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Abstract: This study is motivated by the need to develop generic neuro-fuzzy motion controllers
for autonomous vehicles that may traverse rugged terrains. Three types of target problems are
investigated. These problems differ in terms of the expected motion behavior, including cautious,
intermediate, and courageous behaviors. The target problems are defined as evolutionary multi-
objective problems aiming to evolve near optimal neuro-fuzzy controllers that can operate in a variety
of scenarios. To enhance the evolution, sequential transfer optimization is considered, where each of
the source problems is defined and solved as a bi-objective problem. The performed experimental
study demonstrates the ability of the proposed search approach to find neuro-fuzzy controllers
that produce the required motion behaviors when operating in various environments with different
motion difficulties. Moreover, the results of this study substantiate the hypothesis that solutions with
performances near the edges of the obtained approximated bi-objective Pareto fronts of the source
problems provide better transferability as compared with those that are associated with performances
near the center of the obtained fronts.

Keywords: multi-objective optimization; Pareto-optimization; fuzzy-inference system; evolutionary
transfer optimization; fuzzy control; non-specialized controllers

MSC: 93C42; 68W50

1. Introduction

Increasing interest from the car industry in autonomous driving and the availability
of new technologies have given rise to vast research efforts on the control of autonomous
vehicles (e.g., [1,2]). However, such studies have hardly dealt with off-road autonomous
driving. This study is motivated by the expected difficulties that a motion control system
of an autonomous vehicle will face when traversing rugged terrains. For such off-road
situations, it is envisioned that a range of motion behaviors might be of interest, spanning
from a cautious behavior to a courageous one. As a first step towards the development of
such control systems, this study considers an academic problem that applies a dynamic
model of a cart that interacts with various environments. These environments differ by
their motion difficulties, which are expressed by various friction functions and varying
speed limitations. An attractive approach to address the development challenges of such
controllers is to use a multi-objective evolutionary neuro-fuzzy optimization approach
(e.g., [3,4]). The use of such an evolutionary approach, as compared with a traditional
neuro-fuzzy approach, e.g., ANFIS [5], has three main advantages. First, it avoids the need
to rely on an expert to determine the relevant fuzzy rules. Second, it avoids the need to
create data sets for the tuning of the parameters of the membership functions. In addition,
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the use of an evolutionary search is most suited for solving multi-objective optimization
problems, i.e., to find a set of Pareto-optimal solutions [6]. In this kind of optimization
problem, no prior articulation of the objective preferences is provided. As described in
the following, this study utilizes the above three advantages while focusing on the use of
multi-objective optimization in conjunction with transfer optimization.

This study deals with a Sequential Transfer Optimization (STO) approach [7,8]. Namely,
it assumes the existence of relevant knowledge from solving multi-objective source prob-
lems to the solution of multi-objective target problem(s). Moreover, this study involves
an evolutionary STO in which a genetic transfer is employed. Namely, the knowledge is
transferred via the use of individual solutions of the source problems to serve as an initial
population for solving the target problems [9,10].

When defining the target optimization problem for the development of robot motion
controllers, it is important to realize the difference between specialized and non-specialized
controllers [11]. Specialized controllers are optimized for a particular environment, whereas
non-specialized controllers are optimized for a set of environments. For the current mo-
tivation, it appears that the development of controllers for rugged terrains should focus
on non-specialized controllers that may cope with a variety of terrains. According to [11],
defining the problem as a meta-problem, which aims at performance optimization for a set
of environments, produces both specialized and non-specialized neuro-controllers.

Following [11], this study considers the target problem as a meta-problem, i.e., the
problem is a multi-objective optimization problem in which each objective is associated
with a different environment. In this study, we define three types of behavior-based meta-
problems. These problems differ by the desired behavior, including cautious, courageous,
and intermediate behaviors. For example, we aim at non-specialized controllers that
produce courageous behaviors in each one of the environments.

We seek to extract knowledge from a set of source problems to support solving the
three types of target problems considered. The source problems are defined as optimization
problems that differ by the source environment. Each of these problems is defined as a
bi-objective Pareto-optimization problem in which one of the objectives corresponds to a
cautious behavior and the other one corresponds to a courageous behavior. Each of these
bi-objective source problems is solved using Pareto-optimization. Solving a set of source
problems, which differ by the considered environment, results in a set of Pareto-optimal
sets. The union of these sets is expected to hold relevant knowledge to support solving
the target problems. Namely, it is expected to hold controllers of different behaviors that
are relevant to different environments. While the diverse solutions of the union set are
considered an advantage, they raise the following difficulty.

In general, a union set of Pareto-optimal sets of solutions from several source problems
has a large cardinality. This cardinality is expected to be much beyond the size of the
population that is needed to solve the target meta-problem. This study aims to answer
a major question that results from the large cardinality of the union set. Namely, what
subset of the individual solutions of the bi-objective source problems is more suited to
serve as the initial populations for solving the target meta-problem? To provide an answer
to this research question, two types of knowledge extraction techniques are suggested
and investigated. The first type involves an initial population of edge controllers, i.e.,
controllers with performance vectors that are located close to the edges of the obtained
fronts. The second type of knowledge extraction is based on an initial population of center
controllers, i.e., controllers whose performance vectors are located close to the center of
the obtained fronts. In addition, these types of knowledge extraction are compared with
random initialization. We compare the three types of initial populations with respect to
the three behavior-based target meta-problems considered here. We aim to substantiate
the hypothesis that the use of edge controllers is a preferred approach regardless of the
considered target problem.

Given the state-of-the-art, as presented in Section 2.3, the main contributions of this
paper are:
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(a) It is the first study that defines target meta-problems that aim to find non-specialized
Neuro-Fuzzy Controllers (NFCs) that produce various motion behaviors.

(b) It is the first study that applies knowledge extraction from solving multi-objective
source problems to support finding non-specialized NFCs that produce various mo-
tion behaviors for environments that are different due to their motion difficulties.

(c) It is the first study that raises the hypothesis that the genetic transfer of edge solutions
of multi-objective source problems is preferred over that of the center solutions.
Furthermore, it is the first study to substantiate the hypothesis with respect to the
considered type of evolutionary neuro-fuzzy control problem.

The rest of this paper is organized as follows. Section 2 describes the background for
this study and locates this study with respect to the state-of-the-art. Section 3 introduces
the problem formulation and the proposed solution approach. Next, in Section 4, details
are provided on the experimental study. Finally, Section 5 summarizes and concludes
this study.

2. Background

This section provides the background for this study and a state-of-the-art analysis
related to the contributions of this study. First, Section 2.1 presents the basic principles
of evolutionary multi-objective optimization. Then, Section 2.2 describes the use of such
optimization in the design of NFCs. Finally, Section 2.3 provides the positioning of this
research with respect to the state-of-the-art.

2.1. Multi-Objective Optimization

Engineering design commonly involves decisions under conflicting objectives. In such
situations, improving performance in one objective may deteriorate the performance in the
other objectives. To make decisions based on the understanding of the performance trade-
offs, more than two decades ago, engineers started to apply Pareto-based optimization [6].
This type of optimization results in a set of Pareto-optimal solutions and their associated
Pareto-front in the objective space. This allows a posteriori solution selection based on
assessable performance tradeoffs that are exposed by the obtained front. The following
highlights the fundamentals of Pareto optimization.

Pareto-based multi-objective optimization is commonly described as a vector opti-
mization problem with M objectives to be optimized. Without the loss of generality, the
problem can be defined as a minimization problem as follows:

min
x∈X

F(x) (1)

where X is the set of feasible solutions and F = [F1(x), F2(x), . . . , FM(x)]T is the perfor-
mance vector.

Let two solutions of (1), a and b, be associated with F(a) = [F1(a), . . . , FM(a)]T and
F(b) = [F1(b), . . . , FM(b)]T, respectively. Then, a is said to dominate b, denoted by a ≼ b,
if the following condition is satisfied:

∀i ∈ {1, . . . , M}, Fi(a) ≤ Fi(b) and ∃j ∈ {1, . . . , M} such that Fj(a) < Fj(b) (2)

Without loss of generality, for a given minimization problem, the Pareto-optimal-Set
(PS) is the set of all Non-Dominated Solutions (NDS) of the feasible set X. Namely, a
solution a ∈ X is called Pareto-optimal if and only if there is no solution b ∈ X for which
b ≼ a. The set of performance vectors corresponding to the aforementioned set is known
as the Pareto-Front (PF). Solving (1) means finding the PS and the associated PF.

Usually, there is no analytical solution to real-life Multi-objective Optimization Prob-
lems (MOPs) [12]. Therefore, computational techniques are commonly employed to obtain
at least good approximations of the PS and PF. Dedicated evolutionary algorithms for
solving MOPs are termed Multi-Objective Evolutionary Algorithms (MOEAs). MOEAs,



Mathematics 2024, 12, 992 4 of 19

including NSGA-II [13], which is used in this study, follow the ideas of natural evolution,
such as selection, recombination, and mutation, aiming to evolve a population of solu-
tions towards the Pareto-optimal solutions. With over two decades of proven success,
MOEAs are the leading algorithms for solving MOPs. This is evident from reviews such as
in [12,14,15].

2.2. Neuro-Fuzzy Systems and Control

Fuzzy Inference Systems (FISs) are computational frameworks that implement fuzzy
reasoning to make decisions. The mathematical basis, which was founded by L. Zadeh
(1965), defines linguistic variables, fuzzy sets, and logical operators extending crisp set
theory [16]. Fuzzy sets are defined using Membership Functions (MFs), while Fuzzy Rules
(FRs) express relationships between such sets. The structure and parameters of FRs and MFs
determine the mapping of given inputs to outputs. There are at least two main differences
between mapping by an FIS as compared with mapping by a Neural Network (NN). First,
an FIS can be formed based on expert knowledge, while an NN commonly requires data.
Second, an FIS is interpretable, while an NN is considered to be a black box. The main
advantage of using an NN is that the mapping can be learned and adapted. A Neuro-Fuzzy
(NF) approach synergistically combines the main features of FISs and NNs. The advantages
of the NF approach over the FIS approach have created new research and application
opportunities [3,17–19]. As evident from the literature, over the years, both FISs and NF
systems have been applied to control design [20–22]. The common approach to tuning NF
controllers is supervised learning based on some data (e.g., [23,24]). However, the design of
NFCs can be based on evolutionary techniques [25] to reach the desired optimum/optima
without adhering to any data (e.g., [26]).

Using the concept of Pareto optimization for the design of controllers is not new (see
review [27]). However, applying Pareto-based optimization/adaptation to the design of
neuro-fuzzy systems is rare (e.g., [4,28,29]). Several studies tried to find Pareto-optimal
fuzzy controllers with static structure, e.g., [30–32], whereas in [26], such studies were
extended to also include the rule structure.

2.3. Positioning of This Research

The idea of defining and solving meta-problems for obtaining specialized and non-
specialized controllers has been recently suggested in [11]. The current study is the first
study to use this idea in the context of evolutionary neuro-fuzzy control.

Applying STO to solving neuro-fuzzy control problems is not new [33–40]. How-
ever, in this study, several uncommon/unique aspects concerning the use of STO for
such problems should be noted. First, commonly in STO studies on solving neuro-fuzzy
control problems, the knowledge that is transferred is data, which is used in the context
of supervised learning (e.g., [33–35]). In contrast, the current study applies a different
type of knowledge that is transferred, namely, a genetic type. Second, the majority of
STO studies on solving neuro-fuzzy control problems are based on using just one source
problem (e.g., [37]), while the current study is based on the use of multiple source problems.
Moreover, in contrast to the current study, to the best of our knowledge, no study on NF
systems concerns source problems that are defined as MOPs. To substantiate this claim, we
conducted the following Scopus search:

(TITLE-ABS-KEY ((neuro-fuzzy OR “neuro fuzzy”))) AND (“source problem” OR
“source task” OR sequential) AND (“transfer learning” OR “transfer optimization”). A
manual check of all the resulting documents revealed no study that deals with source
problems that are defined as MOPs.

While the above positioning is restricted to STO studies that are concerned with neuro-
fuzzy problems, to the best of our knowledge, this study contains a major difference with
respect to any STO study. We claim that this study is the first to raise and investigate the
hypothesis that the use of edge solutions of multi-objective source problems for genetic
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transfer is preferred over the use of the center solutions. To substantiate this novelty
assertion, we conducted the following Scopus search:

(TITLE-ABS-KEY ((Pareto OR multi-objective OR “multi objective”) AND transfer))
AND (“transfer learning” OR “transfer optimization”) AND (sequential OR “source prob-
lem” OR “source task”). A manual check of all the resulting documents revealed no study
that concerns the suggested hypothesis.

For convenience, Table 1 summarizes the positioning results according to the main
research attributes as well as the application focus of the related studies. In the table, X/V
refers to non-existing/existing features, respectively.

Table 1. Positioning Table with respect to STO Neuro-Fuzzy studies.

Related Study Evolutionary Driven Pareto-Based Source Application

Aouf et al., 2018 [33] X X Indoor robotics
Juang & Bui 2019 [34] X X Indoor robotics

Sell & Coupland 2015 [35] X X Classification
Fouladvand et al., 2015 [36] X X Indoor robotics

Chou & Juang 2018 [37] V X Indoor robotics
Ferdaus et al., 2019a [38] V X Aerial vehicles
Ferdaus et al., 2019b [39] X X Aerial vehicles
Ferdaus et al., 2018 [40] V X Aerial vehicles

Current study V V Offroad robotics

3. Problem Description and Solution Approach

This paper deals with using transfer optimization to solve a target problem, which
is defined as a set of SOPs in Section 3.1. In addition to the target problem definition, this
section describes the proposed research methodology. The main steps of the methodology
are described in Figure 1. First, starting from the left side of the figure, several MOPs are
generated, which serve as source problems. Next, each source MOP is solved separately
using MOEA, as described in Section 3.2. Solving each of the source problems results
in a set of non-dominated solutions. Then, the obtained solutions are used to form an
initial population, which is to be used for solving the target problem. This step, which is
the knowledge extraction step, is detailed in Section 3.3. In this study, we examine two
alternatives for generating the initial population. Finally, each of the extracted populations
is used as an initial population to solve the target problem. To evaluate the obtained results,
the target problem is also solved using an initial random population. In this study, the
well-known NSGA-II [13] is used to solve both source and target problems. However, it
should be noted that many alternative MOEAs can be used. In case the considered MOPs
would involve a large number of objectives, then it is recommended to use an algorithm
that was designed to cope with more than three objectives (see [41]).
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3.1. Target Meta-Problem

The considered target problem is a multi-objective fuzzy control meta-problem in
which each objective is associated with finding an optimal controller for a specific task.
This meta-problem is defined as follows. Let PT =

{
P1

T , P2
T , . . . , PNT

T

}
be a given set of NT

fuzzy control problems. Then, the target meta-problem is formulated as follows:

min
a∈XT

[
f
(

P1
T ; a

)
, f
(

P2
T ; a

)
, . . . , f

(
PNT

T ; a
)]

(3)

where XT is the feasible set of fuzzy controllers for the target meta-problem, and f is a
scalar objective function that is used to evaluate the controllers’ performance. The main
goal is to search for a set of non-specialized controllers, i.e., controllers that evolved to
provide a successful behavior in all of the given set of control problems, following the
approach in [11].

3.2. Source Problems and Their Solutions

In this study, each source problem is formulated as a MOP. Let Ps =
{

P1
s , P2

s , . . . , PNs
s

}
be a given set of Ns source fuzzy control problems. Each of these problems is formulated
as follows:

min
a∈Xsi

[
f1

(
Pi

s ; a
)

, f2

(
Pi

s ; a
)

, . . . , fM

(
Pi

s ; a
)]

(4)

where Xsi is the set of feasible fuzzy controllers of the ith source problem. Each fuzzy
controller is evaluated using scalar objective functions, f1, . . . , fM. Assuming no prior
objective preferences, the solution of (4) results in a set of non-dominated solutions for each
of the source problems.

3.3. Knowledge Extraction and Research Hypothesis

This study deals with the STO of NFCs. As mentioned in the introduction section,
two types of knowledge extraction techniques are proposed and studied here. The first type
involves an initial population of edge controllers, i.e., controllers whose performance
vectors are located close to the edges of the obtained fronts. The second type of knowledge
extraction is based on an initial population of center controllers, i.e., controllers whose
performance vectors are located close to the line connecting the ideal and the nadir points.
For a given front, the ideal point is a vector of the best objective values, whereas the nadir
point is a vector of the worst objective values of the considered front.

This study deals with bi-objective source problems. Hence, the following presents a
step-by-step procedure of the knowledge extraction approach as implemented in this study.
Given a non-dominated set (NDS) of solutions and their performance vectors (PVs) of a
source problem, then:

1. Define the number of transferred edge-controllers (2nec), such that 2nec ≪ |NDS|
2. For each edge:

a. Find the edge PV and store the associated solutions in a set of extracted edge
controllers (EEC).

b. Select the nec − 1 controllers that their PVs are the closest to the edge PV and
add them to EEC.

3. Define the number of transferred center controllers (ncc), such that ncc ≪ |NDS|.
4. Find the line connecting the ideal and the nadir points.
5. Select the ncc controllers for which their PVs are the closest to the line found in 4 and

store them in a set of extracted center controllers (ECC).

Repeat this process for all source problems and create the union of the EECs (UEECs)
and the union of the ECCs (UECCs). Each of these unions contains extracted knowledge as
needed to investigate the suggested hypotheses, as presented below.
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Figure 2 illustrates these two types of controllers. In the figure, an example of normal-
ized PVs is shown and marked as dots. Assuming that 2nec = ncc = 4, the PVs of the EECs
are marked by circles, whereas squares mark the PVs of ECCs.
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The main research question that this study aims to solve is which of the proposed
two types of knowledge extraction techniques is preferred from a transferability viewpoint.
It is hypothesized that the edge controllers are preferred over the center ones. This hy-
pothesis is intuitively justified by the expected higher diversity of the edge controllers. In
addition, a secondary hypothesis is examined, which suggests that each of the proposed
types of knowledge extraction techniques is better than the case of using random initial
population, i.e., the case of no knowledge transfer.

4. Numerical Study

This section is organized as follows. First, Section 4.1 provides a detailed description
of the source and target problems. Section 4.2 describes the applied NFC. Then, the
comparison methods are given in Section 4.3. Next, in Section 4.4, the experimental setup
is described. Finally, the obtained results and their analysis are provided in Section 4.5.

4.1. Source and Target Problems

The considered numerical study is based on simulations of a theoretical cart and
environment interaction model. The study involves a set of constrained motion source
control problems of a point-mass cart, and an additional set of target scenarios, as presented
in the following. In this study, the cart is assumed to travel horizontally along a linear path.
The linear path is defined by start and goal points. Each path is characterized by a friction
function and a speed limitation function. These functions could be viewed as representing
various types of motion difficulties as expected in rugged terrains. The equation of motion
of the considered cart model and the involved constraints are:

..
x(t) = − c(x)

m
.
x(t) + 1

m U(t)

s.t.
∣∣ .
x(t)

∣∣ ≤ VO(x(t)) ≤ Vmax
|U(t)| ≤ Umax

(5)

where x(t) is the position of the cart, m is the mass of the cart, 0 ≤ c(x) ≤ 1 is a damping
coefficient as a function of the position x(t), U(t) is the control force, Vmax is the speed
limit of the cart, and Umax is the saturation value of the control force. In addition, the path
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imposes a speed constraint function VO(x). An interaction between the cart and a given
path is termed here as a scenario.

Both the target and the source optimization problems, which are defined in Equations
(6) and (7), use the following two cost functions. The first function reflects a desire to find
NFCs that bring the cart from the initial position x0 to the goal point xg as fast as possible,
whereas the second one corresponds to the case of safe motion behavior. These are defined
as follows:

J f ast = 1 − Tmin

Tg
where Tmin =

∣∣xg − x0
∣∣

Vmax
(6)

Jsa f e =

Tg∫
0

∣∣c(x(t))· .
x(t)

∣∣dt (7)

where Tg is the time it takes to reach the goal point, using the considered NFC, and Tmin is
the time it would take to reach the goal if the entire motion involves the maximal speed
limit. During the evolutionary process, a controller is considered numerically feasible if the
following constraints are met, where Tmax is the simulation time limit.

∃Tg < Tmax s.t x
(
Tg

)
= xg∣∣ .

x(t)
∣∣ < VO(x(t))∀t < Tmax

(8)

Figure 3 presents the c(x) and VO(x) functions that are used in the source problems
scenarios, whereas Figures 4 and 5 present them for the first and the second set of the
target problems, respectively. In these figures, the solid and the dashed curves present
c(x) and VO(x), respectively. It should be noted that the functions used in the source and
target problems were randomly created. In particular, for each c(x), a random number of
Gaussian functions was selected, and their parameters were also randomly selected. Any
Gaussian that exceeded the value of 0.8 was truncated. The VO(x) functions were created
as a function of the resulting c(x) functions.
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In this study, each of the target sets is composed of three different scenarios, as given
in Figures 4 and 5. For each target set, three alternative MOPs are examined. These are
defined as follows:

MOP1 : min
a∈XT

[
J f ast

(
P1

T ; a
)
+ Jsa f e

(
P1

T ; a
)
, J f ast

(
P2

T ; a
)
+ Jsa f e

(
P2

T ; a
)
, J f ast

(
P3

T ; a
)
+ Jsa f e

(
P3

T ; a
)]

MOP2 : min
a∈XT

[
J f ast

(
P1

T ; a
)
, J f ast

(
P2

T ; a
)
, J f ast

(
P3

T ; a
)]

MOP3 : min
a∈XT

[
Jsa f e

(
P1

T ; a
)
, Jsa f e

(
P2

T ; a
)
, Jsa f e

(
P3

T ; a
)] (9)

The three alternative MOPs are defined in accordance with the knowledge extraction
techniques (see Section 3.3). MOP1 corresponds to the center controllers, whereas MOP2
and MOP3 correspond to the edge controllers, i.e., to the fast and safe controllers, respec-
tively. In total, we examine six target problems, i.e., three alternative MOPs, each with two
target sets. These three MOP definitions are expected to encourage three types of behaviors.
Namely, MOP2 and MOP3 are expected to encourage courageous behavior and cautious
behavior, respectively, whereas MOP1 is expected to encourage intermediate behavior. In
the context of this study, it should be noted that these terminologies correspond not only to
the speed but also to the level of motion difficulty as presented in c(x).

The ith bi-objective source problem is given by:

min
a∈Xi

s

[
J f ast

(
Pi

s ; a
)

, Jsa f e

(
Pi

s ; a
)]

(10)

where Xi
s is the feasible set of fuzzy controllers, as described in Equation (8).
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4.2. Fuzzy Controllers

The cart is controlled by a neuro-fuzzy inference system. The controller receives three
inputs, including the relative location of the goal point e(t), the normalized velocity of the
cart v(t), and an effective damping coefficient ce f f (t). Each of these inputs is mapped into
the range of [−1, 1], as given in Equations (11)–(13), respectively. The NFC maps these
inputs into a force U(t) to be applied to the cart, as described in Equation (5).

e(t) =


1 xg−x(t)

xg−x0
> 1

−1 xg−x(t)
xg−x0

< −1
xg−x(t)
xg−x0

otherwise

(11)

v(t) =
.
x(t)
Vmax

(12)

ce f f (t) = −1 + c(x(t)) + c(x(t) + dx) (13)

where dx is a pre-defined number, which has been set as 0.1 m.
In the current implementation, the NFC is based on zero-order Takagi-Sugeno (TS)

rules [42]. The main reason for choosing TS rules, in which the rules result in crisp outputs,
is that it avoids the need for defuzzification. Selecting zero-order TS rules reduces the
number of search parameters for the evolutionary search; hence, it results in a major
reduction in the required computational resources. Each input belongs to one of three fuzzy
sets. These fuzzy sets are based on the general Gaussian membership function. This results
in 27 combinations of the TS rules, where each rule is considered as follows:

If e(t) is Ai and v(t) is Bj and ce f f (t) is Ck then U(t) = U f (14)

where i, j, k ∈ {1, 2, 3} are the indices of the inputs’ fuzzy sets Ai, Bj, Ck, respectively.

f ∈ {1, . . . , 27} is the index of the output
∣∣∣U f

∣∣∣ ≤ Umax. The final crisp conclusion is
calculated as the average of the rule conclusions.

The decision variables of the optimization problem include the parameters of Ai, Bj, Ck,
and U f . Given that each general Gaussian function has two parameters, and the total
number of rules is 27, then the total number of decision variables results in 9 (input sets) · 2
(parameters) + 27 (rules) = 45 variables.

4.3. Comparison Methods

In this study, the substantiations of the research hypotheses are achieved by comparing
the results of solving the target meta-problems as obtained by each of the knowledge ex-
traction techniques and by the random initialization technique (see Section 3). In particular,
two indicators are used to evaluate the transfer capabilities of the compared techniques
based on the Hyper-Volume (HV) metric [43]. The first indicator, which is inspired by the
Asymptotic Performance (AP) measure [44], calculates the final value of the HV for each of
the compared approaches. The second indicator, which is based on the Time-to-Threshold
(ToT) measure [44], is calculated as the number of generations it took HV to reach a thresh-
old. In addition, the obtained best performance in each scenario of the target meta-problem
is also compared.

Given the stochastic nature of the applied MOEA, 31 runs were conducted for each
approach to make statistical inferences. As commonly done when comparing MOEAs, the
medians and Inter-Quartile Ranges (IQRs) are used rather than the means and the standard
deviations. For the statistical comparisons, the Wilcoxon rank-sum test was applied for
each pair of compared techniques.
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4.4. Experimental Setup

Here, NSGA-II [13], which is a well-known MOEA, is applied to solving the opti-
mization problems presented in Equations (9) and (10). The run parameters that were
applied for solving each of the source MOPs and the target MOPs are summarized in
Table 2. In this study, the applied stopping criterion of NSGA-II is the total number of
generations. It should be noted that the run parameters for the source problems were
selected to ensure convergence in all source problems. To deal with the constraint problem,
a penalty approach is applied. Here, a non-feasible controller is penalized by adding a
high penalty value, which practically serves as a death penalty. It should be noted that the
population size for the target meta-problem is a result of the applied knowledge extraction
technique (see Section 4.5.1).

Table 2. Run parameters.

Parameter Signal Source Target

Number of generations 300 200
Population size 100 60
Penalty value 100

Weight Mutation (WM) mechanism Polynomial
WM parameters (probability, distribution index) (0.2, 15)

Weight Crossover (WC) mechanism SBX
WC parameters (probability, distribution index) (0.8, 20)

Simulation time limit Tmax 20 [s]
Cart mass m 1 [kg]

Force saturation value Umax 50 [N]
Starting point x0 −10 [m]

Starting Velocity
.
x(0) 0 [m/s]

Goal point xg 0 [m]
Speed limit Vmax 5 [m/s]

4.5. Experimental Results and Analyses

This section, in which the results are presented, is organized as follows. First, in
Section 4.5.1, typical results obtained by solving one of the ten source control problems are
presented, including the knowledge extraction from the presented results. Then, the results
of the target meta-problems are presented and analyzed in Section 4.5.2.

4.5.1. Demonstration of Knowledge Extraction

In this section, typical results are presented based on solving a randomly selected
source control problem. Figure 6 shows the approximated Pareto front as obtained by
solving the problem in Equation (10).
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In the figure, each point represents the performance vector of a non-dominated NFC.
As expected, the tradeoff between the objectives is evident. This tradeoff is further shown
in Figure 7. In Figure 7, the behaviors of the edge controllers are presented. The left
solid curves show the position and the velocity versus time for the fastest NFC, and the
right solid curves show these behaviors for the safest one. The dashed curves show the
corresponding damping coefficient and speed limit. It is evident from Figure 7 that the
velocity, as obtained by applying the fastest NFC, quickly reaches the vicinity of the speed
limit. In this case, the goal point is reached in less than 2.5 s. In contrast, the application of
the safest NFC results in a much lower velocity, and the goal-point is reached after about
twenty seconds.
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The convergence curve of the run of the presented case is shown in Figure 8. This
figure shows the HV measure at each generation. It is suggested from the figure that
convergence is reached.
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Figure 8. Convergence curve for the presented source problem.

Following the method presented in Section 3.3, the knowledge extraction from the
results of solving the presented source problem is presented in Figure 9. In the left plot,
the extraction of center controllers, which are marked as squares, is presented. The circles
in the right plot present the selected edge-controllers. It should be noted that for this
demonstration, six controllers were selected from each source problem for each of the
controller types.

Given that ten source problems are used in this study, and that each of these problems
provides six edge controllers and six center controllers, then the population size is sixty for
solving each of the corresponding meta-problems.



Mathematics 2024, 12, 992 13 of 19

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 8. Convergence curve for the presented source problem. 

Following the method presented in Section 3.3, the knowledge extraction from the 

results of solving the presented source problem is presented in Figure 9. In the left plot, 

the extraction of center controllers, which are marked as squares, is presented. The circles 

in the right plot present the selected edge-controllers. It should be noted that for this 

demonstration, six controllers were selected from each source problem for each of the con-

troller types. 

 

Figure 9. Knowledge extraction: (left) center controllers, (right) edge controllers. 

Given that ten source problems are used in this study, and that each of these prob-

lems provides six edge controllers and six center controllers, then the population size is 

sixty for solving each of the corresponding meta-problems. 

4.5.2. Results and Analysis of the Target Meta-Problems 

Tables 3 and 4 summarize the results of the ToT, AP, and the best performances in 

each of the objectives for target sets 1 and 2, respectively. For each method, the tables 

outline the medians and IQRs of the indicators. In the tables, the superior values are 

marked in bold numbers. In general, better medians are obtained when using the edge 

controller for the initialization as compared to either using the center controllers or the 

random controllers. In addition, better results were obtained by the center-controllers 

than with the random ones. 

Figure 9. Knowledge extraction: (left) center controllers, (right) edge controllers.

4.5.2. Results and Analysis of the Target Meta-Problems

Tables 3 and 4 summarize the results of the ToT, AP, and the best performances in each
of the objectives for target sets 1 and 2, respectively. For each method, the tables outline the
medians and IQRs of the indicators. In the tables, the superior values are marked in bold
numbers. In general, better medians are obtained when using the edge controller for the
initialization as compared to either using the center controllers or the random controllers. In
addition, better results were obtained by the center-controllers than with the random ones.

Table 3. Transfer capabilities comparison—target set 1.

Problem Indicator Random Center Edge

MOP1 Target set 1

ToT 33 (±20) 12 (±7.5) 3 (±2)
AP 0.88124 (±0.0601) 0.91951 (±0.0314) 0.93812 (±0.0107)

Best-F1 0.00829 (±0.0079) 0.00230 (±0.0018) 0.00355 (±0.0011)
Best-F2 0.01216 (±0.0098) 0.00258 (±0.0012) 0.00127 (±0.0001)
Best-F3 0.00546 (±0.0022) 0.00493 (±0.0020) 0.00375 (±0.0010)

MOP2 Target set 1

ToT 24 (±197) 2 (±2) 2 (±149)
AP 0.90159 (±0.944) 0.95214 (±0.094) 0.96308 (±0.730)

Best-F1 0.03682 (±1.071) 0.02305 (±0.023) 0.01784 (±0.816)
Best-F2 0.01970 (±1.094) 0.00620 (±0.037) 0.00387 (±0.825)
Best-F3 0.02136 (±1.087) 0.01029 (±0.018) 0.00849 (±0.820)

MOP3 Target set 1

ToT 43 (±150) 8 (±148) 5 (±149)
AP 0.75407 (±0.589) 0.79441 (±0.640) 0.85067 (±0.643)

Best-F1 0.00830 (±0.063) 0.00425 (±0.183) 0.00596 (±0.085)
Best-F2 0.01917 (±0.067) 0.00570 (±0.210) 0.00183 (±0.096)
Best-F3 0.00492 (±0.032) 0.01093 (±0.466) 0.00799 (±0.048)

Table 4. Transfer capabilities comparison—target set 2.

Problem Indicator Random Center Edge

MOP1 Target set 2

ToT 24 (±197) 2 (±2) 2 (±149)
AP 0.21958 (±0.387) 0.67058 (±0.236) 0.70545 (±0.116)

Best-F1 0.00568 (±0.007) 0.00258 (±0.003) 0.00081 (±0.001)
Best-F2 0.00480 (±0.003) 0.00135 (±0.001) 0.00151 (±0.001)
Best-F3 0.00369 (±0.005) 0.00220 (±0.002) 0.00082 (±0.001)

MOP2 Target set 2

ToT 4 (±163) 1 (±1) 2 (±150)
AP 0.95268 (±0.780) 0.96454 (±0.077) 0.97688 (±0.770)

Best-F1 0.00818 (±0.836) 0.00625 (±0.020) 0.00398 (±0.831)
Best-F2 0.01925 (±0.828) 0.01686 (±0.014) 0.01099 (±0.831)
Best-F3 0.00772 (±0.836) 0.00648 (±0.0236) 0.00475 (±0.830)

MOP3 Target set 2

ToT 129 (±122) 15 (±9) 13 (±9)
AP 0.61719 (±0.178) 0.73587 (±0.080) 0.73441 (±0.057)

Best-F1 0.00525 (±0.003) 0.00293 (±0.002) 0.00093 (±0.001)
Best-F2 0.00571 (±0.003) 0.00374 (±0.002) 0.00462 (±0.001)
Best-F3 0.00445 (±0.004) 0.00246 (±0.001) 0.00145 (±0.001)
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The results of the rank-sum Wilcoxon test are presented in Table 5, which allows
statistical inference. In the table, + is assigned for comparison in which the statement is
statistically correct, − is assigned for cases where the opposite statement is statically correct,
and ≈ is assigned for cases where the obtained p-values are larger than the significance
level, i.e., the compared cases are statistically equivalent. For example, the entry 3/1/2 in
the 1st row and column of the table means that the statement that using the edge controllers
was better than using the center ones was found to be correct in three out of the six meta
problems, etc. The last row of the table provides the accumulated numbers with respect to
all the indicators.

Table 5. Statistical comparisons.

Indicator Edge Better Than Center Edge Better Than Random Center Better Than Random

ToT (+/−/≈) 3/1/2 5/0/1 6/0/0
AP (+/−/≈) 5/0/1 5/0/1 4/1/1

Best-F1 (+/−/≈) 4/2/0 6/0/0 5/0/1
Best-F2 (+/−/≈) 3/1/2 5/0/1 5/0/1
Best-F3 (+/−/≈) 5/0/1 5/0/1 5/0/1

Total (+/−/≈) 20/4/6 26/0/4 25/1/4

As shown in the table, when comparing initialization using the edge controllers, as
opposed to using the center controllers, there are 20 comparisons in which using the
edge controllers was better than using the center controllers. The opposite statement was
found to be correct in 4 comparisons and no statistical superiority was found in 6 of the
30 comparisons. These observations suggest that, in general, edge controllers are better
than the center-controllers for the considered meta-problems in terms of the obtained values
of most indicators. These findings substantiate the first hypothesis of this study.

When comparing initialization by the edge controllers with that of the random con-
trollers, the accumulated results show that there was no comparison in which the latter
controllers were superior. When comparing initialization by the center controllers with that
of the random controllers, there was only one case out of the 30 in which the random ones
were superior. These findings substantiate the second hypothesis of this study.

4.5.3. Detailed Demonstration of the Transferability Results

The following presents some details of the results and analysis for the case of MOP1
with the first target set. The boxplots in Figure 10 show the statistical results of the HV
metric, as obtained by each initialization. The left plot in the figure presents the results
achieved by the edge controller initialization, the results of center controller initialization are
presented in the center plot, and the right plot shows the result of the random initialization.
The results of this demonstration suggest that the best results are achieved by the edge
controller initialization. It can be observed that the edge results are better in terms of higher
median values as well as lower variance and outliers. It is also evident that the center
controller initialization is superior to those achieved when a random initialization is used.

To make statistical inferences, the rank-sum test, with a significance level of 0.05,
is applied for each comparison. Table 6 outlines p-values as obtained by the test. Bold
results represent comparisons where initialization by the edge controllers is statistically
superior, whereas underlined results are for comparisons where initialization by the center
controllers is superior.

The obtained results show that edge controllers are better than the center controllers
for the considered meta-problem in terms of the obtained values of most indicators. In
addition, the results indicate that both the center and edge controllers are better than the
random ones for the considered problem. These findings substantiate the two hypotheses
of this study (see Section 3.3).
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Table 6. Statistical tests (p-values).

Indicator Center vs. Edge Random vs. Edge Random vs. Center

ToT 2 × 10−11 1 × 10−11 5 × 10−9

AP 8 × 10−5 3 × 10−10 4 × 10−6

Best-F1 7 × 10−4 7 × 10−9 4 × 10−9

Best-F2 1 × 10−7 1 × 10−11 9 × 10−11

Best-F3 7 × 10−5 2 × 10−4 4 × 10−1

4.5.4. Demonstration of the Obtained Behaviors

This section provides discussion and analysis regarding the obtained behaviors by
solving each of the target meta-problems, as defined in Section 4.1. Figures 11 and 12
present the behaviors of randomly selected NFCs as obtained by solving the three MOPs
for target set 1 and target set 2, respectively. Each row of the figures provides the results
for a specific scenario of the target sets as obtained by the three MOPs. The solid curve in
each of the figures shows the velocity versus time, whereas the dashed curves show the
corresponding speed limit.
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Considering the results of MOP2 (in the middle panels), as compared with those of
solving MOP1 and MOP3, it is observed that the obtained NFCs provide higher velocities
without any violation of the speed limits. As expected from the definition of MOP2, its
solutions exhibit safe yet courageous behaviors. Furthermore, when comparing the results
of solving MOP1 and MOP3, it can be observed that the solutions of MOP3 resulted in
slower motions. As expected from the definitions of these two problems, MOP3 exhibits
the most cautious behaviors, while MOP1 exhibits intermediate behaviors.
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The following provides a statistical comparison between the NFCs of MOP2 and those
of MOP3, which aims to highlight the clear difference between cautious and courageous
behaviors. In particular, the presented statistics are obtained for the case of using initializa-
tion by the edge NFCs, using 31 runs per each of the MOPs as applied per each scenario
of each of the target sets. The statistics are provided with respect to an average-time to
reach the goal point at each of the presented scenarios. Table 7 summarizes the medians
and IQRs of the average times. Each of these averages is calculated as follows. For each
of the runs, the average is taken over the entire set of the obtained approximated Pareto
optimal NFCs (of each MOP and target set). To obtain this average time, first, each of
these NFCs of the run is applied to the considered scenario to find its resulting time to
reach the goal point. Next, these times are used to find the average time for the run of the
considered scenario. In addition, the last row of Table 7 provides the accumulated results of
the Wilcoxon rank-sum tests over the six scenarios. As expected, these results clearly show
that the average times as obtained using the definition of MOP2 are statistically shorter
than those obtained by MOP3.

Table 7. Behavior comparison of time to goal point.

Target Set Scenario
Edge Initialization

MOP2 MOP3

1
1 8.140 (±0.66) 15.73 (±4.70)
2 18.70 (±1.09) 19.97 (±2.40)
3 9.650 (±0.80) 16.70 (±4.28)

2
1 17.45 (±0.52) 19.02 (±0.32)
2 15.35 (±0.35) 17.30 (±0.60)
3 19.95 (±0.06) 19.99 (±0.02)

(+/−/≈) (6/0/0)

In summary, the time-to-goal results in Table 7 further emphasize the differences
between the outcomes of courageous and cautious behaviors. While not presented here,
similar conclusions about the time to the goal point were obtained not just for the initial-
ization by the edge controllers but also by the other two types, including initialization
by center controllers and by random controllers. Namely, each of the initialization types
resulted in the expected behavior as associated with the considered MOP.

5. Summary and Conclusions

This study concerns the evolutionary search for generic neuro-fuzzy motion controllers
in conjunction with the use of sequential transfer optimization. The search aims to evolve
near optimal neuro-fuzzy controllers that can operate in a variety of scenarios. Three types
of target meta-problems are defined, which differ by the expected motion behavior, in-
cluding cautious, intermediate, and courageous behaviors. Each of these meta-problems is
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defined as a multi-objective problem, where each objective is associated with optimizing
the performance in a particular scenario.

A unique kind of sequential transfer optimization is proposed that involves multiple
source problems, where each of the source problems is defined and solved as a bi-objective
problem. The use of multiple source problems aims to diversify the source solutions with
respect to scenarios, whereas the use of the two objectives aims to diversify the source
solutions with respect to the obtained behaviors. This kind of multiple-source problem
raises the dilemma of which of the source solutions should be transferred to solve the
target problems. The main research hypothesis is that solutions with performances near the
edges of the obtained approximated bi-objective Pareto fronts provide better transferability
as compared with those that are associated with performances near the center of the
obtained fronts.

Given the stochastic nature of the applied search technique, a statistical numerical
study was conducted. First, ten source problems were defined and solved. Next, a total of
six target meta-problems were defined. Each of these target problems was solved using
three types of initializations including random initializations and two additional types in
accordance with the aforementioned hypothesis.

The main contribution of this study is that it substantiates the hypothesis that edge
controllers should be preferred over the center ones. This has a pragmatic impact on
applying sequential transfer optimization to the development of neuro-fuzzy controllers
for the considered motion control type of problems. This is because the proposed approach
produces useful information out of the large and diverse knowledge that is created by
solving many Pareto-based source problems. As shown in this study, and similar studies,
using selected solutions from source problems to serve as an initial population to solve a
target problem is much more efficient as compared with the traditional use of a random
initial population. In addition, this study shows that the proposed approach is useful for
finding neuro-fuzzy controllers that produce different motion behaviors when operating in
various environments with different motion difficulties.

This study assumed that experts select the source problems based on their cognitive
abilities to choose relevant problems to the considered target problems. It is suggested
to investigate in the future the influence of restricting the transferred solutions based
on similarity measures among tasks (e.g., [8]). It should be noted that the current study
defines and substantiates the considered hypotheses for bi-objective source problems.
Future work should also deal with extending the hypotheses to source problems with
more than two objectives. In particular, the definition of edge controller should be revised
and investigated.
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