 0 < λ < 1 and
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γ = 0, 0 < λ < 1 and γ = 1, 0 < λ < 1 and 0 < γ < 1, respectively; the orange, pink, green,
blue, and gray stars on the zy-plane represent the projections of the AF1 values at 0 ≤ γ ≤ 1
and λ = 0, 0 ≤ γ ≤ 1 and λ = 1, γ = 0 and 0 < λ < 1, γ = 1 and 0 < λ < 1, 0 < γ < 1
and 0 < λ < 1,respectively. It can be seen that when λ = 0 (i.e., only word frequency is
considered regardless of word position), the AF1 values (orange dots) are projected at
the lowest level (orange triangles), far below the projections (grey or pink triangles) at
which the position importance is considered. When λ = 1 (i.e., only position importance
is considered regardless of word frequency), the projections (pink triangles) of the AF1
values (pink dots) are mostly at the lower-middle level compared with other projections
(the grey triangles) at 0 < λ < 1. This illustrates that both word position and word frequency
can help distinguish the importance of words, as described in Section 4.3.1. It can also be
seen that when γ = 0 (i.e., only similarity-based transition probability is considered), the
AF1 values (green dots) are mostly projected at the middle or upper-middle level (green
stars) compared with other projections (grey stars) at 0 < γ < 1. When γ = 1 (i.e., only
co-occurrence frequency-based transition probability is considered), the projections (blue
stars) of the AF1 values (blue dots) are mostly at the middle level. This illustrates that
the word importance score can be better assigned to its co-occurring words according to
their co-occurrence frequency and similarity ratio, as described in Section 4.3.1. When
λ = 0.3 and γ = 0.2, the TP-CoGlo-TextRank algorithm with adjacent keywords combined
into phrases has the best average AF1 value in extracting four to nine words from the
training documents. Therefore, considering the influence of γ and λ on the performance
and stability of the TP-CoGlo-TextRank algorithm, this paper sets λ = 0.3 and γ = 0.2.

4.3.3. Comparative Experiment

To verify the effectiveness of the proposed TP-CoGlo-TextRank algorithm in keyword
extraction, six different algorithms are compared in the experiment.

(1) M1: the TF-IDF method. The TF score is calculated by Equation (2) and the smoothed
IDF is calculated by Equation (22), where N represents the size of the document set
and df (w) represents the document frequency of word w.

id f (w) = log
N + 1

d f (w) + 1
+ 1 (22)

(2) M2: the LDA topic model-based method. In addition to the 10,000 documents in the
experimental dataset, another 38,365 documents are selected from the DBLP-Citation-
network V14 dataset, and a total of 48,365 documents are used to train the LDA model.
The trained LDA model is then used to compute the influence of words in each test
document, and words with the highest word influence are extracted as keywords.

(3) M3: the TextRank algorithm [6].
(4) M4: the modified TextRank algorithm proposed in [32], which uses word frequency,

position, and word co-occurrence relationship to compute the transition probability
matrix. The optimal weights of the three parts of transition probabilities are 0, 0.9,
and 0.1, respectively.

(5) M5: the modified TextRank algorithm proposed in [37], which uses word similarities
and co-occurrence relationship, both of which have a weight of 0.5, to compute the
transition probability matrix, and takes the sum of similarities between the word and
all its co-occurring words as the initial value of the word. The same word embedding
model and word similarity calculation method as M6 are used here.

(6) M6: the TP-CoGlo-TextRank algorithm proposed in this paper. The glove.42B.300d [31]
word embedding model, trained on 42 billion tokens from Common Crawl (http:
//commoncrawl.org, accessed on 1 March 2024), is used to obtain the word vectors.

The above six algorithms are used to extract four to nine words from each document in
the test set as keywords, and AP, AR, and AF1 are employed to evaluate their performance.

http://commoncrawl.org
http://commoncrawl.org
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Figure 9 shows the comparison of the six algorithms when the extracted keywords that are
adjacent words in the original text are not combined into phrases.
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The following points can be determined from Figure 9.

(1) The M2 algorithm has the worst performance in keyword extraction. We believe
this is mainly because the M2 algorithm is closely related to the training effect of
the LDA model. Although the 48,365 documents used to train the LDA model are
all computer-related, their topic distribution is relatively scattered. As shown in
Figure 10, the optimal number of topics is 15, and the highest topic coherence score
is 0.5250, indicating that the semantic coherence of the words in the topics is weak,
resulting in the keywords extracted by the M2 algorithm not being able to express the
document topics well.
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(2) As the number of extracted keywords k increases, the AP of the six algorithms gradu-
ally decreases, indicating that with the increase in k, the number of correctly extracted
keywords increases slightly. AR gradually increases, mainly because the number
of keywords provided by the document itself is fixed, but as k increases, the num-
ber of correctly extracted keywords increases, although by a smaller amount. With
the increase in k, except for the M2 algorithm, the AF1 of the other five algorithms
increases first and then decreases gradually after reaching a peak. As for the M2
algorithm, its AF1 reaches a peak at k = 16 and then shows a downward trend. The
reason for the late peak of the M2 algorithm is that the topic coherence of the trained
LDA model is not high, which leads to the fact that when a small number of words
are extracted as keywords, the extracted words cannot express the document topics
well. However, as k increases, more high-quality words are extracted, making the M2
algorithm gradually reach its peak.

(3) Graph-based algorithms M3, M4, M5, and M6 are better than the statistical feature-
based algorithm M1 in extracting keywords. The average AP values increased by
1.40%, 10.42%, 1.65%, and 12.14%, respectively. The average AR values increased
by 1.73%, 6.60%, 1.74%, and 8.09%, respectively. The average AF1 values increased
by 1.57%, 8.95%, 1.74%, and 10.61%, respectively. This shows that graph-based
keyword extraction algorithms can better measure the importance of words by using
the relationship between words.

(4) Compared with the other five baseline algorithms, the M6 algorithm has a significant
improvement in AP, AR, and AF1. The average AP values increased by 12.14%, 23.34%,
10.74%, 1.72%, and 10.49%, respectively. The average AR values increased by 8.09%,
24.31%, 6.36%, 1.48%, and 6.34%, respectively. The average AF1 values increased
by 10.61%, 23.65%, 9.04%, 1.66%, and 8.87%, respectively. This shows that the M6
algorithm has good performance in keyword extraction when adjacent keywords in
the original text are not combined into phrases.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 26 
 

 

in the keywords extracted by the M2 algorithm not being able to express the docu-
ment topics well. 

 
Figure 10. Variation of coherence with the number of topics. 

(2) As the number of extracted keywords k increases, the AP of the six algorithms grad-
ually decreases, indicating that with the increase in k, the number of correctly ex-
tracted keywords increases slightly. AR gradually increases, mainly because the 
number of keywords provided by the document itself is fixed, but as k increases, the 
number of correctly extracted keywords increases, although by a smaller amount. 
With the increase in k, except for the M2 algorithm, the AF1 of the other five algo-
rithms increases first and then decreases gradually after reaching a peak. As for the 
M2 algorithm, its AF1 reaches a peak at k = 16 and then shows a downward trend. The 
reason for the late peak of the M2 algorithm is that the topic coherence of the trained 
LDA model is not high, which leads to the fact that when a small number of words 
are extracted as keywords, the extracted words cannot express the document topics 
well. However, as k increases, more high-quality words are extracted, making the M2 
algorithm gradually reach its peak. 

(3) Graph-based algorithms M3, M4, M5, and M6 are better than the statistical feature-
based algorithm M1 in extracting keywords. The average AP values increased by 
1.40%, 10.42%, 1.65%, and 12.14%, respectively. The average AR values increased by 
1.73%, 6.60%, 1.74%, and 8.09%, respectively. The average AF1 values increased by 
1.57%, 8.95%, 1.74%, and 10.61%, respectively. This shows that graph-based keyword 
extraction algorithms can better measure the importance of words by using the rela-
tionship between words. 

(4) Compared with the other five baseline algorithms, the M6 algorithm has a significant 
improvement in AP, AR, and AF1. The average AP values increased by 12.14%, 
23.34%, 10.74%, 1.72%, and 10.49%, respectively. The average AR values increased by 
8.09%, 24.31%, 6.36%, 1.48%, and 6.34%, respectively. The average AF1 values in-
creased by 10.61%, 23.65%, 9.04%, 1.66%, and 8.87%, respectively. This shows that the 
M6 algorithm has good performance in keyword extraction when adjacent keywords 
in the original text are not combined into phrases. 
Figure 11 shows the comparison of the six algorithms when the extracted keywords 

that are adjacent in the original text are combined into phrases. It can be seen that the M6 
algorithm is still superior to the other five algorithms in terms of AP, AR, and AF1. 

Figure 10. Variation of coherence with the number of topics.

Figure 11 shows the comparison of the six algorithms when the extracted keywords
that are adjacent in the original text are combined into phrases. It can be seen that the M6
algorithm is still superior to the other five algorithms in terms of AP, AR, and AF1.
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Figure 12 shows the AF1 comparison of the six algorithms when adjacent keywords
in the original text are not combined or combined into a phrase as one keyword. Adding
“Uncombined” and “Combined” after the algorithm name refers to whether adjacent
keywords in the original text are combined or not. It can be seen that the AF1 value of
each algorithm with adjacent keywords combined is higher than that without combining
adjacent keywords. Specifically, the M1 (Combined) algorithm has an average improvement
of 3.83% compared with the M1 (Uncombined) algorithm; the M2 (Combined) algorithm
has an average improvement of 1.67% compared with the M2 (Uncombined) algorithm; the
M3 (Combined) algorithm has an average improvement of 4.46% compared with the M3
(Uncombined) algorithm; the M4 (Combined) algorithm has an average improvement of
6.00% compared with the M4 (Uncombined) algorithm; the M5 (Combined) algorithm has
an average improvement of 4.46% compared with the M5 (Uncombined) algorithm; and the
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M6 (Combined) algorithm has an average improvement of 6.54% compared with the M6
(Uncombined) algorithm. This is mainly because for each test document, after combining
adjacent keywords into a phrase as one keyword, the number of keywords extracted by the
algorithm decreases greatly, while the number of correctly extracted keywords changes little.
Therefore, the precision of keyword extraction of each algorithm for most test documents
is significantly improved, and so is the AP. Since the number of keywords provided by
the document itself is unchanged, each algorithm has a relatively small increase in recall
for keyword extraction from most test documents, and correspondingly, there is a small
increase in AR. As AF1 is a combination of AP and AR, the AF1 of each algorithm increases
significantly after combining adjacent keywords into a phrase as one keyword. It can also
be seen from Figure 12 that the AF1 value of the M6 (Combined) algorithm reaches its peak
at k = 7 (i.e., extracting seven words with the highest scores from each test document).
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Table 5 compares the effects of the six algorithms when adjacent keywords are not
combined or combined into a phrase as one keyword at k = 7. It can be seen that when
extracting seven words with the highest scores from each test document, the M6 (TP-CoGlo-
TextRank) algorithm proposed in this paper has the best performance compared with
the five baseline algorithms (M1 to M5), regardless of whether adjacent keywords in the
original text are combined. When adjacent keywords are not combined into one keyword,
the AF1 value of the M6 algorithm is 10.65%, 23.16%, 9.25%, 1.62%, and 9.13% higher than
that of the M1 to M5 algorithms, respectively. When adjacent keywords are combined into
one keyword, the AF1 value of the M6 algorithm is 13.65%, 28.45%, 11.58%, 2.34%, and
11.50% higher than that of the M1 to M5 algorithms, respectively. Therefore, based on the
TextRank algorithm, combining word frequency and position to measure the importance
of words, and using word co-occurrence frequency and the GloVe model to achieve the
non-uniform transfer of word scores, can obtain keywords that are more consistent with
the document topic.

Table 5. Comparison of the six algorithms while extracting top seven most important words.

Algorithms
Top 7 (Uncombined) Top 7 (Combined)

AP% AR% AF1% AP% AR% AF1%

M1 37.21 53.32 43.83 43.16 54.03 47.99
M2 27.32 36.69 31.32 29.52 37.90 33.19
M3 38.44 54.93 45.23 45.50 55.65 50.06
M4 47.23 60.01 52.86 57.29 61.45 59.30
M5 38.66 54.86 45.35 45.60 55.67 50.14
M6 48.95 61.42 54.48 60.54 62.79 61.64

Therefore, when constructing the academic literature knowledge graph, this paper
will use the TP-CoGlo-TextRank algorithm to extract keywords from documents without
keywords, select the top seven words with the highest scores as keywords, and combine
the keywords that are adjacent words in the original text into phrases. The combined final
results are used as the keywords of the document.

5. Academic Literature Knowledge Graph Construction

In this paper, the DBLP-Citation-network V14 [35] dataset, which contains 5,259,858 doc-
uments and 36,630,661 citation relationships, is used to construct the academic literature
knowledge graph. Each document in the DBLP-Citation-network V14 dataset is associated
with a title, authors, a venue, a doc_type, an abstract, keywords, and references. In the process
of constructing the academic literature knowledge graph based on the relationships between
documents shown in Figure 1, this paper uses the TP-CoGlo-TextRank algorithm proposed
in Section 3.5 to extract keywords for the documents that do not have keywords for some
reason. On this basis, the academic literature knowledge graph is constructed based on the
Neo4j graph database to provide data support for subsequent studies, such as automatic
summarization, text classification, text clustering, and question-answering systems.

Part of the academic literature knowledge graph constructed by Neo4j is shown in
Figure 13. Each type of entity node in this knowledge graph corresponds to a color, where
the blue node represents the Paper node, the green node represents the Author node, the
orange node represents the Venue node, and the yellow node represents the Keyword node.
Figure 14 is an example of nodes and relationships in the academic literature knowledge
graph, in which the coauthor relationship indicates co-authorship, written_by indicates
that a paper is written by an author, published_at indicates that a paper is published in
a certain journal (or conference), contributed_by indicates that a paper, an author, or a
journal (or conference) contributes to a certain keyword, relevant indicates that a paper is
related to a keyword, and citing indicates that a paper cites another paper [4].
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6. Conclusions

Keywords are a very important type of node in academic literature knowledge graphs.
In the process of constructing the academic literature knowledge graph, this paper im-
proved the classic TextRank keyword extraction algorithm by using text features such as
word frequency, position, word co-occurrence frequency, and the GloVe model and pro-
posed the TP-CoGlo-TextRank algorithm to extract keywords from the documents without
keywords. On this basis, entity and relationship extraction was carried out based on the
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DBLP-Citation-network V14 dataset, and the graph database Neo4j was used to store and
display the academic literature knowledge graph.

A shortcoming of this paper is that keywords are mostly nouns or nominal phrases,
but in this paper, nouns, verbs, and adjectives are taken as candidate keywords, so it is
inevitable that verbal and adjectival keywords will be selected, which affects the quality
of the keywords extracted. Although keywords that are adjacent words in the original
text are combined in this paper, sometimes the combined result is not a nominal phrase.
In the following study, we will focus on solving this problem. In addition, based on the
constructed academic literature knowledge graph, we will also carry out studies on text
clustering, automatic text summarization, and the academic influence analysis of papers,
journals (or conferences), and authors in the future.
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