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Abstract: In practical applications, the temporal completeness of knowledge graphs is of great
importance. However, previous studies have mostly focused on static knowledge graphs, generally
neglecting the dynamic evolutionary properties of facts. Moreover, the unpredictable and limited
availability of temporal knowledge graphs, together with the complex temporal dependency patterns,
make current models inadequate for effectively describing facts that experience temporal transitions.
To better represent the evolution of things over time, we provide a learning technique that uses
quaternion rotation to describe temporal knowledge graphs. This technique describes the evolution
of entities as a temporal rotation change in quaternion space. Compared to the Ermitian inner product
in complex number space, the Hamiltonian product in quaternion space is better at showing how
things might be connected. This leads to a learning process that is both more effective and more
articulate. Experimental results demonstrate that our learning method significantly outperforms
existing methods in capturing the dynamic evolution of temporal knowledge graphs, with improved
accuracy and robustness across a range of benchmark datasets.

Keywords: temporal attributes; knowledge graph; quaternion rotation; representation learning

MSC: 05C85

1. Introduction

Knowledge graph technology is crucial in the domain of knowledge representation
and reasoning. A knowledge graph is a comprehensive semantic network composed of
nodes and edges [1–3]. It may be conceptualized as a data structure based on a graph. A
knowledge graph is often shown as a triplet, including a head entity, a tail entity, and a
connection between the two entities. Well-known knowledge graphs like FreeBase, YAGO,
and Schema.org serve as typical instances of knowledge graphs [4]. A knowledge graph
may efficiently communicate the relationships between entities via a structured framework,
providing the advantages of scalability and understandability. It is helpful to use the
knowledge graph for things like system recommendations and obtaining information.

The knowledge graph remains incomplete and suffers from a significant data sparsity
problem, meaning that many facts in the knowledge graph lack associated links or entities.
The absence of this information can limit the effectiveness of the knowledge graph and
its broader applications, highlighting the need for knowledge graph completion. Knowl-
edge graph completion, also known as link prediction, is a type of knowledge reasoning
that attempts to predict missing information by using current facts within the knowledge
graph [5]. Initially, the knowledge graph was mostly developed through artificial creation.
However, this approach is wasteful and difficult to handle when dealing with a knowledge
graph of a very large size. Knowledge representation learning uses low-dimensional vec-
torisation to represent entities and relationships [1,2,4], effectively addressing the problem
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of sparse data. At present, knowledge representation learning provides the basis for build-
ing and using large-scale knowledge graphs, and it is also the most widely used technique
for completing knowledge graphs.

However, most of the existing research focuses on the static knowledge network,
which poses challenges in understanding the temporal fluctuations of information. In fact,
some pieces of information change over time. For example, the set of three facts constituting
the term of office of South Korean President Moon Jae-in was strictly limited to the period
from May 2017 to May 2021. Nevertheless, there have been cases where clear triads have
been formed, such as South Korea, President Park Geun-hye, and South Korea, President
Lee Myung-bak. Ignoring the temporal aspect when answering the question “Who is the
President of South Korea?” tends to lead to incorrect results. Therefore, this example
demonstrates that including temporal information in knowledge graphs can significantly
enhance the understanding and prediction of dynamic relationships within the data.

This study introduces a learning technique called TKGR which is used to model
temporal knowledge graphs. TKGR uses quaternion rotation to accurately represent the
evolution of things over time. The concept describes the process of changing entities over
time as a rotational motion in quaternion space. The Hamiltonian product in quaternion
space provides a more efficient and expressive learning process than the Ermitian inner
product in complex number space. This allows for a more effective capture of possible
interdependencies. The main contributions of this work are listed below:

• To optimize the use of temporal data and to adequately represent the evolution of
entities over time, we propose to use a learning method that uses quaternion rotation
to describe temporal knowledge graphs. The model uses a rotation transformation
in quaternion space to represent the temporal evolution of entities. This approach
improves both the efficiency and the expressiveness of the learning process.

• Our approach uses Hamiltonian product-based quaternion rotations to accurately
describe the temporal and relational changes in knowledge networks. By exploiting
the unique properties of quaternions, we are able to outperform the Ermitian product
in complex numbers when it comes to representing relational data.

• Finally, we verify the efficiency and suitability of the TKGR model through thorough
experimental comparisons with state-of-the-art algorithms from different perspectives.

2. Related Work

The transformation of entities and interactions within a knowledge network into
low-dimensional continuous vectors is a function that can be performed using embed-
ding methods [6,7]. Static knowledge graph embedding and temporal knowledge graph
embedding are the topics explicitly covered in this section.

2.1. Static Knowledge Graph Embedding

Researchers have identified a variety of knowledge graph embedding strategies for
static knowledge graphs from their study. Knowledge graph embedding based on matrix
decomposition, knowledge graph embedding based on convolutional neural networks,
and knowledge graph embedding based on graphs are the three main categories that can
be used to classify the approaches shown here.

When first presented, TransE [8] was used to solve models of knowledge graph
embedding. These models use a score function to map entities h, t and relations r: h + r ≈ t.
The aim is to reduce the distance between the two points, h and t. However, TransE has
shortcomings when it comes to its ability to manage complicated relationships. It performs
very well only in the case of one-to-one relations; it is unable to handle one-to-N and
N-to-one relations. It has been suggested that many extended models can be used to get
around these limitations. TransH [9] is an example of such a model. It is characterized
by the introduction of a hyperplane representing each relation onto which entities are
projected. Because of this, TransH is able to manipulate relations between one and N as
well as from one to N. When the entities are transformed into a new vector space, another
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model is used, called TransR [9]. This model uses a relation-specific matrix that is different
from the others. Because of this, TransR is able to efficiently manage many different types
of relations. Another extended model that overcomes the limitations of TransE is a model
called TransD [10]. Within this framework, additional matrices are introduced to uniquely
describe the semantic meaning of elements and relations. As a result, TransD is able to
manage complicated interactions and capture information with finer granularity.

Matrix factorization-based models such as DistMult [11], RESCAL [12], HolE [13],
ComplEx [14] and SimplE [15] are responsible for transforming relations into linear trans-
formations of entity embeddings imposed on matrices. ConvE [16] and ConvKB [17]
are the two most commonly used in CNN-based models. In addition to transforming
entities and relations into multidimensional matrices, ConvE and ConvKB also describe
the interactions that occur between entities and relations through the use of convolution
and build embeddings that are more expressive through the process of feature learning.
Graph-based techniques are the subject of our final discussion. DeepWalk [18] is the first
method to create vector embeddings of nodes in a network using a random walk model.
This method is a weightless random walk technique. The R-GCN [19] is a graph neural
network extension that is considered to be one of the first methods to use graph neural
networks to learn node embeddings. This is achieved by aggregating the neighbourhood
information of each entity ′, which ultimately results in identical weights for all entities.
However, these approaches are not ideal for temporal knowledge graphs because they are
unable to capture the temporal information contained within temporal knowledge graphs.

2.2. Temporal Knowledge Graph Embedding

Improving static knowledge graph approaches by incorporating temporal aspects has
been the focus of previous research initiatives. Through the use of temporal constraints,
an important model known as TTransE [15] was the first to pioneer the learning of entity
and relation embeddings. This was achieved by expressing transitions between temporal
relations. The sequential relationship between the events “diedIn” and “wasBornIn” is an
example of what is considered. Merging temporal information from static models is not
a simple extension of the models described above. To incorporate temporal knowledge
graphs, the ConT model is an extension of the static knowledge graph model [20] for
further explanation. This allows for the model to store the graph data and extrapolate to
incorporate more recent information. By incorporating time into the entity relationship
structure, HyTE [21] establishes a direct and transparent link between each timestamp
and the hyperplane that is relevant to the entity. HyTE not only makes predictions about
the temporal range of relational facts that do not contain time annotations, but also uses
temporal guidance to infer knowledge graphs. The challenge of predicting the temporal
knowledge graph is addressed by TA-DisMult [22], which does this by capturing the encod-
ing of prospective entities and connection types. To capture time-sensitive representations
of relationship types, the model uses recurrent neural networks. This allows for the integra-
tion of these representations with existing potential factor decomposition methods used for
temporal information fusion.

DE-SimplE [23] is an extension of a static knowledge graph model that incorporates
a diachronic entity embedding function. This function allows for the representation of
entity properties at any point in time. This is different from current approaches to tem-
poral knowledge graph embedding which only provide static properties of entities. The
assignment of labels to entities, relationships, timestamps, and locations is performed
by SubEE [24] using a vocabulary of a given size. The model, on the other hand, uses a
spatio-temporal messaging layer to capture the latent feature vectors of the knowledge
network. BoxTE [25] is an extended version of the static knowledge graph embedding
model. It demonstrates a high level of expressiveness and a strong aptitude for inductive
reasoning in temporal contexts.

While the approaches currently available for completing temporal knowledge graphs
are promising, they often fail to capture both the structure of the graph and the temporal
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connections. Compared to previous techniques, which often focus on either entity proper-
ties or connections without integration, TKGR is able to capture both temporal dynamics
and graph structure in a unique way. As a result, it produces embeddings that are more
accurate for the tasks at hand.

3. Theory of Quaternions

This section provides a preliminary overview of the theoretical foundations of quater-
nions. The quaternion system H is an extension of the complex number system and typically
consists of one real and three imaginary components, as specified below.

q = qr + qii + qj j + qkk (1)

where qr, qi, qj, and qk are the corresponding real coefficients. i, j and k are the imaginary
units. If qj = qk = 0, it is the conventional complex form. These imaginary units also satisfy
the following set of rules:

i2 = j2 = k2 = ijk = −1 (2)

This rule may be used to infer a few more rules that do not correspond to the concept
of commutativity, such as ij = k, ji = −k, jk = i, ki = j, kj = −i, and ik = −j . A quaternion
vector q ∈ Hn is defined as follows:

q = qr + qii + qj j + qkk (3)

where qr, qi, qj and qk are n-dimensional real vectors. For the purpose of modeling rela-
tional data, this study makes use of these concepts. According to the following definitions,
there are a few standard arithmetic rules for quaternions:

Conjugate: The conjugate representation of quaternion q ∈ H is defined as follows:

q̄ = qr − qii− qj j− qkk (4)

Norm: The norm of quaternion q ∈ H is defined as follows:

∥q∥ =
√

q2
r + q2

i + q2
j + q2

k (5)

By means of this operation, the definition of the quaternion of the unit q◁ is obtained.

q◁ =
q
∥q∥ (6)

The unit representation of the quaternion vector q ∈ Hn is defined below.

q◁ =
qr + qii + qj j + qkk√

q2
r + q2

i + q2
j + q2

k

(7)

Addition: The addition operation of two quaternions q1 = qr1 + qr1i + qj1j + qk1k and
q2 = qr1 + qr2i + qj2j + qk2k is defined as follows:

q1 + q2 = (qr1 + qr2) + (qi1 + qi2)i

+
(
qj1 + qj2

)
j + (qk1 + qk2)k

(8)

Scalar multiplication: The product of a scalar λ and a quaternion q ∈ H is defined
as below.

λq = λqr + λqii + λqj j + λqkk (9)
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Inner product: Similar to the inner product operation on vectors, the result of the inner
product operation on quaternions can be obtained by computing the product of the corre-
sponding components of two quaternions q1 ∈ H and q2 ∈ H and then summing them.

q1 · q2 = qr1qr2 + qi1qi2 + qj1qj2 + qk1qk2 (10)

The inner product operation of two quaternion vectors q1 ∈ Hn and q2 ∈ Hn is
defined below.

q1 · q2 = qT
r1qr2 + qT

i1qi2 + qT
j1qj2 + qT

k1qk2 (11)

Hamiltonian product: The Hamiltonian product is also called quaternion multiplica-
tion. The Hamiltonian product ⊗ of two quaternions q1 ∈ H and q2 ∈ H is defined as

q1 ⊗ q2 =
(
qr1qr2 − qi1qi2 − qj1qj2 − qk1qk2

)
+

(
qi1qr2 + qr1qi2 − qk1qj2 + qj1qk2

)
i

+
(
qj1qr2 + qk1qi2 + qr1qj2 − qi1qk2

)
j

+
(
qk1qr2 − qj1qi2 + qi1qj2 + qr1qk2

)
k

(12)

The Hamiltonian product of two quaternion vectors q1 ∈ Hn and q2 ∈ Hn is defined as

q1 ⊗ q2 =
(

qr1 ◦ qr2 − qi1 ◦ qi2 − qj1 ◦ qj2 − qk1 ◦ qk2

)
+

(
qi1 ◦ qr2 + qr1 ◦ qi2 − qk1 ◦ qj2 + qj1 ◦ qk2

)
i

+
(

qj1 ◦ qr2 + qk1 ◦ qi2 + qr1 ◦ qj2 − qi1 ◦ qk2

)
j

+
(

qk1 ◦ qr2 − qj1 ◦ qi2 + qi1 ◦ qj2 + qr1 ◦ qk2

)
k

(13)

where ◦ represents the multiplication between corresponding elements. It can be seen from
Equation (12) that the Hamiltonian product has non-commutativity, i.e., q1 ⊗ q2 ̸= q2 ⊗ q1.

4. Proposed Model

We use (h, r, t, τ) to represent quaternions in a temporal knowledge graph. Temporal
knowledge graph G can be seen as a set of quaternions. For each training quaternion in the
graph, it is necessary to generate corresponding negative samples using negative sampling
technology to support effective representation learning of entities and relations. In this
section, G ′ is used to represent the set of negative samples obtained by replacing the head
or tail entities. Given a temporal knowledge graph, the purpose of the model is to learn
an efficient quaternion representation and a scoring function g(h, r, t, τ) ∈ R for the head
entity, the tail entity, the relation, and the timestamp, respectively. The purpose of this
scoring function is to measure the degree of authenticity of each quad, with the scores of
true and effective quads being higher than those of invalid quads.

4.1. Model Definition

The purpose of the model is to use quaternion embedding to model entities, relation-
ships, and timestamps. Given quaternion (h, r, t, τ), quaternion representations qh, qr, qt
and qτ ∈ Hn corresponding to each constituent element are defined as follows:

qh = ah + bhi + ch j + dhk (14)

qr = at + bti + ct j + dtk (15)

qt = ah + bhi + ch j + dhk (16)

qτ = aτ + bτi + cτ j + dτk (17)
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where the coefficients of the real part as well as each imaginary part unit are n-dimensional
vectors in real space.

While static knowledge graph completion models are able to learn multiple relational
interactions between entities, they ignore the temporal factor and are therefore unable to
reason effectively on temporal knowledge graphs. To address this problem, our model
defines temporal evolution as a Hamiltonian product-based rotation transformation in
quaternion space. Specifically, the model uses the unit vector form q◁τ of the temporal
quaternion to represent the rotation operator and rotates the head entity vector qh and the
tail entity vector qt to obtain a temporal entity representation, respectively.

qh,τ = qh ⊗ q◁τ (18)

qt,τ = qt ⊗ q◁τ (19)

The quaternion vectors of the head and tail entities can be considered as a point in
the quaternion space, while q◁τ denotes a rotation transformation. After obtaining the
time-dependent entities, the model uses the relation as a rotation transformation based
on the Hamiltonian product, with the aim of rotating the time-dependent head entity to
the vicinity of the time-dependent tail entity through the relation transformation. The
general structure of the model is shown in Figure 1. To effectively represent the rotation
transformation, we normalize the relation quaternion vector. For real quaternions, the
model expects to satisfy qh,τ ⊗ q◁τ ≈ qt,τ . With two Hamiltonian product-based rotations,
the entities, relations, and timestamps can be allowed to interact sufficiently to capture the
potential interdependencies between these three.

Figure 1. Schematic diagram of quaternion rotation.

Unlike the Euler distance-based scoring function used in previous research, our model
uses the angle between two vectors to measure the similarity between them. To measure
the quaternion hold, the scoring function of our model g (h, r, t, τ) is defined as follows:

g(h, r, t, τ) = qh,τ ⊗ q◁r · qt,τ (20)

4.2. Model Training

To learn the model parameters, it is necessary to define the corresponding loss function
based on the scoring function. For each quadruple in the training set, the head or tail entity
is replaced by another entity in the entity set to obtain the corresponding negative sample.
We define the following loss function to ensure that the score of the negative sample of the
model is lower than that of the positive sample.

L = ∑
(h,r,t,τ)∈G

log
(

1 + exp(−l · g(h, r, t, τ))

∑T∈G exp(T)

)
+ λ∥W∥2

2 (21)
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where θ denotes the learnable parameters of the model.
To prevent the model from overfitting and to improve the model’s ability to generalize

invisible facts, we add parametric regularisation constraints to the entity, relationship, and
timestamp representations as shown in Equation (22).

Lregular(θ) = ∑
(h,r,t,τ)

(
∥qh + qr + qt + qτ∥

2
2 +

∥∥∥qh,τ + qt,τ

∥∥∥2

2

)
(22)

Furthermore, we assume that the existing knowledge of past time intervals can be
used to accurately capture the progression pattern of the whole graph during model train-
ing. Literature [26] presents experimental results indicating that subgraphs of successive
time steps exhibit minimal changes, and the embedding space of successive time steps
should also exhibit smoothness. Consequently, the TKGR model must have smoothing
requirements on successive time intervals.

Lsmooth(θ) =| T | ∑
(h,r,t,τ)∈G

|qτ + qh + qt + qr|22 + (| T | −1) ∑
(h,r,t,τ)∈G

|qr|22 (23)

where | T | denotes the number of time steps. By adding parameter regularization
constraints as well as temporal smoothing constraints to the model, the final loss function
of the TKGR model is shown below.

L(θ) = L(θ) + λ1Lregular(θ) + λ2Lsmooth(θ) (24)

where λ1 and λ2 represents the coefficient of the regularization term.
Meanwhile, a suitable initialization method can improve the training speed and

reduce the risk of gradient explosion or gradient disappearance. It has been shown that
the parameters of the hyper-complex representation cannot simply be initialized randomly.
Therefore, in order to improve the convergence of the TKGR model, we adopt the following
method to initialize the model parameters:

wr = φ cos(θ) (25)

wi = φQ◁
imgi

sin(θ) (26)

wj = φQ◁
imgj

sin(θ) (27)

wk = φQ◁
imgk

sin(θ) (28)

where wr, wi, wj, and wk represent the real and imaginary parts of the initialized quater-
nion, respectively. θ is randomly generated over the interval [−π, π]. Q◁

img denotes
the normalized unit quaternion, generated according to a uniform distribution in the
interval [0, 1]. φ is randomly generated based on the value of quaternion and the chosen
initialization principle.

Finally, we use the AdaGrad algorithm to optimize the objective function. Algorithm 1
describes the learning process of the TKGR model.
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Algorithm 1 Learning process of the TKGR model

Require: Temporal knowledge graph entity set E . Relationship setR. Timestamp set T .
Training set Gtrain = {(h, r, t, τ)}. Dimension of quaternion vector n. Learning rate
α. Batch size b. Regular term coefficient λ1 and λ2. Number of negative samples γ.
Number of model iterations M.

Ensure: Vector representation of entities, relationships, and timestamps
1: Initialize model parameters according to Equation (21)
2: for iteration = 1 to N do
3: E ← uni f orm(E) f oreache ∈ E
4: Sbatch ← Sample(Gtrain, b)
5: for each(h, r, t, τ) ∈ Sbatch do
6: S(h′, r, t′, τ)← Sample

(
S(h,r,t,τ)

)
7: end for
8: Determine the numerical values of the scoring function for both positive and nega-

tive samples using Equation (16)
9: Determine the numerical value of the loss function based on Equation (20)

10: Update model parameters
11: end for

5. Experiments

The main purpose of this section is to verify the superiority of the model proposed in
this paper. Firstly, we list the state-of-the-art algorithms and experimental setups, and then
we conduct experimental comparisons from different perspectives. The following are the
specific experimental sessions.

5.1. Datasets

We select the three most commonly used temporal knowledge graph datasets ICEWS14,
ICEWS05-15, and GDELT which are standard datasets used to evaluate temporal knowl-
edge graph completion models, and Table 1 lists the detailed statistical information of these
three datasets.

ICEWS14: This dataset consists of four tuples taken from social news related to
political events. ICEWS14 is a subset of ICEWS that focuses on events from the year 2014.
It has 7128 entities and 230 relationships and spans 365 time steps.

ICEWS05-15: ICEWS05-15 is a subset of the ICEWS dataset containing events that
occurred between 2005 and 2015. The dataset contains 10,488 entities and 251 relationships
and spans 4017 time steps.

GDELT: This dataset is a collection of human social relationships. We isolate a subset
from source [27] that represents events that occurred between 2015 and 2016. This subset
contains 500 entities and 20 relationships and spans 366 time steps.

Table 1. Details of the datasets.

Datasets Entities Relations Time Steps Training Validation Test

ICEWS14 7128 230 365 72,826 8941 8963
ICEWS05-15 10,488 251 4017 386,962 46,275 46,092

GDELT 500 20 366 2,735,685 341,961 341,961

5.2. Evaluation Metrics

We use the same evaluation measures for the dynamic knowledge graph completion
task as for the static knowledge graph completion task. Firstly, for each quaternion in the
test set, two types of candidate quaternions are created by replacing either the head or
tail entity. Any potential quaternion found in G must be removed. The exact formula is
given below.
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hcandidate =
{(

h′, r, t, τ
)
| h′ ∈ ε,

(
h′, r, t, τ /∈ G

)}
(29)

hcandidate =
{(

h, r, t′, τ
)
| t′ ∈ ε,

(
h, r, t′, τ /∈ G

)}
(30)

It is then necessary to calculate the ratings of the test quaternion and all candidate
quaternions and rank the ratings in a descending order to obtain the ranking of the test
quaternion in each of the two candidate sets, which is denoted by fh and ft, respectively.
Based on this ranking, we select MRR and Hit@k (k = 1, 3, 10) as the model evaluation
metrics, respectively, where MRR is the inverse of the average ranking and Hit@k is the
percentage of the ranking in the top k. The formula for MRR is shown below.

MRR =
1

2· | Gtest | ∑
(h,r,t,τ)∈Gtest

(
1
fh

+
1
ft

)
(31)

where | Gtest | is the size of the test set. If the MRR value is larger, it means that the
performance of the model is better. The formula for Hit@k is shown below.

Hit@k =
1

2· | Gtest | ∑
(h,r,t,τ)∈Gtest

(I( fh ⩽ k) + I( ft ⩽ k)) (32)

where I(·) denotes the indicator function, e.g., if fh ⩽ k, then I( fh ⩽ k) = 1, otherwise
I( fh ⩽ k) = 0. In the experiments, the Hit@k results are multiplied by 100.

5.3. Experimental Setup

We use the PyTorch framework to train our model, taking advantage of the powerful
GeForce RTX 2080 GPU for improved performance. For coefficients λ1 and λ2 of the
parameter regularization term and the temporal smoothing constraint term, we assign the
same values to both coefficients as they have the same number of paradigms. We then
select the most appropriate values from the range {0.1, 0.01, 0.001}.

The embedding dimension is 500 and the learning rate is 0.1. Both ICEWS datasets
have a negative-to-positive sample ratio of 500, whereas the GDELT dataset has a ratio of 5.
The batch size is set to 512. Different hyperparameters are used for each dataset to optimize
the training process, taking into account their different sizes. For example, GDELT is much
larger than the other two datasets, resulting in reduced hyperparameters. The model is
iteratively trained 5000 times for the ICEWS14 and ICEWS05-15 datasets and 1000 times
for the GDELT dataset. The training technique uses the AdaGrad optimization algorithm
within the Small Batch Random Gradient Descent methodology.

5.4. Baselines

We compare different knowledge graph embedding techniques, including TransE [8],
DistMult [28], SimplE [29], ConT [20], TTransE [30], HyTE [21], TA-DisMult [22], DE-
SimplE [23], RoAN [31], SubEE [24], T-GAE [32], GLANet [33], BoxTE [25], DualMatch [34],
DKGE [24], and TLmod [24]. These methods use different mechanisms to handle entity
relationships, temporal information, global and local structure, and reasoning processes,
with the aim of improving the expressiveness and inference accuracy of knowledge graphs.

5.5. Link Prediction

Tables 2 and 3 show the results of the TKGR and baseline models in predicting tempo-
ral connections for three datasets, respectively. The experimental results show that TKGR
outperforms the mainstream baseline model on most metrics, highlighting the effective-
ness of TKGR. Quaternion rotation procedures based on Hamiltonian products allow for
more extensive and complex interactions between things, time, and connections. TKGR
shows superior performance to the TeRo model on the ICEWS05-15 dataset, particularly
in terms of MRR and Hit@10. It achieves a significant gain of 2.55% in MRR and 1.38% in
Hit@10. The ICEWS14 dataset has a larger number of entities, relationships, timestamps,
and training samples. TKGR has the ability to represent complicated connection categories,
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such as symmetric/anti-symmetric and inverse relationships, making it very suitable for
complex datasets.

Table 2. Link prediction results on datasets ICEWS14 and ICEWS05-15.

Model
ICEWS14 ICEWS05-15

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.28 9.4 - 63.7 0.294 9.0 - 66.3
DistMult 0.439 32.3 - 67.2 0.456 33.7 - 69.1
SimplE 0.458 34.1 51.6 68.7 0.478 35.9 53.9 70.8
ConT 0.185 11.7 20.5 31.5 0.163 10.5 18.9 27.2

TTransE 0.255 7.4 - 60.1 0.271 8.4 - 61.6
HyTE 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1

TA-DistMult 0.477 36.3 - 68.6 0.474 34.6 - 72.8
DE-SimplE 0.526 41.8 59.2 72.5 0.513 39.2 57.8 74.8

RoAN 0.560 45.3 63.1 74.2 0.587 47.1 66.9 79.7
SubEE 0.519 43.5 62.4 72.1 0.572 46.3 65.4 78.1

GLANet 0.509 44.6 63.1 73.5 0.564 46.7 65.3 78.7
T-GAE 0.554 44.8 62.1 73.8 0.552 47.5 65.1 77.2
DKGE 0.549 45.2 62.9 73.9 0.591 47.3 65.8 79.2
BoxTE 0.549 45.2 62.9 74.1 0.594 47.9 66.3 78.2
TKGR 0.568 45.9 63.6 74.8 0.602 48.3 67.9 80.8

Table 3. Link prediction results on dataset GDELT.

Model MRR Hit@1 Hit@3 Hit@10

TransE 0.123 12.7 15.1 31.2
DistMult 0.206 13.7 21.2 34.7
SimplE 0.216 12.3 22.2 35.9
ConT 0.143 11.8 15.7 27.1

TTransE 0.107 12.6 16.3 30.8
HyTE 0.112 13.1 16.4 33.6

TA-DistMult 0.215 12.3 21.1 35.5
DE-SimplE 0.226 14.1 24.8 37.3

RoAN 0.232 13.9 23.7 38.4
SubEE 0.224 12.4 22.6 38.8

GLANet 0.235 13.6 23.9 38.4
T-GAE 0.217 12.4 22.6 37.7
DKGE 0.225 13.1 22.9 38.1
BoxTE 0.229 13.7 23.5 38.5
TKGR 0.257 15.2 25.1 39.5

Although the performance of the TKGR on the GDELT dataset is not particularly
remarkable when compared to other models considered to be state of the art, it is still
worthy of praise. A slight improvement can be seen in all measures when comparing
the BoxTE, T-GAE, and RoAN models. On the other hand, the level of performance
improvement is not particularly remarkable. The number of elements and links included
in the GDELT dataset is extremely limited. On the other hand, both the training and the
test sets can be considered quite large. All the models receive relatively low test scores as a
result of this increased difficulty in the task they have to perform.

Furthermore, traditional representation learning strategies, such as TransE and Dist-
Mult models, are typically used to analyze static knowledge graphs. As a consequence,
their ability to predict temporal relations is often insufficient. Both approaches ignore
temporal information, which makes it difficult for them to accurately capture the temporal
dynamics of their respective knowledge networks. In conclusion, the results of the experi-
ments show that TKGR is not only appropriate, but also absolutely necessary. This is due
to its ability to effectively capture the dynamic evolutionary properties of things and to
effectively exploit temporal information.
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5.6. Impact of Regularization

The final objective function is modified by TKGR to incorporate parameter regular-
ization and temporal smoothing requirements. These modifications are derived from the
results of previous experiments. In order to demonstrate the impact of these two regular-
ization parameters on the overall performance of the model, we perform an experimental
validation using the ICEWS14 dataset. This can be achieved by analyzing the fluctuations
in the experimental results on the test set and examining them when the objective function
does not include these two regularisation factors. At the same time, the other parameters
are kept at their initial levels.

The results of the two comparative experiments are shown in Table 4. It is clear
from the table that the regularization term has a more significant impact on the results.
For example, the MRR and Hit@1 metrics improve the performance of the model by 1%
and 1.8%, respectively, compared to the performance of the model before the imposition
of the time smoothing constraints and parameter regularization. Therefore, these two
regularisation terms are more beneficial to the model.

Table 4. Effect of regularization terms on dataset ICEWS14.

Loss Function MRR Hit@1 Hit@3 Hit@10

L(θ) + λ1Lr(θ) + λ2Ls(θ) 0.568 45.9 63.6 74.8
L(θ) 0.563 45.1 63.2 74.4

5.7. Evolution of Relations

According to the results of the current research, it is clear that different temporal
knowledge graph completion models use temporal information in different ways. For
example, the TA-TransE model incorporates both relational and temporal data in order
to acquire a relational representation that incorporates temporal information. The ability
to capture temporal representations of things and interpersonal relationships is one of
the capabilities of the HyTE model. In this research, TKGR is only used to represent the
progression of entities, and the use of static representations is retained when it comes
to relationships.

If we focus only on the temporal evolution of relationships, the performance of the
variant model is negatively affected across the board. On the other hand, if we consider
the simultaneous evolution of entities and relations, the performance of the variant model
is comparable to that of the TKGR modelling approach. The following conclusion can be
drawn from the analysis of the data obtained from the experiment. It is possible that this is
the result of a mismatch between the number of relations in a dataset and the number of
entities in their dataset.

As a result, the evolution of entities over time provides a more accurate measure
of the efficient use of temporal information. It also appears that entities tend to change
their nature over time, whereas partnerships tend to be more stable in nature. This is
something that can be understood through direct experience in actual life circumstances. In
partnerships, it is possible for a person’s state to change at different times before and after
the partnership. Due to the nature of the relationship, which tends to make the opposite
true, this is the current state of affairs. One of TKGR’s main objectives is to ensure that
the units continue to grow. This is performed in order to maintain the simplicity of the
model and the geometric significance of the changes that take place within the relationships
(Table 5).
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Table 5. Experimental results for different variant models on dataset ICEWS14.

Variations MRR Hit@1 Hit@3 Hit@10

qh,τ ⊗ q◁r · qt,τ 0.568 45.9 63.6 74.8
qh ⊗ q◁r,τ · qt 0.563 45.1 63.2 74.4

qh,τ ⊗ q◁r,τ · qt,τ 0.563 45.1 63.2 74.4

5.8. Parameter Adjustment

This section is dedicated to the study of regularization coefficients λ1 and λ2. We
determine and select the optimal settings. We start by running the algorithm repeatedly for
a total of one thousand iterations. We then analyze the results of Hit@10 on the validation
set to determine the parameters.

Figure 2 visually demonstrates the effect of adjusting the value of the regularization
factor on the performance of the model using the ICEWS14 dataset. The results indicate
that the model achieves optimal performance when the value of λ is set to λ1 and λ2, both
equal to 0.01. In the trials described above, both λ1 and λ2 are assigned a value of 0.01.

Figure 2. The influence of regularization coefficient on the TKGR model.

The summary of findings highlights:
Model Performance Superiority: Our TKGR model, utilizing quaternion rotations,

consistently outperforms state-of-the-art methods across all benchmark datasets (ICEWS14,
ICEWS05-15, and GDELT). This underscores its efficacy in capturing the temporal evolution
of knowledge graphs, as demonstrated by improved metrics such as Hit@10 and Mean
Reciprocal Rank (MRR).

Temporal Dependency Handling: The model adeptly handles complex temporal
dependencies, as evidenced by its enhanced predictive accuracy for time-varying entity
relationships. For instance, in the case of South Korean presidential succession, our model
accurately captures the temporal progression of leadership changes, illustrating how the
inclusion of temporal information can significantly enhance the understanding and fore-
casting of such events in knowledge graphs.

Parameter Sensitivity Analysis: We demonstrate the sensitivity of model performance
to the regularization coefficient λ, identifying optimal values (λ = 0.01) that balance model
complexity and generalization. These findings ensure the model’s robustness across differ-
ent dataset characteristics, validating the effectiveness of our chosen regularization strategy.

Methodological Innovation: Our work introduces a groundbreaking application of
quaternion rotations to temporal knowledge graph representation. This innovation not
only improves the learning process’s expressiveness and efficiency compared to complex
number-based approaches, but also offers a fresh perspective on temporal knowledge
graph modeling that addresses the limitations of prior works. This approach effectively
captures the inherently dynamic nature of real-world knowledge, as exemplified in our
experimental results.
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6. Conclusions

This paper presents a revolutionary strategy for depicting knowledge graphs with
temporal attributes using quaternion rotations. The proposed TKGR model effectively
captures the evolution of entities and their interdependencies in complex number spaces,
as demonstrated by its superior performance on benchmark datasets. The utilization of
quaternion rotations enables a more expressive and efficient learning process compared
to traditional complex number-based approaches, particularly in representing temporal
transitions in knowledge graphs.

While our work represents a significant advancement in temporal knowledge graph
representation, we acknowledge several limitations that warrant consideration and future
exploration:

Scalability: Although the TKGR model demonstrates promising results on benchmark
datasets, its scalability to extremely large knowledge graphs remains to be investigated.
Future research could explore parallelization strategies or more computationally efficient
quaternion operations to accommodate massive, real-world knowledge graphs with exten-
sive temporal information.

Temporal Granularity: Our current approach handles temporal transitions at a rel-
atively coarse level. Investigating methods to handle finer-grained temporal resolutions,
such as sub-daily or event-specific timestamps, could further enhance the model’s ability
to capture intricate temporal patterns and dynamics.

Dynamic Integration of New Data: Real-world knowledge graphs continuously
evolve over time, necessitating models that can seamlessly integrate new temporal infor-
mation. Future work could explore online learning mechanisms or incremental update
strategies for the TKGR model to adapt to temporal changes in near-real time.

Interpretability: While the quaternion-based representation offers a novel perspective
on temporal knowledge graph modeling, enhancing the interpretability of the learned
quaternion representations and their relationship to temporal phenomena would deepen
our understanding of the model’s decision-making process and foster trust in its predictions.

Cross-domain Transferability: The effectiveness of the TKGR model across diverse
domains and types of knowledge graphs should be assessed. Future studies could ex-
amine the model’s performance on knowledge graphs from different industries, such as
healthcare, finance, or social sciences, to assess its generalizability and potential domain-
specific adaptations.

In conclusion, this study introduces a novel and effective technique for representing
temporal knowledge graphs using quaternion rotations. Despite its promising results, we
recognize several limitations that present opportunities for future research. Addressing
these issues through continued innovation and refinement will contribute to the devel-
opment of increasingly powerful and versatile models for temporal knowledge graph
representation, ultimately enhancing their utility in a wide range of applications.
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