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Abstract: This article primarily investigates the width problem within weighted band-limited
function space in a uniform setting. Through an analysis of the properties of s-numbers, we establish
a connection between the widths of weighted band-limited function spaces and the s-numbers of
infinite-dimensional diagonal operators. Furthermore, employing the discretization method, we
estimate the exact asymptotic orders of Kolmogorov n-width and linear n-width in the weighted
band-limited function space, which is characterized by the weight ω = {ωk} = {|k|r}k∈Z0

.
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1. Introduction

It is well known that weighted band-limited function spaces have broad applications
in communication theory, functional analysis, and data processing [1–4]. Additionally,
they serve as mathematical tools for function approximation [5,6], thus attracting extensive
research attention from scholars and yielding a series of elegant and profound results [7–9].
In comparison to the classical band-limited function space, weighted band-limited function
space involves the application of signals or functions in the frequency domain (Fourier
transform domain). In practical scenarios, the mitigation of noise influence can be achieved
through judicious selection of weighted functions, particularly focusing on specific frequen-
cies. These weighted functions are instrumental in signal reconstruction and information
transmission optimization. In approximation theory, scholars have investigated the width
of the weighted function space to address function approximation challenges posed by
non-uniform data points and weight conditions [10,11]. The width problem of weighted
function space pertains to the integration of weighted functions within function approxi-
mation and interpolation theory, aiming to enhance the performance and approximation
capabilities of interpolation functions. Therefore, this paper will further these investiga-
tions by assigning numerical weights to band-limited functions, thereby creating weighted
band-limited function spaces, and investigating the width problem within these weighted
band-limited function spaces.

Let N denote the set of natural numbers, N+ represent the set of non-negative integers,
Z signify the set of integers, and Z0 designate the set of non-zero integers. Furthermore,
R and C respectively symbolize the real numbers and complex numbers.

Consider two normed linear spaces, denoted as (X, ∥ · ∥X) and (Y, ∥ · ∥Y), both defined
over the same field. The set of all bounded linear operators from X to Y is denoted by
L(X, Y). The norm of a bounded linear operator A from X to Y is expressed as ∥A : X → Y∥
or simply ∥A∥. The notation X ↪→ Y signifies the continuous embedding of X into Y.
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When considering two positive functions, namely a(x) and b(x) defined on a common
set F, the relation a(x) ≼ b(x) is employed to indicate the existence of a positive constant
c1 independent of variable x, such that a(x) ≤ c1 · b(x). And a(x) ≽ b(x) indicates that
there exists a positive constant c2 independent of variable x, such that a(x) ≥ c2 · b(x).
Simultaneously, the notation a(x) ≍ b(x) is utilized to convey the existence of two positive
constants c1 and c2, independent of the variable x, such that c1 · b(x) ≤ a(x) ≤ c2 · b(x).

The structure of this paper is outlined as follows. Section 2 introduces the concepts of width,
s-number, and weighted band-limited function spaces. Section 3 establishes the connection
between the width of weighted band-limited function spaces and the width problem of infinite-
dimensional diagonal operators. Section 4 provides precise asymptotic estimates for the width
of weighted band-limited function spaces under specific weight conditions.

2. The Widths, s-Numbers, and Band-Limited Function Space

We start with the basic concept of widths.

Definition 1 ([12]). Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be two normed linear spaces over the same
field, X ↪→ Y denote the continuous embedding of X into Y and n ∈ N. The Kolmogorov n-width
and linear n-width of X in Y are defined as

dn(X, Y) := inf
Ln

sup
x∈BX

inf
y∈Ln

∥x − y∥Y,

an(X, Y) := inf
Tn

sup
x∈BX

∥x − Tnx∥,

where Ln runs through all possible linear subspaces of X of dimension at most n, Tn runs over all
linear operators from X to Y with rank at most n, and BX represents the unit closed ball in X.

The notion of width, introduced by Kolmogorov in the 1940s, has garnered extensive
investigation due to its close association with computational complexity. Detailed insights
into width can be found in Pinkus’ monograph [13].

Subsequently, we proceed to introduce s-numbers and their properties, which play a
pivotal role in the proofs presented in the third section of this paper.

Definition 2 ([14]). Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be two normed linear spaces over the same
field, T ∈ L(X, Y), and n ∈ N. The n-th Kolmogorov number and the n-th approximation number
and of the operator T are defined as

dn(T) = dn(T : X → Y) = inf
Fn

sup
∥x∥∈BX

inf
y∈Fn

∥Tx − y∥Y,

an(T) = an(T : X → Y) = inf(∥T − A∥ : A ∈ L(X, Y), rankA ≤ n),

where Fn runs through all possible linear subspaces of Y of dimension at most n, and BX represents
the unit closed ball in X. The n-th Kolmogorov number and the n-th approximation number are
collectively referred to as s-numbers.

Evidently, if X ↪→ Y , then we have

dn(X, Y) = dn(id : X → Y), an(X, Y) = an(id : X → Y). (1)

Here, id represents the identity operator from X to Y. For expediency, in the ensu-
ing discourse of this article, unless explicitly stated otherwise, the symbol
sn(X, Y) = sn(id) = sn(id : X → Y) denotes either dn(X, Y) = dn(id) = dn(id : X → Y) or
an(X, Y) = an(id) = an(id : X → Y).

Detailed information about s-numbers can be found in references [14,15]. Here, we
introduce a particular property of s-numbers, which plays a crucial role in the proof
presented in this paper.
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Lemma 1 ([15]). Let X0, X, Y, Y0 be Banach spaces on the same number field, T ∈ L(X0, X),
S ∈ L(X, Y), R ∈ L(Y, Y0), and n ∈ N. Then

sn(RST) ≤ ∥R∥sn(S)∥T∥.

The notation Lp(R), where 1 < p < ∞, denotes a classical Lebesgue space defined on
the real numbers R, characterized by integrability of p-th power, and equipped with the
norm denoted by ∥ · ∥Lp(R). Similarly, we utilize lp(Ω) to represent the conventional real
sequence space defined on R, demonstrating p-power summability, and equipped with
the norm denoted by ∥ · ∥lp(Ω), where Ω belongs to the set {Z,Z0,N,N+}. Specifically, the
notation lp is utilized to represent lp(N+), where ∥ · ∥lp functions as a concise representation
for ∥ · ∥lp(N+).

Subsequently, our attention will be directed towards the commencement of the dis-
course on function space.

Let σ > 0, g(z) be an entire function on C, for every ε > 0. If there is a positive
constant A=A(ε) that only related to ε , such that

|g(z)| ≤ A exp((σ + ε)|z|), ∀z ∈ C,

then g(z) is said to be an entire function of exponential type σ.
Denote by Bσ the set encompassing all entire functions of exponential type σ that are

bounded when restricted to R.
Let Bσ,p(R) = Bσ(R) ∩ Lp(R), for 1 ≤ p ≤ ∞, σ > 0. It follows that Bσ,p(R) equipped

with the norm || · ||Lp forms a Banach space. This Banach space is referred to as the band-
limited function space. Specifically, the well-known Paley-Wiener space is denoted as Bσ,2(R).

For f ∈ L1(Td), the Fourier transform of f is defined as follows,

f̂ (x) = (2π)−d
∫

Td
f (x)ei(x,t)dt,

and denote f̂ (k), k ∈ Zd, as the Fourier coefficients of f .
According to Schwartz’s theorem [16], we have

Bσ,p(R) =
{

f ∈ Lp(R), supp f̂ ⊂ [−σ, σ]
}

,

where f̂ represents the Fourier transform of f .

Lemma 2 ([5]). Let 1 < p < ∞, σ > 0.

(1) Assume that f ∈ Bσ,p(R) , then

f (x) = ∑
k∈Z

f
(

kπ

σ

)
sinc

(
σ

(
x − kπ

σ

))
, ∀x ∈ R, (2)

and the series on the right-hand side converges absolutely and uniformly to f (x) on R, where

sinct =
{ sin t

t , t ̸= 0
1, t = 0

.

(2) For any f ∈ Bσ,p(R), there exists two positive constants c1 and c2 depending only on p and
σ, such that

c1

(
∑
k∈Z

∣∣∣∣ f( kπ

σ

)∣∣∣∣p
) 1

p

≤ ∥ f ∥Lp ≤ c2

(
∑
k∈Z

∣∣∣∣ f( kπ

σ

)∣∣∣∣p
) 1

p

, (3)

which implies
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∥ f ∥Lp(R) ≍
∥∥∥∥{ f

(
kπ

σ

)}∥∥∥∥
lp(Z)

.

(3) For any y = {yk} ∈ lp(Z), there exists a unique g ∈ Bσ,p(R) such that

g
(

kπ

σ

)
= yk, k ∈ Z.

Remark 1. (1) Lemma 2 asserts that for any sequence y = {yk} ∈ lp(Z), there exists a unique
function g ∈ Bσ,p(R) satisfying the equations:

g(x) = ∑
k∈Z

yksinc
(

σ

(
x − kπ

σ

))
, x ∈ R,

and

g
(

kπ

σ

)
= yk, k ∈ Z.

(2) Utilizing Lemma 2, the space B̊σ,p(R) is defined as

B̊σ,p(R) :=
{

f ∈ Bσ,p(R) | f (0) = 0
}

,

which constitutes a Banach space equipped with the norm ||·||Lp(R).

Let ω = {ωk}k∈Z0 denote a sequence of positive real numbers defined on Z0. Consider
a function f ∈ B̊σ,p(R) with 1 ≤ p ≤ ∞ and σ > 0. Define the function fω(x) as follows

fω(x) = ∑
k∈Z0

ωk f
(

kπ

σ

)
sinc

(
σ

(
x − kπ

σ

))
, x ∈ R (4)

where ωk represents the k-th element of the sequence {ωk}k∈Z0 .

According to Lemma 2, if the sequence
{

ωk f
(

kπ
σ

)}
∈ lp(Z0), then the function

fω belongs to the space B̊σ,p(R), which is a subset of Bσ,p(R). Additionally, the expression

fω

(
kπ

σ

)
= ωk f

(
kπ

σ

)
, k ∈ Z0.

holds. Moreover, it can be further stated that the norm of fω in the Lebesgue space Lp(R) is

asymptotically equivalent to the norm of the sequence
{

ωk f
(

kπ
σ

)}
in the sequence space

lp(Z0), as expressed by the relation

∥ fω∥Lp(R) ≍
∥∥∥∥{ωk f

(
kπ

σ

)}∥∥∥∥
lp(Z0)

.

Therefore, the wighted band-limited function space with the numerical weight ω can
be defined as

Bω
σ,p(R) :=

{
f ∈ B̊σ,p(R)

∣∣∣∣ {ωk f
(

kπ

σ

)}
∈ lp(Z0)

}
, (5)

equipped with the norm
|| f ||p,ω := || fω ||Lp(R),

for any f ∈ Bω
σ,p(R).

Obviously, ||·||p,ω is the norm of Bω
σ,p(R), and
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∥ f ∥p,ω ≍
∥∥∥∥{ωk f

(
kπ

σ

)}∥∥∥∥
lp(Z0)

. (6)

Utilizing Lemma 2 in conjunction with Equation (6), the subsequent proposition can
be readily demonstrated.

Proposition 1. Let 1 < p < ∞, σ > 0, ω = {ωk} is a sequence of positive real numbers defined
on Z0. Then Bω

σ,p(R) is Banach space with the norm ||·||p,ω.

In the subsequent context, unless otherwise specified, Bω
σ,p denotes the Banach space(

Bω
σ,p(R) , ||·||p,ω

)
for brevity, where ω satisfies condition that

lim
|k|→∞

ωk = ∞, inf
k∈Z0

ωk = ρ > 0. (7)

In the subsequent analysis, we will address the issue of continuous embedding of
Bω

σ,p(R) into Bσ,q(R), when 1 < p, q < ∞.
If 1 < p ≤ q < ∞, according to Jackson-Nikolskii inequality and Lemma 2, for any

f ∈ Bω
σ,p(R), then we have

∥ f ∥Lq(R) ≤ 2σ
1
p −

1
q ∥ f ∥Lp(R) ≤ 2σ

1
p −

1
q c2

(
∑

k∈Z0

∣∣∣∣ f( kπ

σ

)∣∣∣∣p
) 1

p

≤ 2σ
1
p −

1
q c2

(
∑

k∈Z0

∣∣∣∣cρ f
(

kπ

σ

)∣∣∣∣p
) 1

p

= 2cc2σ
1
p −

1
q

(
∑

k∈Z0

∣∣∣∣ρ f
(

kπ

σ

)∣∣∣∣p
) 1

p

≤ 2cc2σ
1
p −

1
q

(
∑

k∈Z0

∣∣∣∣ωk f
(

kπ

σ

)∣∣∣∣p
) 1

p

=
2cc2

c1
σ

1
p −

1
q ∥ f ∥p,ω,

where c is an absolute positive constant satisfying condition cρ ≥ 1. Thus, we have
Bω

σ,p(R) ↪→ Bσ,q(R), when 1 < p ≤ q < ∞.
If 1 < q < p < ∞, let

1
ω

=

{
1

ωk

}
∈ lr(Z0), (8)

where 1
r = 1

q −
1
p , according to Hölder inequality, then for any f ∈ Bω

σ,p(R), we have∥∥∥∥{ f
(

kπ

σ

)}∥∥∥∥
lq(Z0)

≤
∥∥∥∥{ωk f

(
kπ

σ

)}∥∥∥∥
lp(Z0)

·
∥∥∥∥ 1

ω

∥∥∥∥
lr(Z0)

. (9)

From Lemma 2 and Equation (9), we obtain

∥ f ∥Lq(R) ≤ c2

∥∥∥∥{ f
(

kπ

σ

)}∥∥∥∥
lq(Z0)

≤ c2

∥∥∥∥{ωk f
(

kπ

σ

)}∥∥∥∥
lp(Z0)

·
∥∥∥∥ 1

ω

∥∥∥∥
lr(Z0)

≤ c2

c1
∥ fω∥Lp

·
∥∥∥∥ 1

ω

∥∥∥∥
lr(Z0)

=
c2

c1

∥∥∥∥ 1
ω

∥∥∥∥
lr(Z0)

∥ f ∥p,ω,

which shows that Bω
σ,p(R) ↪→ Bσ,q(R), when 1 < q < p < ∞.

Based on the preceding analysis, we can derive Proposition 2 concerning the continu-
ous embedding of Bω

σ,p(R) into Bσ,q(R).
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Proposition 2. Let 1 < p, q < ∞, and ωk = {ωk}k∈Z0
satisfies Conditions (7) and (8). Then

Bω
σ,p(R) ↪→ Bσ,q(R).

In the subsequent discussion, unless otherwise stated, we assume that ω = {ωk}k∈Z0
satisfies Conditions (7) and (8) in both the Kolmogorov n-width and linear n-width discussions.

3. The Relationship between the Width of Weighted Bound-Limited Function Spaces
and the s-Numbers of Infinite-Dimensional Diagonal Operators

In this section, we leverage the favorable properties of s-numbers to investigate
the relationship between the width of weighted band-limited function spaces and the
s-numbers of infinite-dimensional diagonal operators.

Let 1 < p, q < ∞, and ω = {ωk}k∈Z0
be the sequence of positive real numbers defined

on Z0 satisfying the Conditions (7) and (8). Then the infinite-dimensional diagonal operator
is defined as

D 1
ω

: lp(Z0) → lq(Z0),

x = {ξ̃k}k∈Z0 7→ D 1
ω

x =
{

1
ωk

ξ̃k

}
k∈Z0

.
(10)

For 1 < p, q < ∞, according to Conditions (7) and (8), the infinite-dimensional diago-
nal operator D 1

ω
is a bounded linear operator mapping from lp(Z0) to lq(Z0). Consequently,

we establish a connection between sn(Bω
σ,p(R), Bσ,q(R)) and sn(D 1

ω
: lp(Z0) → lq(Z0)). This

outcome is a pivotal result in this paper, contributing significantly to the transformation of
the estimation of width orders into an estimation of s-number orders.

Theorem 1. Let 1 < p, q < ∞, ω = {ωk}k∈Z0
represent a sequence of positive real numbers

defined on Z0 that satisfies the Conditions (7) and (8). Consider the infinite-dimensional diagonal
operator D 1

ω
defined by Equation (10), and n ∈ N. Then, we obtain

dn

(
Bω

σ,p(R), Bσ,q(R)
)
≍ dn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
,

an

(
Bω

σ,p(R), Bσ,q(R)
)
≍ an

(
D 1

ω
: lp(Z0) → lq(Z0)

)
.

Proof. We consider the following operators

A : Bω
σ,p(R) → lp(Z0),

f 7→
{

ωk f
(

kπ

σ

)}
k∈Z0

,

and
B : lq(Z0) → Bσ,q(R),

ξ = {ξk} 7→ B(ξ)(x),

where B(ξ)(x) := ∑
k∈Z0

ξksinc
(

σ
(

x − kπ
σ

))
, x ∈ R.

According to Lemma 2, it follows that the operators A and B are bounded linear
operators, where ∥A∥ ≤ 1

c1
and ∥B∥ ≤ c2. Furthermore, we obtain the following diagram

Bω
σ,p(R)

id−→ Bσ,q(R)
↓ A ↑ B

lp(Z0)
D 1

ω−→ lq(Z0).

From Lemma 1 and the identity id = B · D 1
ω
· A, we have
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sn

(
id : Bω

σ,p(R) → Bσ,q(R)
)
≤ ∥A∥ · sn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
· ∥B∥

≤ c2

c1
sn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
≼ sn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
.

(11)

To prove the reverse direction, we consider the modified diagram

lp(Z0)
D 1

ω−→ lq(Z0)
↓ A−1 ↑ B−1

Bω
σ,p(R)

id−→ Bσ,q(R).

It is obvious that A−1, B−1 are bounded linear operators with
∥∥A−1

∥∥ ≤ c1,
∥∥B−1

∥∥ ≤ 1
c2

.
By the same argument as used above, we obtain the reverse inequality of (11) as

sn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
≤
∥∥∥A−1

∥∥∥ · sn

(
id : Bω

σ,p(R) → Bσ,q(R)
)
·
∥∥∥B−1

∥∥∥
≤ c1

c2
sn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
≼ sn

(
id : Bω

σ,p(R) → Bσ,q(R)
)

.

(12)

Combining Equations (11) and (12), we get

sn

(
id : Bω

σ,p(R) → Bσ,q(R)
)
≍ sn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
. (13)

In accordance with Equation (1), the aforementioned Equation (13) can be reformulated as

dn

(
Bω

σ,p(R), Bσ,q(R)
)
≍ dn

(
D 1

ω
: lp(Z0) → lq(Z0)

)
,

an

(
Bω

σ,p(R), Bσ,q(R)
)
≍ an

(
D 1

ω
: lp(Z0) → lq(Z0)

)
.

Let σ = {σk}k∈N be the non-increasing rearrangement of {1/ωk}k∈Z0
. Then from the

result of [14], we obtain

sn
(

Dσ : lp → lq
)
=

(
∞

∑
j≥n

σθ
j

) 1
θ

, (14)

where 1 < q < p < ∞, 1
θ = 1

q −
1
p .

Based on the conclusion of Theorem 1, Equation (13), we can readily estimate the exact
asymptotic order of the Kolmogorov n-width and linear n-width.

Corollary 1. Let 1 < q < p < ∞, 1
θ = 1

q −
1
p , n ∈ N, and σ = {σk}k∈N be the non-increasing

rearrangement of {1/ωk}k∈Z0
. Then we have

dn

(
Bω

σ,p(R), Bσ,q(R)
)
≍ an

(
Bω

σ,p(R), Bσ,q(R)
)
≍
(

∞

∑
j≥n

σj
θ

) 1
θ

.

Let 1 < q < p < ∞, n ∈ N, It is evident that when ωk = 2|k|, k ∈ Z0, the se-
quence ω = {ωk} complies with Conditions (7) and (8). Similarly, if ωk = |k|r, where
r > max

{
0, 1

q −
1
p

}
, then the sequence ω = {ωk} also satisfies Conditions (7) and (8).

Consequently, we can readily deduce the following implication from Corollary 1.
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Corollary 2. Suppose that 1 < q ≤ p < ∞, ω = {ωk}k∈Z0
.

(1) If ωk = 2|k|, k ∈ Z0, then

dn

(
Bω

σ,p(R), Bσ,q(R)
)
≍ an

(
Bω

σ,p(R), Bσ,q(R)
)
≍ 2−n.

(2) If ωk = |k|r, k ∈ Z0, and r > max
{

0, 1
q −

1
p

}
, then

dn

(
Bω

σ,p(R), Bσ,q(R)
)
≍ an

(
Bω

σ,p(R), Bσ,q(R)
)
≍ n−r+ 1

q −
1
p .

From Corollary 2, it is evident that, for 1 < p, q < ∞, r > max
{

0, 1
q −

1
p

}
, and

ω = {ωk} = {|k|r}k∈Z0
, the space Bω

σ,p(R) can be continuously embedded into Bσ,q(R).
Furthermore, the precise asymptotic order of the Kolmogorov n-widths and linear n-
widths of Bω

σ,p(R) in Bσ,q(R) is determined when 1 < q ≤ p < ∞. However, the exact
asymptotic order of the Kolmogorov n-widths and linear n-widths of Bω

σ,p(R) in Bσ,q(R)
remains unresolved when 1 < p < q < ∞. This unresolved issue will be addressed in the
subsequent section of the paper. For the sake of convenience, the weighted band-limited
function space Bω

σ,p(R) is temporarily denoted as Br
σ,p(R).

4. Exact Asymptotic Order of the Width of Br
σ,p(R) in Bσ,q(R)(1 < p < q < ∞)

In Section 3, we derived the precise asymptotic order of the width of Br
σ,p(R) within

Bσ,q(R) when 1 < q ≤ p < ∞. Extending this investigation, we proceed in this section to
estimate the asymptotic order of the width of Br

σ,p(R) within Bσ,q(R) when 1 < p < q < ∞,
employing the discretization method.

To ensure comprehensive coverage, we examine the precise asymptotic order of the
width of Br

σ,p(R) within Bσ,q(R) for the general case 1 < p, q < ∞, which represents another
primary outcome of this study.

Theorem 2. Let 1 < p < q < ∞, r > max
{

0, 1
q −

1
p

}
, n ∈ N. Then we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≍


n−r+ 1

q −
1
p , 1 < q ≤ p < ∞,

n−r, 1 < p < q ≤ 2,

n−r+ 1
q −

1
2 , 1 < p < 2 ≤ q < ∞, r > 1

q +
1
2 ,

n−r+ 1
q −

1
p , 2 ≤ p < q < ∞, r >

(
1
q +

1
2

)
λp,q,

and

an

(
Br

σ,p(R), Bσ,q(R)
)
≍


n−r+ 1

q −
1
p , 1 < q ≤ p < ∞,

n−r, 1 < p < q ≤ 2,

n−r+ 1
q −

1
2 , 1 < p < 2 ≤ q < ∞, r > 1

q +
1
2 ,

n−r, 2 ≤ p < q < ∞,

where λp,q = 1/p−1/q
1/2−1/q .

Remark 2. When 1 < q ≤ p < ∞, the results of Theorem 2 are entirely consistent with those of
Corollary 2.

This section will employ the discretization method to establish Theorem 2, thereby
converting the problem of estimating the width in infinite-dimensional spaces into one of
estimating width in finite-dimensional spaces. To this end, we first recall results pertaining
to the width of finite-dimensional spaces.



Mathematics 2024, 12, 1348 9 of 16

Let lm
p , 1 ≤ p ≤ ∞, be the classical finite-dimensional space equipped with the norm

∥·∥lm
p

on Rm as

∥x∥lm
p
=


(

m
∑

k=1
|xk|p

) 1
p
, 1 ≤ p < ∞,

max
1≤k≤m

|xk|, p = ∞.

Denoting by Bm
p the unit ball in lm

p , the n-width of lm
p in lm

q has been thoroughly
investigated by numerous scholars, and the findings can be summarized as follows.

Lemma 3 ([13,17–20]). Let 1 < p, q < ∞, n ∈ N, and 0 ≤ 2n ≤ m. Then we have

dn

(
Bm

p , lm
q

)
≍



(m − n)
1
q −

1
p , 1 < q < p < ∞,

1, 1<p < q ≤ 2,

min
{

1, m
1
q n− 1

2

}
, 1 < p < 2 ≤ q < ∞,{

min
{

1, m
1
q n− 1

2

}}λp,q

, 2 ≤ p < q < ∞.

and

an

(
Bm

p , lm
q

)
≍


(m − n)

1
q −

1
p , 1 < q < p < ∞,

1, 1<p < q ≤ 2,

min
{

1, m
1
q n− 1

2

}
, 1 < p < 2 ≤ q < ∞,

1, 2 ≤ p < q < ∞.

where λp,q = 1/p−1/q
1/2−1/q .

To establish the discretization lemma for estimating the upper bound of Theorem 2,
we begin by partitioning the entirety of non-zero points into blocks.

For each integer k ∈ N+, define the set Sk as

Sk = {n ∈ Z0 : 2k−1 ≤ |n| < 2k}.

It is evident that the cardinality of Sk is 2k, denoted as |Sk| = 2k. Moreover, for
k, k′ ∈ N+, k ̸= k′, we obtain

Sk ∩ Sk′ = ∅,
∞⋃

k=1

Sk = Z0.

For convenience, we denote

en(x) = sinc
(

σ
(

x − nπ

σ

))
, x ∈ R, n ∈ Z0.

For any f ∈ B̊σ,p(R)(1 < p < ∞), and k ∈ N+, let δk f (x) denote the “block” for
f (x), namely

δk f (x) = ∑
n∈Sk

f
(nπ

σ

)
en(x), x ∈ R.

Then we have
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∥ f ∥σ,p ≍
(

∑
n∈Z0

∣∣∣∣∣ f
(

nπ

σ

)∣∣∣∣∣
p) 1

p

=

(
∑

k∈N+

∑
n∈Sk

∣∣∣ f(nπ

σ

)∣∣∣p) 1
p

=

(
∑

k∈N+

∥
{

f
(nπ

σ

)}
n∈Sk

||p
l
|Sk |
p

) 1
p

≍
(

∑
k∈Sk

∥ δk f ∥ p
σ,p

) 1
p

.

(15)

Let k ∈ Sk. Define Fk as Fk := span{en(x)|n ∈ Sk}. It is obvious that the dimension of
Fk is |Sk| = 2k.

Consider the mapping

Ik : Fk → R|Sk |

f (x) = ∑
n∈Sk

cnen(x) 7→ {cn}n∈Sk
.

It is evident that Ik is a linear isomorphism between Fk and R|Sk |. Moreover, for any
f (x) = ∑n∈Sk

cnen(x) and g(x) = ∑n∈Sk
c
′
nen(x), x ∈ R, we have

∥ f ∥p,ω ≍
(

∑
n∈Sk

|n|rp|cn|p
) 1

p

≍ 2rk

(
∑

n∈Sk

|cn|p
) 1

p

≍ 2rk∥Ik f ∥
l|Sk |
p

, 1 < p < ∞, (16)

∥g∥Lp ≍
(

∑
n∈Sk

∣∣c′n∣∣p
) 1

p

≍ ∥Ikg∥
l|Sk |
q

, 1 < q < ∞. (17)

According to the definitions of Kolmogorov n-width, linear n-width and Equations
(16) and (17), for nk ∈ N, we have

snk

(
Br

σ,p(R)
⋂

Fk, Bσ,q(R)
⋂

Fk

)
≼ 2−rksnk

(
B|Sk |

p , l|Sk |
q

)
, 1 < p, q < ∞, (18)

where snk represents dnk or ank .
Therefore, from Equations (15) and (18), we can obtain the discretization lemma for

the upper bound of estimating Theorem 2.

Lemma 4. Let 1 < p, q < ∞, n ∈ N, r > max{0, 1/q − 1/p}, and let {nk} be a sequence of

non-negative integers defined on N such that
∞
∑

k=1
nk ≤n with nk ≤ |Sk|, k ∈ N+. Then

sn

(
Br

σ,p(R), Bσ,q(R)
)
≼

∞

∑
k=1

2−rksnk

(
B|Sk |

p , l|Sk |
q

)
,

where snk represents dnk or ank .

In the subsequent discourse, we establish a discretization lemma aimed at deriving an
estimative lower bound for Theorem 2.

Lemma 5. Let 1 < p, q < ∞, n ∈ N, k ∈ N+, and n ≍ 2k, |Sk| ≥ 2n, r > max
(

0, 1
q −

1
p

)
. Then

sn

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rksn

(
B|Sk |

p , l|Sk |
q

)
.

Proof. By Equation (15), we obtain

sn

(
Br

σ,p(R), Bσ,q(R)
)
≥ sn

(
Br

σ,p(R) ∩ Fk, Bσ,q(R) ∩ Fk

)
. (19)
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From the Equations (16), (17) and (19), we obtain

sn

(
Br

σ,p(R), Bσ,q(R)
)
≥ sn

(
Br

σ,p(R) ∩ Fk, Bσ,q(R) ∩ Fk

)
≽ 2−rk sn

(
B|Sk |

p l|Sk |
q

)
,

which completes the proof of Lemma 5.

We are currently in a position to formally demonstrate Theorem 2, which stands as the
primary culmination of findings of this paper.

Proof of Theorem 2. For n ∈ N, let 2k′ ≍ n, k′ ∈ N+, and

nk =

{
|Sk|, 1 ≤ k ≤ k′,[
n · 2k′−k

]
, k > k′.

It is easy to see that {nk} satisfies the conditions of Lemma 4 and when k > k′, we have

|Sk|
nk

=
2k

n · 2k′−k ≥ 2k

2k′ · 2k′−k =
22k

22k′ ≥ 2,

which means that |Sk| ≥ 2nk.
Step-I: Firstly, we primarily focus on estimating the exact asymptotic order of the

Kolmogorov n-widths dn

(
Br

σ,p(R), Bσ,q(R)
)

.

According to Lemma 4 and the consideration that dm

(
lm
p , lm

q

)
= 0, we can obtain the

upper bound of dn

(
Br

σ,p(R), Bσ,q(R)
)

as

dn

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k∈N+

2−rkdnk

(
B|Sk |

p , l|Sk |
q

)
= ∑

k>k′
2−rkdnk

(
B|Sk |

p , l|Sk |
q

)
. (20)

In the analysis of dnk

(
B|Sk |

p , l |Sk |
q

)
, four distinct scenarios are deliberated upon

for estimation.
Case I: For 1 < q ≤ p < ∞, by Equation (20) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k>k′
2−rkdnk

(
B|Sk |

p , l|Sk |
q

)
≼ ∑

k>k′
2−rk(|Sk| − nk)

1
q −

1
p

≼ ∑
k>k′

2−rk|Sk|
1
q −

1
p

= ∑
k>k′

2−rk2
(

1
q −

1
p

)
k

= ∑
k>k′

2−
(

r− 1
q +

1
p

)
k

≼ 2
−(r− 1

q +
1
p )k

′

≍ n−
(

r− 1
q +

1
p

)
.
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Case II: For 1 < p < q ≤ 2, according to Equation (20) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k>k′
2−rkdnk

(
B|Sk |

p , l|Sk |
q

)
≼ ∑

k>k′
2−rk ≼ 2−rk′ ≍ n−r.

Case III: For 1 < p < 2 ≤ q < ∞, according to Equation (20) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k>k′
2−rk min

{
1, |Sk|

1
q n− 1

2
k

}
≼ ∑

k>k′
2−rk|Sk|

1
q n− 1

2
k

= ∑
k>k′

2−rk2
k
q n− 1

2 2
k
2−

k′
2

= ∑
k>k′

n− 1
2 2−

k′
2 −
(

r− 1
q −

1
2

)
k

≼ n− 1
2 2−

k′
2 2−

(
r− 1

q −
1
2

)
k′

= n− 1
2 2−

k′
2 2−

(
r− 1

q

)
k′+ 1

2 k′

= n− 1
2 2−

(
r− 1

q

)
k′

≍ n−r++ 1
q −

1
2 .

Case IV: For 2 ≤ p < q < ∞, according to Equation (20) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k>k′
2−rk

{
min

{
1, m

1
q n− 1

2

}}λp,q

≼ ∑
k>k′

2−rk
(
|Sk|

1
q n− 1

2
k

)λp,q

= ∑
k>k′

2−rk
(

2
1
q kn− 1

2 2
1
2 k− 1

2 k′
)λp,q

≼ ∑
k>k′

2−rk
(

2
1
q kn−12

1
2 k
)λp,q

= n−λp,q ∑
k>k′

2−rk+
λp,q

q k+
λp,q

2 k ≼ n−λp,q 2−
(

r− λp,q
q − λp,q

2

)
k′

≍ nλp,q n−r+
(

1
q +

1
2

)
λp,q = n−r+

(
1
q +

1
2

)
λp,q

= n−r+ 1
q −

1
p .

Similarly, we estimate the lower bound of dn

(
Br

σ,p(R), Bσ,q(R)
)

in four cases. For

n ∈ N, let k ∈ N+, such that 2k ≍ n, and 2k ≥ 2n. By Lemma 5, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rkdn

(
B|Sk |

p , l|Sk |
q

)
. (21)

Case I: For 1 < q ≤ p < ∞, by Equation (21) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk(|Sk| − n)

1
q −

1
p

= 2−rk
(

2k − n
) 1

q −
1
p

≥ 2−rk(2n − n)
1
q −

1
p

≥ n−r+ 1
q −

1
p .
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Case II: For 1 < p < q ≤ 2, by equation by Equation (21) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk ≍ n−r.

Case III: For 1 < p < 2 ≤ q < ∞, given the asymptotic relation 2k ≍ n, there exists
an absolute positive constant b1 such that

2k ≤ b1n.

Consequently, the expression

|Sk|
1
q n− 1

2 = 2
k
q n− 1

2 ≤ b
1
q
1 n

1
q −

1
2 < b

1
q
1

holds true.
This inequality implies that

1

b1/q
1

|Sk|
1
q n− 1

2 < 1. (22)

Therefore, by Equation (21) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk|Sk|

1
q n− 1

2

= 2−rk+ k
q n− 1

2

≽ n−r+ 1
q −

1
2 .

Case IV: For 2 ≤ p < q < ∞, by Equation (21) and Lemma 3, we have

dn

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk

(
|Sk|

1
q n− 1

2

)λp,q

≽ 2−rk2
(

k
q −

k
2

)
λp,q

= 2−
(

r+ 1
q −

1
p

)
k
≽ n−r+ 1

q −
1
p

From the derivation above, we obtain the exact asymptotic order of the Kolmogorov
n-widths dn

(
Br

σ,p(R), Bσ,q(R)
)

as

dn

(
Br

σ,p(R), Bσ,q(R)
)
≍


n−r+ 1

q −
1
p , 1 < q ≤ p < ∞,

n−r, 1 < p < q ≤ 2,

n−r+ 1
q −

1
2 , 1 < p < 2 ≤ q < ∞, r > 1

q +
1
2 ,

n−r+ 1
q −

1
p , 2 ≤ p < q < ∞, r >

(
1
q +

1
2

)
λp,q.

where λp,q = 1/p−1/q
1/2−1/q .

Step-II: Next, we turn to focus on estimating the exact asymptotic order of the linear
n-widths an

(
Br

σ,p(R), Bσ,q(R)
)

.

According to Lemma 4 and the consideration that am

(
lm
p , lm

q

)
= 0, we can obtain the

upper bound of an

(
Br

σ,p(R), Bσ,q(R)
)

as

an

(
Br

σ,p(R), Bσ,q(R)
)
≼

∞

∑
k=1

2−rkank

(
B|sk |

p , l|sk |
q

)
. (23)

Case I: For 1 < q ≤ p < ∞, by Equation (23) and Lemma 3, we have
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an

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k>k′
2−rk

(
|Sk| − nk

) 1
q −

1
p
≼ ∑

k>k′
2−rk|Sk|

1
q −

1
p

≼ ∑
k>k′

2−
(

r− 1
q +

1
p

)
k
≼ 2−

(
r− 1

q +
1
p

)
k′
≼ n−r+ 1

q −
1
p .

Case II: For 1 < p < q ≤ 2, by Equation (23) and Lemma 3, we have

an

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k>k′
2−rk

≼ 2−rk′ ≍ n−r.

Case III: For 1 < p < 2 ≤ q < ∞, by Equation (23) and Lemma 3, we have

an

(
Br

σ,p(R), Bσ,q(R)
)
≼ ∑

k>k′
2−rk min

{
1, |Sk|

1
q n− 1

2
k

}
≤ ∑

k>k′
2−rk|Sk|

1
q n− 1

2
k = ∑

k>k′
2−rk2

k
q n− 1

2 2
k
2−

k′
2

= n− 1
2 2−

k′
2 ∑

k>k′
2−
(

r− 1
q −

1
2

)
k
≼ n− 1

2 2−
k′
2 2−

(
r− 1

q −
1
2

)
k′

= n− 1
2 2−

k′
2 2−

(
r− 1

q

)
k′+ 1

2 k′
= n− 1

2 2−
(

r− 1
q

)
k′

≍ n−r+ 1
q −

1
2 .

Case IV: For 2 ≤ p < q < ∞, by Equation (23) and Lemma 3, we have

an

(
Br

σ,p(R), Bσ,q(R)
)
≼ 2−rk ≼ 2−rk′ ≼ n−r.

We estimate the lower bound of an

(
Br

σ,p(R), Bσ,q(R)
)

in four cases. For n ∈ N,

let k ∈ N+, such that 2k ≍ n, and r > max
{

0, 1
q −

1
p

}
. By Lemma 5, we have

an

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rkan

(
B|Sk |

p , l|Sk |
q

)
. (24)

Case I: For 1 < q ≤ p < ∞, by Equation (24) and Lemma 3, we have

an

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk(|Sk| − n)

1
q −

1
p = 2−rk

(
2k − n

) 1
q −

1
p

≥ 2−rk(2n − n)
1
q −

1
p ≥ n−r+ 1

q −
1
p .

Case II: For 1 < p < q ≤ 2, by Equation (24) and Lemma 3, we have

an

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk ≍ n−r.

Case III: For 1 < p < 2 ≤ q < ∞, by Equations (22), (24) and Lemma 3, we have

an

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk|Sk|

1
q n− 1

2 = 2−rk+ k
q n− 1

2

≽ n−r+ 1
q −

1
2 .

Case IV: For 2 ≤ p < q < ∞, by Equation (24) and Lemma 3, we have
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an

(
Br

σ,p(R), Bσ,q(R)
)
≽ 2−rk ≽ 2−rk′ ≽ n−r.

From the derivation above, we obtain the exact asymptotic order of the linear n-widths
an

(
Br

σ,p(R), Bσ,q(R)
)

as

an

(
Br

σ,p(R), Bσ,q(R)
)
≍


n−r+ 1

q −
1
p , 1 < q ≤ p < ∞,

n−r, 1 < p < q ≤ 2,

n−r+ 1
q −

1
2 , 1 < p < 2 ≤ q < ∞, r > 1

q +
1
2 ,

n−r, 2 ≤ p < q < ∞.

which completes the proof of Theorem 2.

5. Conclusions

The concept of band-limited function spaces constitutes a crucial paradigm in the fields
of approximation theory and signal processing, forming the theoretical underpinnings for
functional analysis, computational complexity, and optimal algorithms. Simultaneously, it
maintains significant connections with branches such as communication, data processing,
and information theory. In this paper, we endow classical band-limited function spaces with
weights to obtain weighted band-limited function spaces. Leveraging the favorable properties
of s-numbers, we establish the relationship between the width of weighted band-limited
function spaces and the s-numbers of infinite-dimensional diagonal operators. Furthermore,
within a uniform setting, we provide exact asymptotic orders for the Kolmogorov n-width
and linear n-width in the weighted band-limited function spaces endowed with the weight
function ω = {|k|r}, where k ∈ Z0. Considering the width characteristics of function classes
in a uniform setting elucidates the optimal errors for the “worst” elements, while errors
and costs in algorithms exhibit distinct features in different frameworks. Therefore, future
investigations may delve into the discussion of n-width in band-limited function spaces under
various settings to advance the development of width theory.
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