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Abstract: When integrating data from multiple sources, a common challenge is block-wise missing.
Most existing methods address this issue only in cross-sectional studies. In this paper, we propose
a method for variable selection when combining datasets from multiple sources in longitudinal
studies. To account for block-wise missing in covariates, we impute the missing values multiple
times based on combinations of samples from different missing pattern and predictors from different
data sources. We then use these imputed data to construct estimating equations, and aggregate the
information across subjects and sources with the generalized method of moments. We employ the
smoothly clipped absolute deviation penalty in variable selection and use the extended Bayesian
Information Criterion criteria for tuning parameter selection. We establish the asymptotic properties
of the proposed estimator, and demonstrate the superior performance of the proposed method
through numerical experiments. Furthermore, we apply the proposed method in the Alzheimer’s
Disease Neuroimaging Initiative study to identify sensitive early-stage biomarkers of Alzheimer’s
Disease, which is crucial for early disease detection and personalized treatment.

Keywords: multiple imputation; correlated data; data integration
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1. Introduction

Multi-sources data are now attracting more attention in scientific research. A practical
problem with multi-source data is block-wise missing. Our work is motivated by the
existence of block-wise missingness in Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data when investigating the biomarkers that are associated with Alzheimer’s Disease (AD).
In the ADNI study, healthy elderly subjects, as well as subjects with normal cognition (NC),
mild cognitive impairment (MCI), or AD, were recruited to identify neuroimaging measures,
cognitive measures and biomarkers that can effectively and timely detect cognitive and
functional changes [1]. The ADNI data exhibit a block-wise missing structure along with
the long duration of the study, and the high cost of certain measurements, etc. Besides the
ADNI data, datasets with block-wise missing structure also exist across many other fields
including environmental science, sociology, and economics. For example, a block-wise
missing structure appears in human mortality data integrated from Italy and Switzerland [2]
and in credit data collected from various institutions (Lan and Jiang [3]; Li et al. [4]).

Statistical analysis with missing covariates has been widely studied due to the preva-
lence of missing values in many datasets. Common methods for dealing with missing
data include complete case analysis, maximum likelihood, inverse probability weighting,
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and imputation. While complete case analysis is the easiest approach to implement, it has
several drawbacks, such as potential bias in certain cases and a significant loss of infor-
mation when the proportion of missingness is high. The maximum likelihood approach
(e.g., Sabbe et al. [5]; Bondarenko and Raghunathan [6]; Audigier et al. [7]; von Hippel
and Bartlett [8]) requires a specification on the distribution of variables, though this is
unknown and unverifiable in practice. Inverse probability weighting (e.g., Chen et al. [9];
Creemers et al. [10]; Zubizarreta [11]; Hughes et al. [12]) heavily relies on the information
from complete cases, which can be problematic when the fraction of completely observed
subject is small.

Two big challenges with the above ADNI data are the high proportion of missingness
and the large number of covariates, which make the complete case analysis and maximum
likelihood approach inefficient. In addition to these two challenges, weighted methods
cannot handle the problem in presence of multiple missing patterns. Compared to these
methods with notable limitations, imputation methods are more appropriate for the ADNI
data. Recently, multi-source data with block-wise missing, exemplified by the ADNI
data, have drawn extensively attention in statistically research. Ref. [13] developed a
classification framework, which was accomplished by three steps: feature selection, sample
selection, and matrix completion. Ref. [2] proposed a dimension reduction method called
generalized integrative principal component analysis (GIPCA). Under the assumption of
identical type of distribution in the exponential family within each data source, GIPCA
decomposed the overall effect into joint and individual effect across data sources. Ref. [14]
imputed the missing data using a factor structure model, which considered the correlation
between predictors and does not depend on missing mechanism. Ref. [15] developed
a multiple block-wise imputation (MBI) approach by constructing estimating functions
based on both complete and incomplete observation. Other related literature include those
of [4,16,17].

However, these methods are not applicable to longitudinal studies. Using these
methods on the ADNI data, they only select baseline measurement for each patient and
simply delete the following measurements. Thus, these methods are inefficient for the
ADNI data since they fail to take account of with-subject correlations. In this paper, we
aim to develop a method for variable selection when integrating longitudinal data from
multiple sources in the existing block-wise missing structure. We impute the block-wise
missing data multiple times by using the information from both subjects with complete
observation and subjects with missing values. We construct estimating equations based on
imputed data and incorporate working correlation matrices to account for within-cluster
correlation. With the generalized method of moment, we are capable of integrating data
from multiple sources and identifying the relevant variables by introducing a penalty term.

This paper is organized as follows. Section 2 describes the setup and formalize the
proposed method. In Section 3, we study the asymptotic properties of the proposed
estimator. In Section 4, we develop an algorithm to implement the proposed method,
followed by a simulation study conducted in Section 5 to evaluate the performance of
the proposed method. In Section 6, we apply the proposed method to the ADNI study.
Section 7 provides further discussions.

2. Methods
2.1. Setup

Suppose the dataset consists of n independent and identically distributed (i.i.d.) sam-
ples drawn from independent sources with disjoint covariates. Without loss of general-
ity, we assume that the data are already sorted by missing patterns, and the total num-
ber of missing patterns is K with nk samples in each pattern, where ∑K

k=1 nk = n and
k = 1, . . . , K. Within each missing pattern, all subjects have the same missing structure
and the covariates from any specific source are either fully observed or fully missing. Let
Yk,i = (Yk,i1, . . . , Yk,imi

)T be the response vector for the ith subject in the kth pattern with
mi measurements. For ease of presentation, we assume that each sample has the same
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number of measurements m. Furthermore, let Xk,i = (Xk,i1, . . . , Xk,ip) be the corresponding
covariate matrix for the ith subject in the kth pattern across all the measurements, where p is
the number of covariates. We assume the underlying population-level model is as follows:

E(Yk,i|Xk,i) = µ(Xk,iβ), k = 1, . . . , K,

where µ(·) is a known monotonic link function and β is a p-dimentional vector in the
parameter space. Let O(k) and M(k) denote the index of observed covariates and missing
covariates in the kth pattern, respectively. Define Ri = 1 if Xk,i is fully observed, otherwise
0. We assume the missing mechanism of Xk,i is missing completely at random [18].

Figure 1 is an example illustrated what block-wise missing data look like, which consist
of three sources with three missing patterns. Note that covariates in source 1 are completely
observed in all three patterns, while covariates in source 2 are only observed in pattern
1 and 2, and covariates in source 3 are only observed in pattern 1 and 3. A similar structure
also exists in the ADNI data. For example, variables in cerebrospinal fluid (CSF) are only
measured in a subsample since CSF collection were mainly performed in phase II. Although
complete cases analysis is feasible for ADNI data, it is inefficient especially the number of
subjects with complete observation is limited. Thus, it is essential to leverage information
from incomplete observation.

Figure 1. Example of block-wise missing data in longitudinal studies.

2.2. Proposed Method

One approach to utilizing incomplete data is by imputing missing values and perform-
ing statistical analysis based on the imputed dataset. Traditional methods impute missing
values using information solely from complete cases. However, in scenarios involving
block-wise missing data, the proportion of complete cases can be relatively small, resulting
in unstable imputed values. To further illustrate how to incorporate information from
subjects with partially observed values when imputing missing values, we continue to
use the example given in Figure 1. Let Xk,i(r) be the rth imputed covariate vector for the
ith subject from pattern k, r = 1, . . . , Rk. For instance, the missing values of X2,i, i.e., the
covariates of source 3 in pattern 2, can be imputed using the information of all sources in
pattern 1, which we denoted as X2,i(1). Additionally, these can also be imputed based on
the covariates in source 1 and source 3 for subjects from pattern 1 and pattern 3, which we
denoted as X2,i(2). Figure 2 illustrate how the above procedures work. When all the covari-
ates are observed, Xk,i(r) = Xk,i. Similarly, we can define µk,i(r)(β) as the corresponding
imputed conditional mean.

The intuition behind the proposed method stems from generalized estimating equa-
tions (GEE) and quadratic inference functions (QIF). Suppose Vk,i is the unknown true
covariance matrix of Yk,i. Ref. [19] proposed that Vk,i can be estimated by A1/2

k,i Rk,i(α)A1/2
k,i ,

where Ak,i is the diagonal matrix of the conditional variance of Yk,i and Rk,i is a working
correlation matrix that fully specified by a vector of parameter α. Ref. [20] proposed the
QIF using the fact that the inverse of the correlation matrix R−1

k,i can be approximated

by ∑J
j=1 ak,j Mj, where M1, . . . , MJ are some basis matrices. For example, if we assume
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the within-cluster correlation structure is exchangeable, R−1
k,i can be approximated by

a1M1 + a2M2, where M1 is the identity matrix and M2 is a matrix with elemtents in the
diagonal to be 0 and elements in the off-diagonal to be 1. The estimation of inverse of
correlation matrix using linear combination has been intensively studied by [21]. The
advantage of this linear approximation is that the parameter α can be treated as a nuisance
parameter, leading to some improvement in computational efficiency. Then, the estimating
function for the subject i in the kth pattern with the rth imputation is defined as:

g̃k,i(r)(β) =
J

∑
j=1

ak,j

{
∂µk,i(β)

∂βO(k)

}T

A−1/2
k,i Mj A

−1/2
k,i {Yk,i − µk,i(r)(β)}.

Figure 2. Two imputation approaches for missing covariates of source 3 in pattern 2. In the left figure,
samples from pattern 1 and covariates in source 1 and source 2 are used to train the model, which is
subsequently used to predict the missing covariates in pattern 2. Similarly, in the right figure, samples
from pattern 1 and pattern 3 and covariates in source 1 are used to train the model.

Here, we only take derivative with respect to βO(k) to enhance numerical stability. Re-
call that ak,j is a linear coefficient that used to approximate the inverse of correlation matrix,
and thus, it is the nuisance parameter. To avoid estimating these nuisance parameters, we
define the extended score vector:

gk,i(r)(β) =


{

∂µk,i(β)
∂βO(k)

}T
A−1/2

k,i M1 A−1/2
k,i {Yk,i − µk,i(r)(β)}

...{
∂µk,i(β)
∂βO(k)

}T
A−1/2

k,i MJ A−1/2
k,i {Yk,i − µk,i(r)(β)}

.

Similarly, we obtain extended score vectors for all imputed covariate vectors and
subjects. To integrate all score vectors, we aggregate the information by stacking them into
a long vector:

g(β) =

g1(β)
...

gK(β)

 =


1

n1

n1
∑

i=1
g1,i(β)

...
1

nK

nK
∑

i=1
gK,i(β)

,

where gk,i(β) = (gT
k,i(1)(β), . . . , gT

k,i(Rk)
(β))T . Note that this might be an overdetermined

system because the number of equations can exceed the number of parameters. To overcome
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this difficulty, we adopt generalized method of moment [22] and add a penalty term.
Therefore, the objective function becomes:

S(β) = g(β)TC(β)−1g(β) +
p

∑
j=1

pλn(|β j|), (1)

where:

C(β) = diag

{
1
n1

n1

∑
i=1

g1,i(β)gT
1,i(β), . . . ,

1
nK

nK

∑
i=1

gK,i(β)gT
K,i(β)

}
is a block-diagnoal matrix under the assumption of independence among samples from
different missing patterns and pλn(·) is an arbitrary, investigator’s chosen, penalty function
with a tuning parameter λ. Among many optional penalty functions, we adopt the non-
convex smoothly clipped absolute deviation (SCAD) penalty [23]:

pλn(|β|) = λ|β|I(|β| ≤ λ) +
2aλ|β| − β2 − λ2

2(a − 1)
I(λ < |β| ≤ aλ) +

λ2(a + 1)
2

I(aλ < |β|)

for some a > 2, which possess desirable oracle property.

3. Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed estimator. In
Section 3.1, we assume the sample size n is increasing while the number of parameters p is
fixed, and demonstrate that the proposed estimator is

√
n-consistent and asymptotically

normal. As sample size goes to infinity, the proposed method is capable of selecting out the
relevant variables with probability goes to 1. We also show that the proposed estimator is
asymptotically more efficient than single imputation method via incorporating information
of samples with missing values. In Section 3.2, we suppose both the sample size n and
the number of parameters p are increasing but n increases faster than p. We show that
the consistency and sparsity still hold with diverging p. Without loss of generality, we
assume β̂ can be partitioned into two parts, i.e., β̂ = (β̂T

A, β̂T
N )T , where β̂A corresponds to

relevant variables with a non-zero true value, while β̂N consists of coefficients of irrelevant
variables with a zero true value. For any function g(β), we use ġ(β) to denote the first
derivative of g(·) evaluated at β. We use similar notation for its other order derivatives.

3.1. Fixed Number of Parameters

To establish the asymptotic properties of the proposed estimator in the setting of increasing
sample sizes and fixed number of parameter, we require the following regularity conditions:

C.1 E[Xk,j]
4 < ∞ and E[E[Xk,j(r)]]

4 < ∞, for any 1 ≤ k ≤ K, 1 ≤ j ≤ p, and 1 ≤ r, where
the inner expectation is with respect to the imputed values.

C.2 All the variance matrix Ak,i ≥ 0 and ∥Ak,i∥ < ∞, for any 1 ≤ k ≤ K and 1 ≤ i ≤ nk.
C.3 Let εk,i = A−1/2

k,i (Yk,i − µk,i(β0)). For any 1 ≤ k ≤ K and 1 ≤ i ≤ nk, E(εk,i) = 0 and
the fourth moment of εk,i exists.

C.4 ∥µk,i(β0)− µk,i(r)(β0)∥ = op(n−1/2
k ), for any 1 ≤ k ≤ K and 1 ≤ i ≤ nk.

C.5 The penalty function satisfied:

(a) lim infn→∞ infβ j→0+ p′λn
(β j)/λn > 0;

(b) maxj∈A{p′λn
(β0j)} = op(n−1/2);

(c) maxj∈A{p′′λn
(β0j)} = op(1).

C.6
√

ng(β0)
d→ N(0, ΣΩ), where Σ = diag{Σ1, . . . , ΣK} and Ω = diag{Ω1, . . . , ΩK},

with Σk = cov(gk,i(β0)) and Ωk to be a diagonal matrix with nk dimension and each
element equals to limn→∞ n/nk.
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C.1–C.3 are conditions that require the existence of the moment, which are easily
satisfied. C.4 requires the imputed conditional mean converges to the true conditional
mean in probability, which is satisfied as long as the imputed model is correctly speci-
fied and the missing mechanism is either missing completely at random. C.5 is a stan-
dard condition for SCAD penalty which is commonly used in variable selection method
(Gao et al. [24]; Cho and Qu [25]; Tian et al. [26]). More specifically, (a) ensures the property
of sparsity is satisfied, (b) and (c) ensure the property of consistency is satisfied, and (c)
also guarantees that the objective function (1) is dominated by the first term. C.6 is used to
establish the asymptotic normality of the proposed estimator.

Theorem 1. Under C.1–C.5, there exists a local minimizer β̂ of S(β) such that
∥β̂ − β0∥ = Op(n−1/2).

Theorem 1 states the existence of a minimizer of the objective function and the min-
imizer will converge to the true coefficients at a rate of

√
n as the sample size increases.

Next, we demonstrate that this estimator possesses the sparsity property and the estimator
for the non-zero coefficient is asymptotically normal, as outlined in the following theorem.

Theorem 2. Under C.1–C.5, if λn → 0 and there exist a sequence such that λn
√

n/an → ∞
as n → ∞, where an = op(

√
n), then the proposed estimator β̂ = (β̂T

A, β̂T
N )T satisfies the

following properties:

1. (Sparsity) P(β̂N = 0) → 1;
2. (Asymptotic Normality) Let H = E

[
∂gT(β0)/∂βA

]
and V = (HΣ−1Ω−1HT)−1 and if

C.6 holds, then
√

n(β̂A − β0A)
d→ N(0, V).

The sparsity of the proposed estimator guarantees that the probability of selecting
the true model approaches 1. We also obtained in Theorem 2 the asymptotic normality
of β̂A, the estimator of coefficients for the relevant variables, which allows us to esti-
mate its variance if H and Σ are known. However, in practice, these are unknown to
us. We can obtain the empirical variance covariance matrix of β̂A by replacing H with
Ĥ(β̂) = ∂gT(β̂)/∂βA and replacing Σ with C(β̂), i.e., V̂ = (ĤC−1Ω−1ĤT)−1. Next, we
compare the empirical variance of the proposed estimator with the empirical variance of
the single imputation approach.

Theorem 3. If a single imputation is used based on complete cases and denotes the asymptotic co-
variance matrix of βA as Ṽ , then under the conditions of Theorem 2, Ṽ −V is positive semi-definite.

Theorem 3 claims that the proposed estimator is asymptotically more efficient than
the single imputation approach, as it incorporates information from incomplete cases
during imputation. The result of this Theorem is intuitive because the proposed method
incorporates more samples into the imputation process.

3.2. Diverging Number of Parameters

In this subsection, we consider the setting where sample size n and number of coef-
ficients p increase simultaneously. For certain properties to remain true, we require that
n increases faster than p. We replace the notation p by pn to indicate that the number of
parameters also increases. We make the following assumptions:

D.1 For any i, j, k, Q̇k(β0) = op(p1/2
n n−1/2) and:∥∥∥∥∥∂2Qk(β0)

∂βi∂β j
− E

{
∂2Qk(β0)

∂βi∂β j

}∥∥∥∥∥ = Op(n−1/2).
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D.2 There exist an open ball of β0 and there exist a constant M such that each entries of...
Qk(β) is bounded by M, for any β in this open ball.

D.3 The penalty function satisfied:

(a) lim infn→∞ infβ j→0+ p′λn
(β j)/λn > 0;

(b) maxj∈A{p′λn
(β0j)} = op(p1/2

n n−1/2);

(c) maxj∈A{p′′λn
(β0j)} = op(p1/2

n ).

D.1 and D.2 are analogous to C.1–C.4. D.3 is the modification of C.5 for diverging
number of parameters.

Theorem 4. Under D.1–D.3, if pn = o(n1/4), there exists a local minimizer β̂ of S(β) such that
∥β̂ − β0∥ = Op(p1/2

n n−1/2).

From the result of Theorem 4, we find that the consistency still holds for the proposed
estimator, even with a diverging number of parameters. Not surprisingly, the convergence
rate is no longer

√
n, but

√
n/pn. We also require that pn does not increase faster than n1/4

to ensure the model remains sparse. To be specific, the majority of the coefficients is zero.

Theorem 5. Under D.1–D.3, if pn = o(n1/4), λn → 0, and λn
√

n/pn → ∞ as n → ∞, then
with probability tending to 1, the estimator β̂ = (β̂T

A, β̂T
N )T satisfies P(β̂N = 0) → 1.

Theorem 5 states the sparsity of the proposed estimator with a diverging number of
parameters. This property guarantees that the proposed method can still select the true
model with a probability approaching 1, even when the number of parameters is diverging.

4. Implementation

Since directly minimizing the objective function is difficult, we incorporate an iterative
procedure inspired by the implementation in [27], where they combined the minoriza-
tion–maximization algorithm [28] with the Newton–Raphson algorithm. Given the current
estimate of β(t) and tuning parameter λn, the objective function S(β) can be locally approx-
imated by (except a constant term):

Q(β(t)) + Q̇(β(t))T(β − β(t)) +
1
2
(β − β(t))TQ̈(β(t))T(β − β(t)) +

1
2

βT Dλn(β(t))β, (2)

where:

Dλn(β(t)) = diag

 p′λn
(|β(t)

1 |)

ϵ + |β(t)
1 |

, . . . ,
p′λn

(|β(t)
p |)

ϵ + |β(t)
p |


and ϵ is a sufficiently small number (e.g., ϵ = 10−6). Thus, the search for estimator minimiz-
ing the objective function is equivalent to find an estimator that minimize (2). Notice that
both Q̈(β(t)) and Q̈(β(t)) are unknown. Fortunately, from Lemma S2 in Supplementary
Materials, Q̇(β(t)) can be approximated by:

M(β(t)) = 2ġT(β(t))C(β(t))−1g(β(t)) (3)

and Q̈(β(t)) can be approximated by:

F(β(t)) = 2ġT(β(t))C(β(t))−1ġ(β(t)). (4)
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Plugging (3) and (4) into (2) and applying the Newton–Raphson algorithm, we obtain
the following formula to update β(t+1):

β(t+1) = β(t) −
[

F(β(t)) + Dλn(β(t))
]−1[

M(β(t)) + Dλn(β(t))β(t)
]
.

We repeat the above procedure until ∥β(t+1) − β(t)∥ is smaller than a pre-specified
threshold or reach a pre-specified maximum number of iteration.

It is known that the sampling covariance matrix C(β) may be singular in some
cases [29]. To overcome the difficulty in computing the inverse of C(β), we adopt the
Moore–Penrose generalized inverse, which exists and is unique for any matrix.

In the implementation of the proposed method, we select tuning parameter λn with
extended Bayesian Information Criterion (EBIC) criteria proposed by [30]:

EBICγ = n log(RSS/n) + d fλn{log(n) + 2γ log(p)}, 0 ≤ γ ≤ 1,

where d fλn is the number of parameters of the model with tuning parameter λn and
RSS = ∑K

k=1 RSSk is the residual sum of square of all the missing pattern with:

RSSk =
1

Rk

Rk

∑
r=1

nk

∑
i=1

m

∑
j=1

{
yk,ij − µk,ij(r)

}2
.

5. Simulation

In this section, we implement a simulation study to compare the performance of the
proposed method in variable selection against complete case analysis (CC) with SCAD
penalty, single imputation (SI) with SCAD penalty, and the penalized generalized estimating
Equation (PGEE). We use the same data structure as shown in Figure 1, where we have
three missing patterns and three sources. The number of measurement is set to be three
throughout this section. We replicate the simulation 100 times and use false positive rate
(FPR) and false negative rate (FNR) to evaluate the performance of each method, which
reflect the proportion of covariates that are irrelevant but falsely selected and the proportion
of covariates that are relevant but fail to be selected, respectively. In the tuning parameter
selection procedure, the parameter γ was set to 0.5 in EBIC. At the end of the iterative
algorithm in Section 4, the estimated coefficient is considered as zero, if its absolute value
is smaller than 0.01.

In the first setting, we simulate a dataset with a small proportion of complete cases,
where n1 = 40, n2 = 120, n3 = 120, and the missing rate is around 87%. The data with
continuous outcome are generated from the model:

Yij = XT
ij β + εi,

where j = 1, . . . , 3, Xij = (xij,1, . . . , xij,30)
T is a vector consisting of 30 covariates, and

β = (1, 2, 0, . . . , 0, 1, 2, 0, . . . , 0, 1, 2, 0, . . . , 0)T . Here, each source consists of 10 covariates
with the first two covariates having non-zero coefficients. xij,1 is a time-fixed covariate
and we generate it from the standard normal distribution, whereas other covariates are
time-varying covariates and follow multivariate normal distribution with mean zero and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient 0.5.
We generate random error εi from the multivariate normal distribution with mean 0 and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient ρ.
We always assume the true within-cluster correlation structure is known and considered
ρ to be 0.3, 0.5, and 0.7 in each setting, which corresponded to mild, moderate, and strong
within-cluster correlation. Let ϕi = 1/(1 + exp{1 + xi1,1 + · · ·+ xi1,10}). Then, n1, n2, and
n3 samples were sequentially drawn with probability proportional to the ϕi and assigned
to the pattern 1, pattern 2, and pattern 3, respectively. Obviously, subjects with higher
covariates value from source 1 at the baseline are more likely to be assigned to pattern 1,
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followed by pattern 2 and then pattern 3. This data generating process implies a MAR
mechanism for the missing covariates. The results of Table 1 summarize the performance
of each method for three different ρ. All of these methods effectively control the FNR.
However, FPR of the proposed method is lower than the other three methods. In other
words, the proposed method is able to select most of relevant variables while controlling the
error of selecting irrelevant variables. In addition, we notice that the proposed method is
more capable of utilizing within-cluster correlation compared with PGEE since the proposed
method performs better as the within-cluster correlation becomes stronger. This result
demonstrates the superiority of the proposed method when the percentage of complete
cases is small in the block-missing data.

Table 1. Simulation scenario 1 with continuous outcomes: comparing the proposed method, complete
cases analysis, single imputation method, and PGEE in terms of false positive rate (FPR), false
negative rate (FNR), FPR + FNR, and computation time in seconds (n1 = 40, n2 = 100, n3 = 100,
p1 = 10, p2 = 10, p3 = 10).

Method FPR FNR FPR + FNR Time

ρ = 0.3

Proposed 0.083 <0.001 0.083 2.38
CC 0.204 <0.001 0.204 0.26
SI 0.118 0.002 0.120 1.22
PGEE 0.085 <0.001 0.085 0.62

ρ = 0.5

Proposed 0.093 0.007 0.100 2.42
CC 0.205 <0.001 0.205 0.27
SI 0.146 <0.001 0.146 1.29
PGEE 0.126 0.007 0.133 0.65

ρ = 0.7

Proposed 0.110 <0.001 0.110 2.50
CC 0.198 0.005 0.203 0.28
SI 0.141 <0.001 0.141 1.33
PGEE 0.132 0.017 0.149 0.67

In the second setting, we continue to investigate the proposed method’s performance
with a continuous outcome, but we proportionally increase the sample size in each missing
pattern to demonstrate the proposed method’s effectiveness in larger samples, where
n1 = 120, n2 = 300, n3 = 300. The results are described in Table 2. Unsurprisingly, the FPR
and FNR of all the methods decreased compared with the first setting. We observe that
the performance of the PGEE is very close to that of the single imputation method while
the proposed method has a much lower FPR. In the meanwhile, complete cases analysis is
still the worst option since the improvement is minor as the sample size increase, and even
negligible when the within-cluster correlation is strong. Therefore, the proposed method is
still able to maintain an appealing performance in the large sample size. The results from
this setting further verify the efficiency gain of the proposed method in incorporating more
information from the missing data compared to the single imputation.

Table 2. Simulation scenario 2 with continuous outcomes: comparing the proposed method, complete
cases analysis, single imputation method, and PGEE in terms of false positive rate (FPR), false
negative rate (FNR), FPR + FNR, and computation time in seconds (n1 = 120, n2 = 300, n3 = 300,
p1 = 10, p2 = 10, p3 = 10).

Method FPR FNR FPR + FNR Time

ρ = 0.3

Proposed 0.003 <0.001 0.003 4.31
CC 0.101 <0.001 0.101 0.58
SI 0.018 <0.001 0.018 2.55
PGEE 0.010 <0.001 0.010 1.55

ρ = 0.5

Proposed 0.005 <0.001 0.005 4.37
CC 0.135 <0.001 0.135 0.61
SI 0.025 <0.001 0.025 2.55
PGEE 0.023 <0.001 0.023 1.52
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Table 2. Cont.

Method FPR FNR FPR + FNR Time

ρ = 0.7

Proposed 0.015 <0.001 0.015 4.29
CC 0.190 <0.001 0.190 0.54
SI 0.049 <0.001 0.049 2.47
PGEE 0.078 <0.001 0.078 1.37

In the third setting, we consider a correlated binary outcome with n1 = 120, n2 = 300,
and n3 = 300. The data are generated from the model:

log
πij

1 − πij
= XT

ij β + εi,

where j = 1, . . . , m, Xij = (xij,1, . . . , xij,15)
T is a vector consisting of 15 covariates, and

β = (1, 0, . . . , 0,−0.7, 0, . . . , 0, 0.5, 0, . . . , 0)T . Here, each source consists of five covariates,
with the first covariate in each having non-zero coefficients. xij,1 is a time-fixed covariate
and we generate it from the standard normal distribution, whereas other covariates are
time-varying covariates and follow multivariate normal distribution with mean zero and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient 0.5.
We generate random error εi from the multivariate normal distribution with mean 0 and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient 0.3.
In this setting, ϕi = 1/(1 + exp{1 + xi1,11 + · · ·+ xi1,15}). The results are summarized in
Table 3. Although the PGEE outperforms other methods in terms of FPR, its performance
in FNR is poor. In contrast, the proposed method possesses a better balance between FPR
and FNR. We still observed a better performance of the proposed method.

Table 3. Simulation scenario 3 with binary outcomes: comparison of the proposed method, complete
cases analysis, single imputation method, and PGEE in terms of false positive rate (FPR), false
negative rate (FNR), FPR + FNR, and computation time in seconds (n1 = 120, n2 = 300, n3 = 300,
p1 = 5, p2 = 5, p3 = 5, ρ = 0.3).

Method FPR FNR FPR + FNR Time

Proposed 0.298 0.063 0.361 3.55
CC 0.334 0.218 0.552 0.32
SI 0.289 0.088 0.377 1.91
PGEE 0.071 0.537 0.608 0.74

6. Application

We apply our proposed method to the ADNI study. This study was launched in 2003
and has undertaken three different phases so far: ADNI 1, ADNI GO/2, and ADNI 3, which
is designed to develop the effective treatment that can slow or stop the progression of AD.
Our goal is to identify sensitive biomarkers of AD in the early stage from three data sources:
magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal
fluid (CSF). We choose the mini-mental state examination (MMSE) [31] score as response
variable, which has been widely used in the early diagnosis of AD [32]. The MRI data were
analyzed by UCSF, who performed cortical reconstruction and volumetric segmentation
with FreeSurfer. The processed MRI data primarly summarized average cortical thickness,
standard deviation in cortical thickness, the volumes of cortical parcellations, the volumes
of specific white matter parcellations, and the total surface area of the cortex [33]. The PET
data were processed by UCB and quantities variables were obtained by standard uptake
value ratio (SUVR) in amyloid florbetapir. The CSF data were acquired by ADNI Biomarker
Core and Laboratory Medicine and Center for Neurodegenerative Diseases Research at
UPENN. The block-wise missing emerged in this data. Less than half of patients lacked
MRI measurements, few patients missed PET measurements, and only a small proportion
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of patients had CSF measurements. One of the reasons for the block-wise missing data
is that obtaining CSF measurements requires more invasive procedures (such as lumbar
puncture), which are refused by the majority of patients. The goal of this analysis is to
identify biomarkers that are highly predictive of MMSE.

We only use the ADNI GO/2 dataset and consider measurements at baseline, month 24,
and month 48, since the majority of patients have records at these time points. We also
notice that there exist some low-quality data, such as those missed baseline measurement or
belonged to a missing pattern with few patients. For simplicity of analysis, we discard these
low-quality data, which leads us to a study cohort of 669 patients. Among them, 280 pa-
tients missed the measurement at month 24 and 487 patients missed the measurements at
month 48. There are 340 features in MRI data, 229 features in PET data, and 3 features in
CSF data. These three datasets and MMSE data are joined by a unique identifier “visit code”
provided by the ADNI study. In total, we have three missing patterns. Table 4 describes
the missing pattern of this dataset. The number of patients with fully observed variables
is 63, with a missing rate around 90.6%. From this extremely high proportion of missing
data, we will see how the proposed method can substantially improve the prediction ability
by incorporating the information of related samples with missing values. To assess the
predictive performance of the proposed method, data are randomly split into a test data
with a sample size 30 (roughly 5%) and the remaining data as training data, where the
test data are drawn from the data with fully observed variables (missing pattern 1). This
random split process was replicated 30 times. A variable is marked as a potential predictor
of AD if its absolute coefficient value is greater than 0.01.

Table 5 summarizes the average number of biomarkers selected by each method, along
with the most frequently selected biomarkers. We also report the post-model-selection
p-value. Our method successfully identifies biomarkers that align with findings reported
in existing Alzheimer’s Disease research literature. In comparison to PGEE, the other three
methods consistently select amyloid-β as a biomarker of AD, whose accumulation in cells
is an early event of AD [34]. Phosphorylated tau, another widely accepted biomarker,
has been validated by multiple large-scale, multi-center studies [35]. Studies found that
neurons in AD patients are more likely to loss the superior temporal sulcus [36]. Two dis-
tinct normalization methods of summary measures for the standardized uptake value ratio
(SUVR) of the florbetapir tracer, in the composite reference region and the whole cerebellum
reference region, may potentially serving as AD biomarkers [37]. Besides these biomarkers,
the proposed method additionally identifies several well-established and potential biomark-
ers. The size of the region of interest (ROI) in the left and right hemisphere precuneus area
of the cortex, as well as cortical volume of left precuneus, summarize the health status of
precuneus, which may be atrophy in the early stage of AD. The size and volume of the ROI
in the left and right inferior lateral ventricle reflect disease progression (Bartos et al. [38];
Song et al. [39]). White matter changes in cerebral or subcortical areas can appear in other
neurological conditions and normal aging, their connections with AD potentially make
them useful biomarkers for distinguishing AD from normality, especially when considered
along with other biomarkers in future investigations. While the surface area of the left
caudal middle frontal and the cortical volume of the right caudal anterior cingulate are
both associated with AD, more research is required to further explore these associations.

Table 4. Data composition and missing pattern for the subset of ADNI data; “O” denotes the observed
data and “-” denotes the missing data.

Missing Pattern MRI (340) PET (229) CSF (3) Number of Patients

1 O O O 63
2 O O - 384
3 - O - 222
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Table 5. Comparision of the mean of the number of selected biomarkers (MNSB) whose absolute
value of coefficient is greater than 0.01 based on 30 replications in application to ADNI data. Time is
the computation time in seconds.

Method MNSB Top Selected Biomarkers Time

Proposed 16

ABETA, PTAU, ST30SV *, ST15SA
ST89SV, ST151SV, ST52CV *, ST73CV,

SUMMARYSUVR COMPOSITE REFNORM *,
SUMMARYSUVR WHOLECEREBNORM *,

CTX LH PRECUNEUS VOLUME,
CTX RH PRECUNEUS SUVR,

LEFT INF LAT VENT VOLUME,
RIGHT INF LAT VENT VOLUME,

CTX LH SUPERIORTEMPORAL SUVR *,
LEFT CEREBRAL WHITE MATTER VOLUME

1550

CC 3 ABETA, TAU *,
SUMMARYSUVR COMPOSITE REFNORM * 280

SI 9

ABETA *, TAU *, PTAU *, ST1SV, ST4SV *, ST52CV
SUMMARYSUVR COMPOSITE REFNORM,

SUMMARYSUVR WHOLECEREBNORM
CC MID ANTERIOR VOLUME

1216

PGEE 1 ST52TA * 18
* Post-model-selection p-value < 0.05.

7. Discussion

It is well known that variable selection is a challenge for model robustness, estimator
stableness and efficiency, as well as precise predictability. However, another non-negligible
issue when integrating longitudinal studies is missingness in the covariate, especially in
block-wise missing data. Specifically, with block-wise missing data, the percentage of
complete observations is relatively small while traditional statistical methods heavily rely
on information of complete cases. In this paper, we develop new methods to extend the
MBI approach in a longitudinal study under the setting of block-wise missing data. Under
certain regularity conditions, the desirable properties, consistency, sparsity, and asymptotic
normality still hold. In addition, the proposed method demonstrates superior efficiency
compared to the single imputation approach. It is worth noting that dropout missing data
are also very common in longitudinal studies, which typically cause bias in many cases. In
future work, it will be of great interest to develop methods to handle dropout missingness
and incorporate inverse probability weighting in the proposed method.

One limitation of this paper is that we assume a homogeneous missing pattern across
measurements within a single patient. Although this assumption may be restrictive in real
data analysis, it is not hard to fulfill in multi-source data.
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