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Preface by Hovik A. Matevossian

In this Editorial, we present an authentic translation of the Dissertation written by
Mergelyan, S. N. called Best approximations in the complex domain. (Ph.D. thesis, Steklov Math-
ematical Institute of the USSR Academy of Sciences, Moscow, 1948, 56 pages (In Russian)).
It presents phenomenal results from the outstanding Soviet and Armenian mathematician
Sergey N. Mergelyan (1928–2008) in connection with his 95th birthday.

S. Mergelyan’s main scientific research included the theory of functions of complex
variables, approximation theory, the theory of potentials, and harmonic functions.

S. Mergelyan carried out in-depth research and obtained valuable results in such
areas as the best approximation by polynomials on an arbitrary continuum, weighted
approximation by polynomials on the real axis, point approximation by polynomials on
closed sets of the complex plane, uniform approximation by harmonic functions on compact
sets, and entire functions on an unbounded continuum.

For the exceptional results obtained in the field of approximation theory, the Scientific
Council of the Steklov Mathematical Institute of the USSR Academy of Sciences awarded
the 20-year-old genius Sergey Mergelyan a degree of Doctor of Physical and Mathematical
Sciences; he was the youngest Doctor of Sciences in the history of the USSR and the youngest
Corresponding member of the Academy of Sciences of the Soviet Union (at 24 years old)
(https://en.wikipedia.org/wiki/Sergey_Mergelyan (accessed on 20 December 2023)).

In 1951, S. Mergelyan proved his famous theorem on approximation by polynomials
(Mergelyan, S. N. Certain questions of the constructive theory of functions. Trudy Mat.
Inst. Steklov 1951, 37, Acad. Sci. USSR, Moscow, 3–91). His theorem on the approximation
of functions by polynomials has become classical among the theorems of Weierstrass
and Runge.

The new terms “Mergelyan’s Theorem” and “Mergelyan Sets” have found their place
in textbooks and monographs on approximation theory.

S. Mergelyan’s theorem answers the question about the possibility of polynomial ap-
proximation of the function of one complex variable: Every function continuous on a compact
set K ⊂ C and holomorphic in its interior can be represented in K by a uniformly converging se-
quence of polynomials if and only if the complement C\K is connected (Mergelyan, S. N. Uniform
approximations of functions of a complex variable. Uspekhi Mat. Nauk 1952, 7:2(48), 31–122).

S. Mergelyan’s theorem completes a large cycle of research on polynomial approx-
imations, which began in 1885, and consists of classical results by Weierstrass, Runge,
Walsh, M. Lavrentiev, M. Keldysh, and others. In these papers, a function that is continuous
on a compact set and holomorphic in its interior is approximated by a function that is
holomorphic on the entire compact set (that is, in a neighborhood of this set). Polynomial
approximation is then obtained using the Runge theorem (1885) that every function that is
holomorphic on a compact set whose complement is connected can be represented in this
set by a uniformly converging sequence of complex polynomials.
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S. Mergelyan’s further results were devoted to the study of the approximation of
continuous functions that satisfy the smoothness properties for an arbitrary set (1962) and
the solution of Bernstein’s approximation problem (1963).

I express my gratitude to the Leading Researcher of the Steklov Mathematical Institute
of the Russian Academy of Sciences and Professor at Lomonosov Moscow State University,
A.G. Sergeev, for supporting the idea of publishing Mergelyan’s Dissertation.

I express my gratitude to Professors Heinrich Begehr (FU Berlin) and Paul Gauthier
(Université de Montréal) for their efforts in reading the translation of this Dissertation,
for their valuable comments in clarifying and correctly using the terminology of the theory
of approximation, and for their help in editing the manuscript.

I express my sincere gratitude to two staff members at the Library of Natural Sciences
of the Russian Academy of Sciences, Tatiana and Irina, for providing the original manuscript
of Mergelyan’s Dissertation, which is stored in the scientific collection of the library of the
Steklov Mathematical Institute of the Russian Academy of Sciences.

I also express my gratitude to my graduate students M. Dorodnitsyn and A. Kovalev
for typing this manuscript, and to my colleague V.N. Bobylev for their help in reading the
manuscript and restoring the list of references.
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S. N. Mergelyan “Best Approximations in the Complex Domain”

Introduction

Consider a finite closed domain D whose complement represents a connected set.
Suppose that the function f (z) is regular at interior points of D and continuous on D. The
infimum of the values

max
z∈D

| f (z)−Pn(z)|

with respect to all possible polynomials {Pn(z)} of degree ≤ n we denote by ρ(n).
As is known [1], ρ(n) → 0 as n → ∞, and the rate of decrease of the number ρ(n) is

closely related to the properties of f (z) on D − D = Γ, as well as to the properties of the
domain D.

In the case when the boundary D is an analytic curve, it is established [2] that if f (z)
has a continuous kth derivative in D, satisfying there the Lipschitz condition of order α,
then there is a constant C for which

ρ(n) <
C

nk+α
,

and , conversely, if 0 < α < 1, k is an integer and ρ(n) < C n−k−α, then the kth derivative of
f (z) satisfies the Lipschitz condition of order α in D.

Thus, in the case of an analytic domain, the dependence of ρ(n) on f (z) is similar to
the dependence of the rate of best approximation on the properties of a function in the
real domain.

From the results related to the investigation of the rate of best approximation in the
case of non-analytic domains, we note the following two ideas.

Let C(ρ) denote the distance of the image of the circle |w| = ρ > 1 under the conformal
mapping |w| > 1 onto the complement of D to the boundary of D. If for some α > 0

C(ρ) > const (ρ − 1)α,

then from inequality

ρ(n) <
C

n(k+β)α
, (k is an integer, 0 < β < 1),

it follows that the kth derivative of f (z) satisfies the Lipschitz condition of order β in D [2].
If θ(s) denotes the angle made by the tangent to the boundary of D at the point z(s)

with the axis OX, and z(s) represents a point on Γ distant from some fixed point z(0) at arc
distance s, and θ(s) satisfies a Lipschitz condition of positive order, then from the fact that
f (z) is regular in D and satisfies the inequality

| f (z′ − f (z′′))| < K|z′ − z′′|δ, z′, z′′ ∈ D

it follows, as A. I. Markouchevitch showed [3], that for any positive ε

ρ(n) <
C1(ε)

nδ−ε
. (0.1)

The present paper is devoted to studying the rate of best approximation in the general
case when D represents an arbitrary domain of the Carathéodory class. Some issues are
also considered that are somehow related to the theory of best approximation.

In Section 1 we establish upper estimates for the quantities ρ(n) for domains with
various features, for example for domains with a corner point, convex domains, etc.

In Section 2 given the rate of approximation and the domain D, the necessary proper-
ties of the function are investigated, and the theorems are local in nature, since the same
rate of approximation imposes different restrictions on the function at different boundary
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points, depending on the behavior of the domain D near these points. Thus, it is possible
to verify the accuracy of the estimates Section 1.

Direct and inverse theorems on the rate of best approximation in domains with a
smooth boundary are highlighted in Section 3.

Here we show that the above-mentioned analogy between ρ(n) and the rate of best ap-
proximation in the real domain En( f ), which holds for analytic domains, already disappears
in the case of some of the domains with a smooth boundary.

Inequality 0.1 extends to arbitrary domains with a smooth boundary. Estimates for
ρ(n) are also given depending on the degree of smoothness of the boundary D.

It is known [4] that if two domains D1 and D2 have only one common boundary point,
and f1 and f2 are regular in D1, D2, respectively, and are continuous at the closures and
take equal value at the common boundary point, then, as soon as in each of the domains
D1, D2 the corresponding function can be uniformly approximated by polynomials, then
there exists a sequence of polynomials uniformly converging in D1 to f1(z) and, at the
same time, in D2 to f2(z). In Section 4 the results concerning the study of the rate of
simultaneous approximation in two touching domains are presented. (The Introduction
specifies Section 4, but this Section 4 is missing from the manuscript. It is worth noting
that the material stated as Section 4 is discussed in Section 3 (editor’s comment )) In this
case, the rate of approximation depends on a third factor—the relative position of the
domains D1 and D2. It is proved that if a certain relationship is satisfied between the rate
of simultaneous approximation and the order of contact of the boundaries D1 and D2, then
the convergence of the sequence of polynomials {Pn(z)} to zero in D1 also automatically
implies convergence to zero in D2.

In Section 5 some quasi-analytic classes of functions are introduced and criteria for
belonging to them are given in terms of the best approximation. Related here is the
question of the distribution of zeros of the analytic function f (z) located on the boundary
of the domain of regularity of f (z) under the assumption that f (z) is continuous in a
closed domain.

In Section 6 the best approximation on various discontinuous sets is considered, and in
some cases a dependency is established between the rate of approximation, the behavior of
the function and the properties of the sets on which the approximation occurs.

I take this opportunity to express my deep gratitude to Academician M.V. Keldysh,
whose advice and instructions provided me with great assistance in carrying out this work.

1. Direct Theorems for Domains with Different Types of Singularities

Let us present the formulation of one of Warschawski’s results, which we will use in
the future.

Let D be a Jordan domain bounded by a curve Γ passing through z = 0. Suppose that
in the neighborhood |z| ≤ a of the point z = 0 the boundary Γ of the domain D consists of
two arcs Γ+ and Γ−, the equations of which in polar coordinates are

φ = Φ+(ρ), φ = Φ−(ρ) (Φ+ < Φ−)

respectively. Let there also be limits

lim
ρ→ 0

ρ
dΦ+

dρ
; lim

ρ→ 0
ρ

dΦ−
dρ

.

Let w = w(z) denote the function that conformally maps the domain D onto the circle
|w − 1| < 1 so that z = 0 goes to w = 0; θ(ρ) = Φ−(ρ)− Φ+(ρ).

Theorem 1.1 (S. E. Warschawski [5]). If

a∫
0

[(
dΦ+(ρ)

dρ

)2

+

(
dΦ−(ρ)

dρ

)2
]

ρdρ

θ(ρ)
< ∞,
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then in the neighborhood of the point z = 0 we have

|w(z)| = C exp

−π

a∫
|z|

dρ

ρθ(ρ)
+ O(1)

, (1.1)

where C does not depend on z.

This theorem makes it possible in a number of cases to investigate the behavior of
conformal mapping functions in a closed domain, as well as to estimate the distance of the
level lines of the Green’s function to a boundary point, depending on the behavior of the
boundary near this point.

Let D be a bounded domain with a simply connected complement; henceforth, by ZR
(R > 1) we mean the level line of the Green’s function G(z) of the complement to
D −ZR; G(z) = ln R.

DR is a bounded domain bounded by ZR. If f (z) is regular in DR and does not exceed
unity there in absolute value, then for any integer n ≥ 1 there is a polynomial Pn(z) of
degree n, for which

max
z∈D

| f (z)−Pn(z)| <
C0

(R − 1)3Rn , (1.2)

where C0 is an absolute constant (the degree of difference R − 1 can be reduced, however
the question of determining it as accurately as possible does not interest us now).

The proof is easy to derive by composing a Fejér interpolation polynomial with
uniformly distributed nodes, estimating the remainder term represented by the Cauchy
integral, and considering that, firstly, if the diameter D is less than one, then

lengthZR <
C′

0
R − 1

,

and secondly, the distance of any point ZR to Γ exceeds 1
C′

0
(R − 1)2, where C′

0 is an abso-
lute constant.

Let D now contain z = 0 and the equation of its boundary in polar coordinate be

ρ = ρ(φ),

where ρ(φ) = ρ(φ + 2π) is a single-valued continuous function.

Theorem 1.2. If all derivative numbers of the function ln ρ(φ) are uniformly bounded from above
by the number k and the function f (z) is regular in D, has a continuous mth derivative in D,
the modulus of continuity of which is w(δ), then

ρn(D; f ) < const
(

ln n
n

) 2m
π arctg 1

k
w

((
ln n

n

) 2
π arctg 1

k
)

. (1.3)

Proof. Let ξ be an arbitrary boundary point of D, and let w(z) map the complement of D
to the circle |w| < 1 (w(∞) = 0) so that ξ goes to w = −1.

It is easy to see that from the condition |D ln ρ(φ)| < k that it follows, in the notation
of Warschawski’s theorem

θ(r) ≥ 2 arctg
1
k

,
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so putting 2 arctg 1
k = φ we have

|w(z) + 1| = C exp

−
a∫

|z−ξ|

πdr
rθ(r)

+ O(1)

 ≥ C1|z − ξ|
π
φ ,

that is, if w(z) belongs to the circumference | 1
w | = R > 1, then the distance z to ξ does not

exceed C2(R − 1)
φ
π .

Let us denote by D(q) the domain to which D goes under the transformation w = qz
(q > 1). From |D ln ρ(φ)| < k it follows that the existence of a constant C3 > 0 for which
the distance of the boundary D(q) to the boundary D exceeds C3(q − 1).

Thus, for some C4 > 0 the domain DR bounded by the level line ZR is contained in

the domain D1+C4(R−1)
φ
π . It follows that the function

f (m)

(
z

1 + C4(R − 1)
φ
π

)

is analytic in DR, uniformly bounded there in R; therefore, according to the remark made
above, there is a polynomial P(z) of degree n such that

max
z∈D

| f (m)

(
z

1 + C4(R − 1)
φ
π

)
−P(z)| < C5M

(R − 1)3Rn ,

where

M = max
z∈DR

∣∣∣∣∣ f (m)

(
z

1 + C4(R − 1)
φ
π

)∣∣∣∣∣.
But

max
z∈D

∣∣∣∣∣ f (m)(z)− f (m)

(
z

1 + C4(R − 1)
φ
π

)∣∣∣∣∣ < w
(

C6(R − 1)
φ
π

)
.

Let us put R = 1 + 4 ln n
n ; we have

max
z∈D

| f (m)(z)−P(z)| < C7M
n(ln n)3 + w

(
C6

(
ln n

n

) φ
π

)
.

From the fact that w(δ) is the modulus of continuity of some function other than a constant,
it follows that, firstly, w(δ) > C8δ, and secondly, w(2kδ) < 2kw(δ), so we have

max
z∈D

| f (m)(z)−P(z)| < C9w

((
ln n

n

) φ
π

)
.

Next, we apply a well-known technique. The function∫ z

0

(
f (m)(z)−P(z)

)
dz

satisfies a first-order Lipschitz condition with a Lipschitz constant equal to

C9w

((
ln n

n

) φ
π

)
,
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so, according to what has been proved, we can find a polynomial Q(z) of degree n + 1
for which

max
z∈D

| f (m−1)(z)− Q(z)| < C10

(
ln n

n

) φ
π

w

((
ln n

n

) φ
π

)
.

Proceeding similarly with f (m−2)(z), . . . , and finally with f (z) we come to the proof of
the theorem.

Thus, Theorem 1.2 gives an estimate of the rate of approximation for domains with
corner points.

Let D be bounded by a finite number of smooth curves that make angles with each
other, the internal openings of which do not exceed 2πα, and f (m)(z) be regular in D and
satisfy the Lipschitz condition of order γ in D.

Assuming the domain D is star-shaped with respect to one of its points, it is easy to
show by the reasoning used in the proof of Theorem 1.2 that

ρ(D; f ) <
C(ε)

n2(1−α)(m+γ)−ε
, n = 1, 2, 3, . . . , (1.4)

for any ε > 0.
We can free ourselves from the artificial restriction of star-shapedness by using an

additional reasoning based on the “averaging” method of academician M.V. Keldysh [6],
which we set out in §3 when proving Theorem 1.3.

If no additional restrictions are imposed on the smoothness of the boundary D, then,
as will be seen, in §3, the numbers C(ε) can increase arbitrarily quickly: for any positive
function f (z) there exists N(ε) such that f (m)(z) satisfies a Lipschitz condition of order γ
in D; however,

ρ(D; f ) >
N(ε)

n2(1−α)(m+γ)−ε
, n1(ε) < n < n2(ε).

Now, let the domain D have an incoming point, and ρ = ρ(φ) still means the equation
of the boundary in polar coordinates; assume that ρ′(φ) exists everywhere outside φ = 0,
and also that at the point (0; ρ(0)) two arcs of the boundary of D touch the axis OX, and
ρ′(φ) decreases monotonically as φ → +0, φ → 2π − 0; by d(α) we denote the distance of
the point (0; ρ(0)) to the level line Z1+α.

Theorem 1.3. If f (z) is regular in D, its mth derivative has w(δ) modulus of continuity in
D, then

ρn(D; f ) < const
(

d
(

ln n
n

))m
w
(

d
(

ln n
n

))
. (1.5)

Proof. The proof of this theorem is similar to the above proof of Theorem 1.2.
If, in particular, at the point (0; ρ(0)) we have the algebraic order of tangency of two

arcs of the boundary

ρ(φ) ≡ ρ(0) + Cφp, 0 < φ < ε,

ρ(φ) ≡ ρ(0) + C(2π − φ)p, 2π − ε < φ < 2π,

then, using Warschawski’s theorem, we have

d(α) <
const

| ln α|
1

p−1
.

Hence, in this case

ρn(D; f ) <
const

(ln n)
m

p−1
w

((
1

ln n

) m
p−1
)
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In Section 2 it will be shown that this estimate is exact, in the sense that for some
functions satisfying the conditions of Theorem 1.3 and two constants A1 and A2

A1
1

(ln n)
m

p−1
w

((
1

ln n

) 1
p−1
)

< ρn( f ; D) < A2
1

(ln n)
m

p−1
w

((
1

ln n

) 1
p−1
)

.

From the noted special cases we can conclude that in order to obtain a certain rate
of approach in D there is no need to require that the function behaves well enough at all
boundary points; the necessary and sufficient properties of the function for a given rate of
approximation and domain depend at each point only on the behavior of the boundary of
the domain near this point.

This circumstance constitutes a distinguishing feature of the best approximations in
the complex domain from the best approximations in the real domain.

2. Inverse Theorems

Let D denote a domain bounded by the Jordan curve Γ. By d(ξ; α) we denote the
distance of the image of the circle |w| = 1 + α (α > 0) under a conformal mapping of the
exterior of the unit circle to the complement of D to a boundary point ξ.

Let Bξ denote an arbitrary subdomain of D having only the property that the ratio of
the distance of any point of Bξ to ξ to the distance of the same point to Γ is bounded from
above uniformly with respect to all points of Bξ . The class of functions that are regular in
some domain G and whose kth derivative satisfies a Lipschitz condition of order α′ ≤ 1 in
G is denoted by Z(G; k + α′) (α′ > 0).

It should be noted that by the modulus of continuity w(δ) of the function f (z) in G
we mean the supremum of the quantities

| f (z′)− f (z′′)|

by all possible pairs z′, z′′ belonging to G and such that z′ can be connected to z′′ by a
rectifiable curve lying entirely in G and by length not exceeding δ; for some domains this
definition obviously does not coincide with the definition of the modulus of continuity
that is given in the real domain; accordingly, a different meaning, generally speaking, is
attached to the satisfaction of the Lipschitz condition in a closed domain G.

It is easy to see that the quantity w(δ) is closely related to the properties of the function
f (z), while

w1(δ) = max
|z′−z′′ |≤δ, z′ ,z′′∈G

| f (z′)− f (z′′)|

represents an artificial formation in relation to f (z).
Indeed, for any function µ(δ) decreasing monotonically to zero, one can construct

a domain such that the fact that w1(ξ) < µ(ξ) implies infinite differentiability of f (z) at
individual points on the boundary of the domain. As a similar example, we can take a
domain with an incoming point z = 0 and a sufficiently large order of contact of two
boundary arcs at z = 0.

The following proposition also applies to this question, the proof of which we will not
dwell on.

Proposition 2.1. If two domains D1 and D2 have one common boundary point z = 0, and the
function f (z) in Di coincides with the function fi(z) that is regular in Di and continuous in Di
(i = 1, 2), and f1(0) = f2(0), then for any function ν(δ) decreasing towards zero one can specify
such a large order of contact of the boundaries of D1 and D2 at z = 0 that from the inequality

w1(δ) < ν(δ) (2.1)
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it follows that if one of the functions f1(z), f2(z) is identically equal to zero in the corresponding do-
main, then the same can be stated regarding the other function, i.e., pairs of functions satisfying (2.1)
constitute a quasi-analytic class.

This Proposition can be deduced from a theorem to be proved later.

Theorem 2.1. If

lim
n→∞

inf
ln ρ(n)

ln d(ξ; 1
n )

= A, (2.2)

then for any ε > 0, f (z) ∈ Z(Bξ ; A − ε); if A = ∞, f (z) is infinitely differentiable in Bξ .

Proof. For any integer k > 0 we define the integer nk from the condition

d(ξ;
1
nk

) ≥ 1
2k > d(ξ;

1
nk + 1

). (2.3)

The numbers {nk} obviously constitute an increasing sequence. Let z denote an arbitrary
point of Bξ , r > 0, p be some integer, and Pm(z) be a polynomial of degree m that least
deviates from f (z) in D.

We have, obviously,

P
(p)
nk (z) = P

(p)
nk−1(z) =

p!
2πi

∫
|t−z|=r

Pnk (t)−Pnk−1(t)
(t − z)p+1 dt (∗)

But from the definition of Bξ it follows that there exists C > 0 such that the disc
|t − z| < C d(ξ; ε) is contained entirely in the domain D1+ε, bounded by the outer line of
the level Z1+ε (ε > 0).

It is known that if max
z∈D

|Qn(z)| = M, then max
z∈Dρ

|Qn(z)| ≤ Mρn, ρ > 1. Keeping in

mind that
max
z∈D

|Pnk (z)−Pnk−1(z)| ≤ ρ(nk) + ρ(nk−1) ≤ 2ρ(nk−1)

and setting r = C d(ξ; 1
nk
), we apply this to the estimate of the difference under the integral

in (∗)

|P(p)
nk (z)−P

(p)
nk−1(z)| ≤

p!
2π

∫
|t−z|=C d(ξ; 1

nk
)

2ρ(nk−1)(1+
1

nk
)nk

|t−z|p+1 |dt| ≤

2e p!
Cp

ρ(nk−1)(
d(ξ; 1

nk
)
)p ≤ 2p+1e p!

Cp
ρ(nk−1)(

d(ξ; 1
nk−1

)
)p ,

(2.4)

(the last inequality follows from (2.3)).
Let [a] denote, as usual, the integer part of a and {a} = a − [a]. Let us put p = [A − ε];

since A > 0 and ε > 0 is small enough, then {A − ε} > 0. From the conditions of the
theorem it follows that

|P(p)
nk (z)−P

(p)
nk−1(z)| <

2p+1e p!
Cp

(
d
(

ξ;
1

nk−1

)){A−ε}
≤ p!

Cp
1

2k{A−ϵ} . (2.5)

Consequently, the series

P
(p)
n0 (z) +

∞

∑
k=1

[
P

(p)
nk (z)−P

(p)
nk−1(z)

]
representing f (p)(z) in D uniformly converges in Bξ , i.e., f (p)(z) is continuous in Bξ .
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Let us estimate its modulus of continuity in the closed domain Bξ . Let z′, z′′ be points
of Bξ . We have

| f (p)(z′)− f (p)(z′′)| ≤
n
∑

k=1
|P(p)

nk (z′)−P
(p)
nk−1(z

′)−P
(p)
nk (z′′) +P

(p)
nk−1(z

′′)|+

+|P(p)
n0 (z′)−P

(p)
n0 (z′′)|+

∞
∑

k=n+1
|P(p)

nk (z′)−P
(p)
nk−1(z

′)−P
(p)
nk (z′′) +P

(p)
nk−1(z

′′)|.
(2.6)

But the common term of the sum just written does not exceed

max
z∈Bξ

|P(p)
nk (z)−P

(p)
nk−1(z)|

∫ z′′

z′
ds,

where the integration path lies entirely in Bξ .
The first multiplier, similar to the above, can be easily estimated using the Cauchy

integral, and with respect to the second we assume that

∫ z′′

z′
ds ≤ δ.

As a result, we obtain

|P(p)
nk (z′)−P

(p)
nk−1(z

′)−P
(p)
nk (z′′) +P

(p)
nk−1(z

′′)| ≤ Cp
1 p!2k{A−ε}.

But
|P(p)

n0 (z′)−P
(p)
n0 (z′′)| < Cp

2 δ.

We estimate the general term of the last sum on the right side of (2.6) based on (2.5).
Thus, we have

| f (p)(z′)− f (p)(z′′)| < Cp
3 p!

(
δ

n

∑
k=1

2k{A−ε} + δ +
∞

∑
k=n+1

1
2k{A−ε}

)
.

Now assuming n =
[
| ln δ|
ln 2

]
and taking any pair of points z′, z′′ from Bξ with the

condition
∫ z′′

z′ ds ≤ δ, we have

wp(δ) < const ·δ{A−ε},

where wp(δ) is the modulus of continuity of f p(z) in Bξ .
Consequently, the inclusion f (z) ∈ Z(Bξ ; A − ε) is proven for any ε > 0.

Corollary 2.1. From the above reasoning it can be seen that for A = ∞ f (z) is infinitely differen-
tiable in Bξ .

Thus, an arbitrarily slow approximation rate ρ(n) ensures infinite differentiability
of the approximated function at some boundary points, if only the domain is located
appropriately near these points.

Applying Warschawski’s result on conformal mapping stated above, in many cases it
is possible, by estimating d(ξ; α), to formulate the previous theorem directly in terms of the
boundary of the domain.

Let the domain D contain, for some α > 0, the segment (−α, 0) and its boundary near
z = 0 be determined by the equation

|y| = φ(x), 0 < x < α,

C1xm < φ(x) < C2xm, m > 1,
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that is, we have a domain with an incoming point of algebraic tangent order.
In this case, according to Theorem 1.1,

d(0; ε) >
C

| ln ε|
1

m−1
; (2.7)

therefore, it can be proved that

Corollary 2.2. If for some C > 0

ρ(n) <
C

(ln n)p , p > 0,

then f (z) ∈ Z(B0; p(m − 1)− ε) for any ε > 0; if the proof is carried out carefully, then it can be
shown that even f (z) ∈ Z(B0; p(m − 1)), and this result is quite accurate, in the sense that, as it
follows from Theorem 2.1, it is invertible: if f (z) ∈ Z(D; p(m − 1)), then ρ(n) < C

(ln n)p .

Now, let A = ∞. We denote

Mn = max
z∈Bξ

| f (n)(z)|.

The rate of increase of the numbers Mn depends on the rate of decrease of the numbers
ρ(n) and will be closer to the rate of increase of Cnn!, the closer ρ(n) to any geometric
progression. Namely, we will show that for any µ, 0 < µ < 1

Mn < Cnn!
∞

∑
k=1

(ρ(nk−1))
µ(

d
(

ξ; 1−µ
nk

ln 1
ρ(nk)

))n . (2.8)

In the case of ρ(n) < qn (q < 1) this shows that Mn < Cn
0 n! (C0 does not depend on n),

i.e., f (z) is analytic in D.
Indeed, for any α > 0, using the Cauchy integral, one can obtain the estimate

|Pm
nk
(z)−Pm

nk−1
(z)| < Cmm!

ρ(nk−1)(1 + α)nk

(d(ξ; α))m ; (2.9)

putting α = 1−µ
nk

ln 1
ρ(nk)

and taking into account (2.9) we obtain, summing over k, the
required inequality. In particular, let

d(ξ; α) ≃ αβ (0 < β < 1) and ρ(n) < e−nα
(0 < α < 1).

In this case, it is easy to calculate the right-hand side of (2.8):

Mn < Cnn!nn β(1−α)
α (2.10)

For α close to one, the estimate (2.10) does not differ much from the exact one. Indeed,
consider the function

F(z) =
∫ 1

0
e−φ−1(d−1(x))√z − x dx, (2.11)

where φ(n) = 1
n ln 1

ρ(n) , and φ−1 and ρ−1 are functions inverse to the corresponding ones,
and z belongs to the domain D, symmetrically located relative to the OX axis so that the
distance of its boundary point z = 0 to the level line Z1+ε is equal to d(0; ε) = d(ε) and D
does not intersect with arg z = 0 anywhere other than z = 0.
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Since the function

Fα(z) =
∫ 1

d(0;α)
e−φ−1(d−1(x))√z − x dx

is regular in the domain D1+α bounded by Z1+α, then, as is known, there exists a polyno-
mial Pn(z) so that

max
z∈D

|Fα(z)−Pn(z)| < C
1

α2(1 + α)n (C = const).

But

max
z∈D

|F(z)−Fα(z)| <
∫ d(0;α)

0
e−φ−1(d−1

(x)
√

z − x dx < e−φ−1(α).

Setting α = φ([nφ(n)]) we obtain

max
z∈D

|F(z)−Pn(z)| < Cρ(n).

Let us estimate |F(n)(0)| from below. We have

|F(n)(0)| = 1 · 3 . . . 2n − 1
2n

1∫
0

(
1
x

) 2n+1
2

e−φ−1(d−1(0;x)) dx.

Estimating the integral and assuming the existence of d′′(0; α), φ′′(x), we obtain

|F(n)(0)| ≥ Cnn!
∞∫

1

d′(0; φ(x))φ′(x)e−x dx
(d(0; 1

x ln 1
ρ(x) ))

n
. (2.12)

In our case d(0; α) ≃ αβ and ρ(x) ≃ e−xα
; substituting in (2.12) we have

Mn ≥ |Fn(0)| > Cnn!nnβ(1−α),

that is, for small 1 − α the estimate (2.10) does not differ much from the exact one.
So, for an arbitrarily slow rate of approximation, the corresponding structure of the

domain can guarantee sufficiently “good” properties of the function at some boundary
points. Therefore, the question arises: is it possible, by means of an appropriate construction
of the domain, to ensure that the rate of approximation, different from the progression,
would guarantee the analyticity of the function at some points on the boundary?

Regarding this question, the following can be stated:

Theorem 2.2. For any function φ(n) > 0 satisfying, for any k > 1, the condition

lim
n→∞

kn φ(n) = ∞ (2.13)

and any bounded domain D of the Carathéodory class, there exists a function f (z) regular in D,
continuous in D, the rate of approximation to which satisfies the inequality

ρ(n) < φ(n), (2.14)

however for which the boundary of D is a cut.

Proof. Let us denote, for brevity,

ρn = 1 + θ
ln n

n
+

1
n

ln
1

φ(n)
(3 < θ < 4). (2.15)
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From (2.13) it follows that ρn → 1 on the outer line of the level Zρn ; we mark a point αn so
that for the set {αi}, each boundary point of D would be a limit point. This is obviously
possible, since ρn → 1 implies that Zρn → Γ.

Let δn denote the distance of the point αn to Zρ2n . Let us create the function

f (z) =
∞

∑
k=1

δk εk

2k(z − αk)
, 0 < εi < 1.

We have, obviously,

max
z∈D

∣∣∣ f (z)− [ n
2 ]

∑
k=1

δk εk

2k(z − αk)

∣∣∣ ≤ 1

2
n
2
<

φ(n)
2

, n > n0.

In addition, since the function
[ n

2 ]

∑
k=1

δk εk
2k(z−αk)

is regular in Dρn and uniformly bounded in n,

then there exists a polynomial Pn(z) for which

max
z∈D

∣∣∣Pn(n)−
[ n

2 ]

∑
k=1

δk εk

2k(z − αk)

∣∣∣ ≤ C
(ρn − 1)3ρn

n
<

φ(n)
2

, n > n1.

Hence,
ρn( f ; D) ≤ max

z∈D
| f (z)−Pn(z)| < φ(n).

Let us show that the boundary of D is a cut-off for f (z), if only εk decreases suffi-
ciently quickly.

Let f (z) be analytically extendable through the continuum K ∈ Γ into the domain G.
We enclose each of the points αν in a circle Kν with the center at αν and radius rν so small
that none of the pairs of discs |z − αi| < ri and |z − αj| < rj will have common points. In
the domain G we fix a subdomain G∗ lying outside all circles Kν, v = 1, 2, . . . .

Let γ(z) denote the sum of angles at which the continuum K is visible from point z in
domain G; by φn(z) we denote the angle at which the disc |z − αn| ≤ rn is visible from z in
G. Also, let

γn = min
z∈G∗

[γ(z)−
n

∑
k=1

φk(z)].

It is easy to see that G∗ can be chosen so that

min
z∈G∗

γ(z) > 0.

We will assume, in addition, that the rν decreases so quickly to zero that the numbers
γn > 0, n = 1, 2, 3, . . . , and the function

rn(z) = f (z)−
[ n

2 ]

∑
k=1

δk εk

2k(z − αk)

already defined according to the assumption in D + G + K for εk < rk is bounded in the

domain Gn obtained from G by removing
n
∑

ν=1
Kν by a number M independent of n. On the

boundary continuum K of the domain Gn we have

|rn(z)| <
∣∣∣ ∞

∑
[ n

2 ]+1

δk εk

2k(z − αk)

∣∣∣ < ∞

∑
[ n

2 ]+1

εk

2k .
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Now let us choose εk so that

1. εk < rk, 2.

 ∞

∑
[ n

2 ]+1

εi

2i

γn

→ 0 as n → ∞.

According to the well-known Lindelöf theorem, if in some domain B there is an analytic
function F(z) such that on some arc γ of the boundary B visible from the point z0 ∈ B at
an angle 2π

q
|F(z)| ≤ m,

and on the remaining part of the boundary B

|F(z)| ≤ N,

then
|F(z0)| < N1− 1

q m
1
q .

Applying this theorem to our case and considering as B the domain Gn, and F(z) the
function rn(z), we obtain

max
z∈G∗

|rn(z)| ≤ M const

 ∞

∑
[ n

2 ]+1

εi

2i

γn

→ 0,

that is, the series
∞

∑
k=1

δkεk

2k(z − αk)

in the domain G∗ represents the analytic continuation of f (z).
But it is easy to see that if we consider the sum of a series outside D, then for it

the boundary of D is a cut, that is, we have obtained a contradiction, since, on the other
hand, this sum represents in G∗ a function that can be analytically extended into the
domain D.

Now consider the case when

A = lim
n→∞

inf
ln ρn( f ; D)

ln d(ξ; 1
n )

= 0.

In this case, f (z) may already be non-differentiable and not satisfy any Lipschitz con-
dition of positive order; however, its modulus of continuity ω(δ) in Bξ satisfies the
following constraint.

Theorem 2.3. For some C > 0 independent of δ

ω(δ) < C min
n≥1

{
ρn( f ; D) +

δ

d(ξ; 1
n )

}
.

It will be shown later that, in the general case, this estimate cannot be improved.

Proof. Indeed, let Pn(z) be a polynomial that least deviates from f (z) in D of degree n.
We have

| f (z′)− f (z′′)| ≤ | f (z′)−Pn(z′)|+ | f (z′′)−Pn(z′′)|+ |Pn(z′)−Pn(z′′)| ≤ 2ρn( f ; D) + max
z∈Bξ

|Pn(z)|
z′′∫

z′

ds.
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But max
z∈Bξ

|Pn(z)| is easy to estimate using the Cauchy integral so that

ω(δ) < C min
n≥1

{
ρn( f ; D) +

δ

d(ξ; 1
n )

}
.

In particular, if d(ξ; α) > αβ and ρ( f ; D) < 1
(ln)γ (β > 0, γ > 0), we have

ω(δ) <
const
| ln δ|γ .

Let us note one corollary of Theorem 2.1.

Corollary 2.3. Let the domain D be convex or bounded by a polygonal line with a finite number of
segments. If f (z) can be approached in D with the rate

ρn( f ; D) <
C
np ,

then f (z) ∈ Z(D; p
2 ).

Indeed, the inequality d(ξ; α) > α2 follows for convex regions and polygons from
Lindelöf’s principle, since there always exists a segment located in D and having one of its
ends at the boundary point ξ; it is enough now to compare the lines of the external level of
D and the complement to the mentioned segment.

Note that these theorems apply not only to Jordan domains, but to any domains of the
Carathéodory class.

3. Estimation of the Rate of Approximation for Domains with a Smooth Boundary

Theorem 3.1. If the domain D is bounded by a smooth curve and f (z) is analytic in D and
continuous in D, and the kth derivative of the function f (z) satisfies a Lipschitz condition of order
α, 0 < α ≤ 1, in D, then for any ε > 0,

ρn( f ; D) <
const

nk+α−ε
, (3.1)

where const does not depend on n.

Proof. It is sufficient to provide the proof for the case k = 0. The general case is derived
from here by a well-known trick.

Let ε > 0 be an arbitrarily small fixed number; let us assume that the projection of D onto
the axis OX contains the interval [0; 1] and the straight lines x = a, x = b (0 < a < b < 1)
are drawn so that they do not touch the boundary of D and, therefore, intersect it at a finite
number of points.

The part of D located to the right of x = a will be denoted by Da, and the part of D
located to the left of x = b by Db. The open sets Da and Db obviously consist of a finite
number of simply connected regions located at a positive distance from each other:

Da =
p

∑
i=1

D(i)
a , Db =

q

∑
i=1

D(i)
b .

Let z = z(s) denote the parametric equation of the boundary of the domain D, and the
parameter s represent the length of the arc Γ = D − D from some fixed point z(0) to z(s).
We choose the number ρ < 1 so close to unity that the angle made by the normal to the
boundary Γ at a point z(s) with the internal level line Zρ (ρ < 1) at the point closest to z(s)
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would differ from π
2 by less than ω for any value of s. The ring-shaped region enclosed

between Γ and Zρ we denote by l.
The part of l located by the inner normal to Γ at z(0) and the inner normal to Γ at z(s)

are drawn until their intersection with Zρ, denoted by σ(s).
Let us choose δ so that the set

∆(s; δ) = σ(s + δ)− σ(s)

represents a star-shaped domain with respect to some point z(s; δ) for all values s (δ = δ(s)).
(For δ = δ(s), it is sufficient to take the length of the segment of the internal normal to Γ at
z(s), enclosed between z(s) and the points closest to z(s)).

∆(s; δ) is a curvilinear quadrilateral with angles close to right angles and depends on
ρ. We denote by Js the line passing through z(s) and orthogonal at z(s) to Γ, and by J′s the
line passing through z(s + δ

2 ) and parallel to Js. It is obvious that the numbers ω, ρ and δ
can, in addition, be chosen so that the part of l located between Js and J′s would belong to
the intersection of the domains ∆(s; δ) and σ(s + 3

4 δ) for all s.

Consider one of the components Da—for example, D(1)
a . We denote the part of σ(s)

located in D(1)
a by σ1(s). Suppose that z(0) lies outside Da; let s0 be the largest of the s for

which σ(s) has no common points with D(1)
a , and let s1 be the smallest of those s for which

the intersection of l and D(1)
a coincides with σ1(s).

Let [s0; s1] denote the largest interval that has the property that σ1σ(s1)− σ(s0) belongs
to D(1)

a .
The part σ1(s) located on the same side of the line Js as J′s will be denoted by σ11(s).

The set of points located from σ11(s) at a distance less than λ will be denoted by σ11λ(s);
σ1λ(s) is the set of points separated from σ1(s) by a distance less than λ.

Suppose that there exists a polynomial π1(z) of degree n with the following properties:

1. |π1(z)− f (z)| < C1
nα−ε , z ∈ σ1(s + 3

4 δ)

2. |π1(z)| < M, z ∈ σ1λn(s +
3
4 δ), s0 < s < s1,

where M does not depend on n and s, s is fixed, λn = 1
n1−ε .

The domain ∆(s; δ) is star-shaped with respect to z(s; δ), so the function

f1(z) = f
(

z(s; δ) +
z − z(s; δ)

1 + λ

)
is analytic in the domain ∆λ(s; δ) obtained from ∆(s; δ) by stretching with respect to the
point z(s; δ) 1 + λ times; there is a constant C2 > 0 for which the image of the circle
|w| = 1 + 2λ when mapping |w| > 1 onto the complement of ∆(s; δ) is located entirely in
∆C2λ1−ε(s; δ) (we are only interested in small values λ > 0).

This follows from the fact that the distance of the points of the level line ZR (R > 1)
of the domain D, bounded by a finite number of smooth curves making angles with each
other, the internal openings of which do not exceed π, up to the boundary D does not
exceed C3(R − 1)1−ε uniformly with respect to the points ZR.

According to the remark (property 1), there is a polynomial π2(z) of degree n such that

max
z∈Z1+λ

|π2(z)− f1(z)| <
C4

λ3(1 + λ)n

(by Z1+λ we mean the level line of the complement to ∆(s; δ)).
At the same time, in ∆(s; δ), the inequality will be satisfied,

|π2(z)− f (z)| < C4

λ3(1 + λ)n + C5λα(1−ε),
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since for z ∈ ∆(s; δ)

| f (z)− f1(z)| ≤ K(C2λ1−ε)α max |z − z(s; δ)| < C5λα(1−ε).

Let us cover the domain ∆C2λ1−ε(s; δ) with the domain G(K), and σ11λ(s) by the domain
B(K) so that G(K) and B(K) would be at a positive distance from each other exceeding
K > 0, as well as the distance of any point G(K) to ∆C2λ1−ε(s; δ); likewise, the distance
of any point B(K) to σ11λ(s) would exceed K (it is obviously possible to find such K > 0,
independent of λ).

As is well known, there exists a polynomial π3(z) of degree n such that

|π3(z)− π1(z)| < C6qn, z ∈ σ11λ(s),

|π3(z)− π2(z)| < C6qn, z ∈ ∆C2λ1−ε(s; δ),

where q < 1 depends on K.

Now let G be a bounded domain with a simply connected complement, whose pro-
jection onto the OJ axis is greater than one, and f (z) be regular in G and continuous in G.
G1+λ is the domain bounded by the outer line of level Z1+λ of the domain G; π4(z) and
π5(z) are two polynomials of degree n with the following properties :

(1) |π4(z)| < M in the part G1+λ, which is located above the straight line y = c; similarly
|π5(z)| < M in the part G1+λ, located below the straight line y = d; we assume that
the segment (c; d) belongs to the projection of G onto the axis OJ, and d − c = 1.

(2) In the part G located in the half-plane y ≤ d,

|π5(z)− f (z)| < C7

nα−ε
;

in the part G located in the half-plane y ≥ c,

|π4(z)− f (z)| < C7

nα−ε
.

Let us additionally assume that the distance of any point Z1+λ to G − G is less than
C8λ1−ε.

Lemma 3.1. There exists a polynomial π6 of degree n for which

1. in the domain G1+ λ
2

|π6(z)| < 2M,

2. and in the domain G

|π6(z)− f (z)| < C9

nα−3ε
.

Proof. The proof is based on the averaging method of Academician M.V. Keldysh [6].
Let us denote

φ(z; t) =

{
π4(z), t ≥ c+d

2 ,
π5(z), t < c+d

2 .

Let ζ = ξ + iη. The formula

φ(z)− 1
2πi

∫
Z1+λ

φ(t)dt
t − z

=
1

4π

∫∫
G1+λ

φ(ζ; η + 1
2 )− φ(ζ; η − 1

2 )

ζ − z
dξdη (3.2)

was obtained in [6].
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Let us split the integral on the right side (3.2) into two parts: over the domain G and
over the remaining domain G1+λ − G. By adding and subtracting the fractions under the
integral on the right side (3.2) f (z) in the numerator, we make sure that the first term does
not exceed

C10

nα−ε

∫∫
G

dξdη

|ζ − z| ≤
C11

nα−ε
.

We estimate the second term based on property 1, which is satisfied by the polynomials
π4(z) and π5(z):∣∣∣∣∣∣∣

1
4π

∫∫
G1+λ−G

φ(ζ; η + 1
2 )− φ(ζ; η − 1

2 )

ζ − z
dξdη

∣∣∣∣∣∣∣ ≤ 2M
1

4π

∫∫
G1+λ−G

dξdη

|ζ − z| ≤ C12λ1−ε ln
1
λ

.

But obviously

|φ(z)− f (z)| ≤
φ+ 1

2∫
φ− 1

2

|φ(z; t)− f (z)|dt <
C7

nα−ε

so that in the domain G∣∣∣ 1
2πi

∫
Z1+λ

φ(t)
t − z

dt − f (z)
∣∣∣ < C7

nα−ε
+

C12 ln n
n(1−ε)2 <

C13

nα−3ε
.

The function 1
2πi

∫
Z1+λ

φ(t)
t−z dt is analytic in G1+λn and, as follows from (3.2), is bounded there

by a constant independent of n, so we can find a polynomial π7(z) of degree n so that

max
z∈G

1+ λn
2

∣∣∣π7(z)−
1

2πi

∫
Z1+λ

φ(t)
t − z

dt
∣∣∣ < C14

( 1+λn
1+ λn

2
− 1)3( 1+λn

1+ λn
2
)n

<
C15

n
, n ≥ n0.

Consequently, the polynomial π7(z) satisfies all the conditions of the lemma.

Note that the assumption d − c = 1 is not significant and was made for simplicity. In
the case of d − c ̸= 1, only the constant C9, which is included in the estimate as a factor,
will change. It is also unimportant that the parallels of the OJ axis are taken as two straight
lines; the general case can be reduced to this case by rotation.

After this remark, we can apply the lemma to the case when as G we have the domain
σ1(s + δ), as straight lines y = c, y = d – straight lines Js, J′s and polynomials π4(z) and
π5(z) – polynomials π3(z) and π1(z), respectively.

Thus, assuming the existence of a polynomial π1(z) that approximates the func-
tion f (z) in σ1(s + 3

4 δ) with the rate C n−α+ε and is bounded in a certain neighborhood
σ1(s + 3

4 δ), we come to the existence of a polynomial π7(z) approximating f (z) in σ1(s + δ)
with rate C n−α+C16ε and bounded in the corresponding neighborhood σ1(s + δ).

But it is easy to see that σ1(s0) is star-shaped with respect to one of its points and
for it the corresponding polynomial π1(z) exists; the same can be stated with respect to
σ1(s0 + 3

4 δ(s0)) − σ1(s0); next we divide the interval (s0, s1) into parts of the
corresponding length:

s0, s(1) = s0 +
δ(s0)

4
, s(2) = s1 +

δ(s1)

4
, . . . , s(m) = sm−1 +

δ(sm−1)

4
> s1,
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and, successively applying the averaging process described above to the domains σ1(s0),
σ1(s(1)), . . . , σ1(s1), we finally obtain a polynomial π8(z) of degree n satisfying
the inequalities

| f (z)− π8(z)| < C17
nα−C18ε in the domain σ1(s1),

|π8(z)| ≤ C20M in the domain σ1C19λ1−ε
n

(s1).
(3.3)

Carrying out a similar reasoning for each of the components Da and keeping in mind
that they are all located at a positive distance from each other, independent of a, we
can assume that the inequalities (3.3) are satisfied in part la of domain l located to the
right of x = a; we also find the polynomial π9(z) that approximates f (z) in part lb of
domain l located to the left of x = b, with a rate n−α+C21ε and bounded in the appropriate
neighborhood lb. Finally, we apply the averaging process to the domains la and lb and the
polynomials π8(z) and π9(z).

It is easy to see that, slightly changing the proofs of formula (3.2), we can obtain the
formula for our case:

φ(z)− 1
2πi

∫
Z1+λn

φ(t)
t − z

dt− 1
2πi

∫
Zρ

φ(t)
t − z

dt =
1

4π

∫∫
dn

φ(ζ; η + 1
2 )− φ(ζ; η − 1

2 )

ζ − z
dξdη (3.4)

(the notation is similar to the notation above; the distance between b and a is set equal to
one for simplicity).

Let z ∈ Z1+λ; since |φ(t) − f (t)| ≤ C22
nα−C23ε for t ∈ Zρ (ρ < 1), then, due to the

analyticity of f (z) in the domain D, we have∣∣∣ 1
2πi

∫
Zρ

φ(t)
t − z

dt
∣∣∣ < C24

nα−C25ε
.

We estimate the double integral on the right-hand side of (3.4) in the same way as was
shown in the proof of Lemma 3.1.

The polynomial π10(z) of degree n is found so that

max
z∈D

∣∣∣ 1
2πi

∫
Z1+λn

φ(t)
t − z

dt − π10(z)
∣∣∣ < 1

n
.

As a result we have ∣∣∣π10(z)− f (z)
∣∣∣ < C26

nα−C27ε
,

where C27 does not depend on n.
Choosing ε < ε1

C27
sufficiently small, we arrive at the proof of Theorem 3.1.

If ω(δ) denotes the modulus of continuity of f (z) in D, then the following proposition
can be proven in a completely analogous manner.

Theorem 3.2. For any ε > 0 there is a constant C such that

ρn( f ; D) < C ω(
1

n1−ε
). (3.5)

Let us now consider the connection between the rate of best approximation and the
properties of functions under some additional restrictions on the smoothness of the boundary.

Let γ(δ) denote the modulus of continuity of the function z′(s) (z(s) is the parametric
equation of the boundary; s is the length of the arc Γ).
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Theorem 3.3. If f (z) ∈ Z(D; p) and ∫ a

0

γ(x)
x

dx < ∞, (3.6)

then

ρn( f ; D) < const
(

ln n
n

)p
; (3.7)

if ∫ a

ε

γ(x)
x

dx > | ln ln ε|| ln ln ln ε|, (3.8)

then, generally speaking, there is a function f (z) ∈ Z(D; p) such that

lim
n→∞

sup
ρn( f ; D)np

(ln n)p = ∞. (3.9)

Proof. Let z = z(s) be some point on Γ. Placing the origin of the polar coordinates at z,
we notice that the angle z(s − ∆s), z(s), z(s + ∆s) differs from π by less than 2γ(∆s); but
the quantity θ(∆s) for a small ∆s can be replaced by the vertex angle z(s) in the triangle
z(s − ∆s), z(s), z(s + ∆s); hence,

|π − θ(∆s)| < 3γ(∆s), |∆s| < ε0.

From here we conclude that∣∣∣∣π ∫ a

ρ

dr
rθ(r)

− ln
1
ρ

∣∣∣∣ ≤ 4
π

∫ a

0

γ(x)
x

dx = const,

i.e., ∣∣∣e−π
∫ a

ρ
dr

rθ(r) − ρ
∣∣∣ < (C0 − 1)ρ

so that
d(z; α) < C0α. (3.10)

Let us assume that D is star-shaped with respect to the point z0. Using the technique we
used to prove Theorem 1.2 and keeping in mind (3.10), we come to the proof in the case
when f (z) satisfies a Lipschitz condition of order δ. The general case is deduced from here
in the same way as in the proof of Theorem 1.2.

Note that the star-shaped assumption can be eliminated by applying the averaging
process described above, breaking up the domain D into overlapping star-shaped parts.

Let us now show that in the case of (3.8) the theorem is, generally speaking, incorrect,
i.e., that for (3.8) there is, generally speaking, a function f (z) ∈ Z(D; p) for which the
inequality (3.7) does not hold for any constant C.

Consider a domain D for which the modulus of continuity z′(s) does not exceed γ(δ)
and in some neighborhood of the point z = 0

θ(r) = π + γ(r),

(such domains obviously exist). Using Warschawski’s theorem, it is easy to obtain
the inequality

d(0; x) > const
x

| ln x|| ln ln x| .

Now suppose that for some function f (z) regular in D and continuous in D there exists a
polynomial Pn(z) of degree n such that

max
z∈D

| f (z)−Pn(z)| < C
(

ln n
n

)α

.
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Let us estimate the modulus of continuity f (z) in D:

| f (z′)− f (z′′)| ≤
n

∑
k=1

∣∣∣{P2k (z′)−P2k−1(z′)} − {P2k (z′′)−P2k−1(z′′)}
∣∣∣+

+|P1(z′)−P1(z′′)|+
∞

∑
k=n+1

∣∣∣P2k (z′)−P2k−1(z′′)−P2k (z′′) +P2k−1(z′′)
∣∣∣.

From (2.7) we find

|P′
2k (z)−P′

2k−1(z)| < C
(

k
2k

)α 2k

k ln k
= C

2k(1−α)

k1−α ln k
.

Taking this into account, we obtain

| f (z′)− f (z′′)| < Cδ
n

∑
k=2

2k(1−α)

k1−α ln k
+ Cδ + C

∞

∑
k=n+1

kα

2kα
.

Evaluating the sums and setting n equal to the integer part of the solution to the equation

2x =
x
δ

ln ln ln
1
δ

,

we find
ω(δ) = sup | f (z′)− f (z′′)| < C

δα

ln ln ln δ
. (3.11)

Let us now assume that f (z) ∈ Z(D; α), but does not satisfy the additional condition (3.11)
(for example, f (z) = zα); then, according to what has been proven, the following relation
must be satisfied:

lim
n→∞

sup ρn( f ; D)
( n

ln n

)α
= ∞.

If, for example, γ(r) = 1
| ln r|λ , then for λ > 1 the estimate (3.7) is correct; if λ = 1 or λ < 1,

then it ceases to be valid in the general case.
Let

γ(r) =
C

| ln r|| ln ln r| . . . | lns r|λ
.

Theorem 3.4. If λ = 1, then, generally speaking, for some f (z) ∈ Z(D; α)

ρn( f ; D) > const(
lns n

n
)α;

if λ < 1, then for some f (z) ∈ Z(D; α) the following inequality holds:

ρn( f ; D) > const

{
exp 1

1−λ (lns n)1−λ

n

}α

.

We do not present the proof, since it is similar to the proof of Theorem 3.3.
Let (3.6) hold and

ρn( f ; D) <
const
nk+α

, (3.12)

where k is an integer, 0 < α ≤ 1.
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Theorem 3.5. If α < 1, then f (z) ∈ Z(D; k + α); if α = 1, then this conclusion, as is known, is
not true for analytical domains. In the case of α = 1, in order for f (k)(z) to satisfy a first-order
Lipschitz condition, it is necessary and sufficient that

∞

∑
n=1

ρn( f ; D)nk < ∞. (3.13)

Proof. Using Warschawski’s theorem it is easy to show that, given condition (3.6), there is
a constant µ for which the inequality

d(ζ; x) > µx

holds for all boundary points of ζ.
From here we conclude that

|P′
2k (z)−P′

2k−1(z)| < 2ρ2k−1( f ; D)2k. (3.14)

Next, we proceed in exactly the same way as when proving the corresponding result in the
real domain (S.N. Bernstein’s theorem).

We now prove the second part of the theorem when α = 1.
Condition (3.13) is necessary: assuming for simplicity k = 0, consider the function

f (z) =
∞

∑
1

zn(ρn − ρn+1)

in the unit circle, where ρ1 ≥ ρ2 ≥ · · · ≥ ρn ≥ · · · → 0 is an arbitrary sequence of
monotonically decreasing numbers for which

∑ ρn = ∞.

The partial sums of its Taylor series approach it in |z| ≤ 1 with a rate of ρn; however, f (z)
does not satisfy a first-order Lipschitz condition, since for any arbitrarily large N, one can
find n and δ < 1

n so that

f (1)− f (1 − δ) ≥ δ
n

∑
k=1

ρk(1 − δ)k > δ
1
e

n

∑
k=1

ρk > δN.

We prove the sufficiency of condition (3.13). Taking into account (3.14) it is easy to
obtain the inequality

|P(k)
2n (z′)−P

(k)
2n−1(z

′)−P
(k)
2n (z′′) +P

(k)
2n−1(z

′′)| ≤ |z′ − z′′|2 · 2n(k+1)ρ2n−1( f ; D).

Based on (2.6) we have

| f (k)(z′)− f (k)(z′′)| < C1δ
N

∑
n=1

2n(k+1)ρ2n−1( f ; D) + C1δ +
∞

∑
i=N+1

2ikρ2i ( f ; D).

Let us choose N depending on δ so that

∞

∑
i=N+1

2ikρ2ik ( f ; D) < δ.

Let us note the following proposition, the proof of which we will not dwell on.
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Lemma 3.2. Let α1 ≥ α2 ≥ α3 · · · ≥ αn ≥ · · · → 0 be an arbitrary sequence of numbers
monotonically decreasing towards zero, and n1 < n2 < · · · < nk < . . . be an increasing sequence
of integers.

In order for, from the convergence of the series

∞

∑
i=1

αi,

the convergence of the series
∞

∑
k=1

nkαnk

would always follow, it is necessary and sufficient that there exists a positive number æ such that
for all k, starting from a sufficiently large one,

nk+1
nk

> 1 + æ.

In particular, it follows that

∞

∑
n=1

2n(k+1)ρ2n( f ; D) < ∞,

that is, f (z) satisfies a first-order Lipschitz condition.
As for the general case of domains with a smooth boundary that do not satisfy condi-

tion (3.6), then f (z) ∈ Z(D; p) giving an estimate ρn( f ; D) that relates to the entire class of
domains with smooth boundaries and is better than

ρn( f ; D) <
C(ε)
np−ε ,

is impossible, since the following can be proven:

Proposition 3.1. Let ψ(δ) be a monotone function decreasing to zero for δ → +0 and for any
ε > 0 satisfying the condition

lim
δ→0

δε

ψ(δ)
= 0.

There is a domain D1 with a smooth boundary such that the rate of approximation n−k−α (0 < α ≤ 1)
guarantees for some boundary points ζ the inequality

| f (k)(z′)− f (k)(z′′)| < ψ(|z′ − z′′|)|z′ − z′′|α · const

(z′ and z′′ belong to Bζ) and there is another domain D2, also with a smooth boundary, and a
function f (z) such that ρn( f ; D2) <

1
nk+α ; however, for some boundary points ζ

sup
z′ ,z′′∈Bζ

| f (k)(z′)− f (k)(z′′)| > const
|z′ − z′′|α

ψ(|z′ − z′′|) .

The proof of this is similar to the proof given above for the second part of Theorem 3.3.
From Theorem 2.3 it follows that if in a domain with a smooth boundary the inequality

ρn( f ; D) < M(ln n)−p,

holds, then

ω(δ) <
C1M
| ln δ|p ,
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where C1 does not depend on M and δ; and vice versa, according to Theorem 3.2, from
the inequality

ω(δ) <
N

| ln δ|p

it follows that
ρn( f ; D) <

C2N
(ln n)p ,

where C2 does not depend on N and n.
From a comparison of these facts, it is easy to conclude that there exist domains with a

smooth boundary and functions f (z) that are regular in D, the modulus of continuity of
which in D is denoted by ω(δ), for which

A1ω

(
1
n

)
< ρn( f ; D) < A2ω

(
1
n

)
,

as well as

A3 min
n≥1

{ρn( f ; D) +
δ

d(ζ; 1
n )

} < ω(δ) < A4 min
n≥1

{ρn( f ; D) +
δ

d(ζ; 1
n )

},

where A1, A2, A3 and A4 do not depend on n and δ.

4. This Section is Missing from the Manuscript

As we noted above, Section 4 is indicated in the Introduction, but Section 4 is missing
from the manuscript. The material intended for Section 4 is set out in Section 3.

5. Some Quasi-Analytic Classes of Functions

Academician S.N. Bernstein in 1923 showed [7] that the class of functions defined on
[0; 1], for which

En( f ) < qn, n = n1, n2, n3, . . . , nk, . . . ,

where n1 < n2 < n3 < · · · < nk < . . . is a particular sequence of integers, is a quasi-
analytic class, in the sense that if any two of its functions coincide on any part of the interval
[0; 1], then they are identical.

Below we give some other quasi-analytic classes of functions defined using best ap-
proximations.

Let φ(n) be a positive function of the integer argument n. The class of functions
for which

En( f ) < φ(n), n = n1, n2, . . . ,

where n1 < n2 < n3 < · · · < nk < . . . is some sequence of integers, is denoted by Qφ(n).
Let ψ(δ) be a monotone function satisfying the condition

lim
δ→0

ψ(δ)

δn = 0, n = 1, 2, 3, . . . ,

where δn means the root of the equation ψ(δ) = δnCn for some fixed C > 0.

Theorem 5.1. If
φ(n) = O(δn

n),

then the class Qφ(n) is quasi-analytic in the sense that if with respect to any two of its functions
f1(x) and f2(x) it is known that

| f1(x)− f2(x)| < ψ(|x − x0|),

where x0 ∈ [0; 1], then f1(x) ≡ f2(x).
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If, in particular, a function f (x) of class Qφ(n) decreases around some point as ψ(δ), then
f (x) ≡ 0 is required.

Proof. Let f1(x)− f2(x) = f (x) and

| f (x)−Pn(x)| < Kδn
n < Kψ(δn), n = n1, n2, . . . ;

since on the interval (x0 − ε; x0 + ε) | f (x)| < ψ(ε), then

max
|x−x0|<ε

|Pn(x)| < Kψ(δn) + ψ(ε).

Let x1 ∈ [0; 1] and ZC1 (C1 > 1) be the level line of the complement of [x0 − ε; x0 + ε],
passing through x1 (x1 ∈ [x0 − ε; x0 + ε]). We choose a point x1 so close to x0 that the
following inequality holds:

C C1ε < θ < 1

(a simple calculation shows that C1 depends on x1 in such a way that this can always be
performed). Then, as is known,

|Pn(x1)| <
θn

(Cε)n (Kψ(δn) + ψ(ε)), n = n1, n2, . . . .

Let ε = δn; hence, it follows that

lim
k→∞

Pnk (x1) = 0.

The same can be said regarding the points x, |x − x0| < |x1 − x0|, so f (x) = 0 on the
segment [x0; x1] and

|Pn(x)| < ψ(δn)K, x ∈ [x0; x1], n = n1, n2, . . . .

If x is any point in [0; 1], and Zq is the level line of the complement of [x0; x1], passing
through x, then

|Pn(x)| < qnψ(δn)K = KCnδn
nqn, n = n1, n2, . . . ,

and since for sufficiently large n the inequality Cδnq < θ < 1 holds, then Pnk (x) → 0, that
is, f (x) ≡ 0.

If, in particular, ψ(δ) = exp(−δ−λ), then

ψ(δn) = exp(−n ln n
λ

).

Let F be a closed bounded set that does not break up the plane, and M be an infinite
set of points belonging to F (F is assumed to be infinite).

We denote by Uφ(n) the class of functions continuous on F for which

ρn(F; f ) < φ(n), n = n1, n2, . . . .

Theorem 5.2. For any infinite set M there is a positive function ψM(n) for which the class UψM(n)
is quasi-analytic in the sense that from the coincidence of any two of its functions f1(z) and f2(z)
on the set M their identity on F follows.

Proof. Let Pn(z) be a polynomial of best approximation of the function f (z) = f1(z)− f2(z)
of degree n on the set F. On M we choose some countable part of {xi}, i = 0, 1, . . . and
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represent the polynomial Pn(x) in the form of an interpolation polynomial with nodes at
points x0, x1, . . . , xn:

Pn(z) =
n

∑
i=0

Pn(xi)
ωn(z)

(z − xi)ω′
n(xi)

, (ωn(z) =
n

∏
0
(z − xi)).

Let φM(n) denote

max
z∈F

|ωn(z)|
|z − xi||ω′

n(xi)|
, i = 0, 1, . . . , n.

The numbers φM(n) depend, obviously, only on M.
It is enough now to set ψM(n) equal to o( 1

nφM(n) ), since from f (xk) = 0 follows

|Pn(xk)| < ψM(n) and |Pn(x)| ≤ o(ψM(n)φM(n) n) = o(1), n = n1, n2, . . . .

If, in particular, F is the segment [0; 1], and the set M consists of points of the form { 1
np },

p > 0, n = 1, 2, 3, . . . , then it is easy to calculate that

ψM(n) = e−pn ln n.

If M is more sparse, and consists of points {qn}, 0 < q < 1, n = 1, 2, 3, . . . , then

ψM(n) = q
n(n+1)

2 .

Thus, the class of functions for which

En( f ) < e−Cn ln n, n = n1, n2, . . .

has two properties characteristic of the class of analytic functions.
Let F be the circle |z| ≤ 1, and M be the set of zeros f (z) located on the circumference

|z| = 1, and let f (z) be regular in |z| < 1, continuous in |z| ≤ 1. Applying the theorem to
this case, we conclude that the class of functions f (z) for which any infinite set is a set of
uniqueness includes functions with an arbitrarily bad (in the sense of slowness of decrease)
modulus of continuity.

Let ω(δ) be the modulus of continuity of f (z) in |z| ≤ 1. Suppose that the zeros of
f (z) located on |z| = 1 are condensed to the point z = 1. To characterize the rate of conden-
sation to the limit point, we introduce the function λ(r); λ1(φ) is the distance eiφ to M; if
eir /∈ M, then

λ(r) = max
φ≤r

λ1(φ).

If eir ∈ M, then
λ(r) = lim

φ→r
λ(φ).

Theorem 5.3. If

λ(r) < ω−1(e−γ(r)) and
∫ a

0
γ(r) dr = +∞,

then f (z) ≡ 0.

Proof. Indeed, we have

| f (eiφ)| = | f (eiφ)− f (eiφn)| ≤ min
n≥1

ω(φ − φn) ≤ ω[λ(φ)] < e−γ(φ).
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But it is known that if the circumference |z| = 1 is divided into n arcs Φ1, Φ2, . . . , Φn with
lengths l1, l2, . . . , ln, respectively, and

max
z∈Φk

| f (z)| = Mk,

then for some constant C and any point z located in the disc |z| ≤ θ < 1,

| f (z)| < MCl1
1 MCl2

2 . . . MCln
n , C = C(θ).

In our case, on the arc (eiφn ; eiφn+1) | f (z)| < e−γ(φn); hence,

max
|z|≤θ<1

| f (z)| < eC[γ(φ1)∆φ1+γ(φ2)∆φ2+···+γ(φn)∆φn ].

But if
∫ a

0 γ(r) dr = +∞, then the left-hand side can be made as small as desired, i.e., f (z) ≡ 0.
If, in particular, f (z) satisfies a Lipschitz condition of some positive order in |z| ≤ 1

and vanishes at points {e
2πi
ln n }, n = 2, 3, . . . , then f (z) = 0.

Theorem 5.4. If f (z) can be approached in f (z) with the rate

ρn( f ) < e−
n

ln n , (5.1)

then the cardinality of the set of zeros f (z) is at most ℵ0.

Proof. Suppose that this is not so, that is, the set M is irreducible. We denote by M(n) the
derived set of the set M(n−1) (M(0) = M).

From each Mn we choose one point zn, which can be done since M is irreducible. Let
α be one of the limit points of the set {zi}.

It is easy to see that the set Mn has the property that f (n)(z) vanishes on M(n).
From (5.1) it follows that f (z) is infinitely differentiable in |z| ≤ 1, and

∞

∑
1

1
n
√

Mn
= ∞.

But M ⊇ M(1) ⊇ M(2) ⊇ . . . . Consequently, at point α all derivatives of f (z) vanish; hence,
according to the mentioned Carleman theorem, it follows that f (z) = 0.

Remark 5.1. From the proof it is clear that more can be stated, namely, if f (z) is regular in
|z| < 1, and

ρn( f ; |z| ≤ 1) < e−
n

ln n ,

then f (z) has only a finite number of zeros in |z| ≤ 1.

6. Best Approximation on Closed Sets

Let E be a closed set of points located in the plane of the complex variable z, and let f (z)
be a function defined and continuous on E. We denote by ρ(n) the infimum of the numbers

max
z∈E

| f (z)−Pn(z)|

by any polynomials of degree ≤ n.
Suppose that E is bounded, is not dense anywhere, and does not break up the plane;

according to Lavrentiev’s theorem [8], ρ(n) → 0 always for n → ∞.



Mathematics 2024, 12, 939 28 of 33

Theorem 6.1. Let M(r) be an arbitrary function growing to +∞ as r → ∞ faster than any power
of r, i.e.,

lim
r→∞

M(r)
rn = ∞, n − any,

and E be an unbounded set.
There is a function φ(r) > 0 such that from the inequality

ρ(n) < φ(n), n = 1, 2, 3, . . . ,

it follows that the function f (z) can be continued from the set E to the entire plane so that the function
F(z) obtained as a result of the continuation will be an entire function satisfying the condition

max
|z|=r

|F(z)| < M(r).

Proof. Without loss of generality, it can be assumed that the origin is a limit point of the
set E. The polynomial of best approximation of the function f (z) on E of degree n will be
denoted by Pn(z).

Let the points z0, z1, z2, . . . , zn, . . . belonging to E converge to z = 0 and

ωn(z) = (z − z0)(z − z1) · · · (z − zn).

We denote by ψ(n)

max
1≤k≤n

max
|z|≤1

|ωn(z)|
|z − zn||w′

n(zk)|
· n

n + 1
.

Representing the difference Pn(z)−Pn+1(z) in the form of an interpolation polyno-
mial with nodes at z0, z1, . . . , zn, from here we find

max
|z|≤1

|Pn(z)−Pn+1(z)| < nψ(n)φ(n).

We have

max
|z|=R>1

| f (z)| ≤ max |P0(z)|+
∞

∑
n=1

max
|z|=R>1

|Pn(z)−Pn−1(z)| ≤
∞

∑
n=1

nψ(n)φ(n)Rn.

Let A(x) denote the integer part ln M(x)
2 ln x , and A−1(x) be the function inverse to

A(x). Assuming

φ(n) <
1

nψ(n)
e−n[A−1(n)+1],

we obtain

∞

∑
1

nφ(n)ψ(n)Rn =
A(R)

∑
n=1

nφ(n)ψ(n)Rn +
∞

∑
A(R)+1

nφ(n)ψ(n)Rn ≤ M(R)
2

+
M(R)

2
= M(R),

that is, the theorem is proven.

Theorem 6.2. Whatever the functions φ(n) and ω(δ), ω(δ) → 0 as δ → 0, there exists a set
P ⊆ [0, 1] and f (x) so that

ρn( f ;P) < φ(n), n = 1, 2, 3, . . . ;

however,
ωa,b(δ) > w(σ), δ < δ(a; b),

where ωa,b(δ) is the modulus of continuity of f (x) on the portion P contained in the segment [a, b]
(ωa,b(δ) = 1, if P[a, b] = 0).
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Proof. We denote by µ(n) a positive function satisfying the inequalities

µ(n) < ν(n), 2µ(2n) < µ(n), µ(1) = 1, n ≥ n0.

Let x′1 = 0, x′2 = 1 and A′
1 = 0, A′

2 = 1. Suppose that the points {x(k)j } and the numbers

{A(k)
j } are constructed for j = 1, 2, . . . , 2k, k = 1, 2, . . . , i.

Let us define {x(i+1)
j } and {A(i+1)

j }, j = 1, 2, 3, . . . , 2i+1.

By Pi(x) we denote a polynomial of degree 2i taking in x(i)j the values

A(i)
j (j = 1, 2, 3, . . . , 2i), and by ωi(δ) we denote the modulus of continuity of Pi(x). We

also assume that for k = 1, 2, . . . , 2i−1

x(i)2k − x(i)2k−1 = δi > 0. (6.1)

We determine the number δi+1 from the conditions

1. ω(δi+1) < µ(2i+3), 2. 0 < 2δi+1 < δi, 3. ωi(σi+1) < µ(2i+2). (6.2)

As {xi+1
j }, j = 1, 2, . . . , 2i+1, we take a set of points satisfying the condition

x(i+1)
4k−3 = x(i)2k−1; x(i+1)

4k = x(i)2k ; x(i+1)
4k−2 = x(i)2k−1 + δi+1; x(i+1)

4k−1 = x(i)2k − δi+1, k = 1, 2, . . . , 2i−1.

It follows that if (6.1) was fulfilled for any i = i0, then it will be fulfilled for i = i0 + 1.
But the numbers {x(1)j } (j = 1, 2) are defined and for i0 = 0 (6.1) holds, so {x(i+1)

j } are
defined and (6.1) holds. We determine the numbers from the relations

A(i+1)
4k−3 = A(i)

2k−1; A(i+1)
4k = A(i)

2k ;

A(i+1)
4k−2 = A(i)

2k−1 + µ(2i+2); A(i+1)
4k−1 = A(i)

2k − µ(2i+2), k = 1, 2, . . . , 2i−1.
(6.3)

Since A′
1 and A′

2 are defined, then for every i ≥ 1 {A(i)
j } , (j = 1, 2, . . . , 2i), and from (6.3) it

follows that A(i)
1 , A(i)

2 , A(i)
3 , . . . , A(i)

2i constitutes a monotonically increasing sequence

0 < A(i)
1 < A(i)

2 < · · · < A(i)
2i < 1.

Let us denote

Fi =
2i−1

∑
k=1

[x(i)2k−1; x(i)2k ], P =
∞

∏
i=1

Fi.

[a, b] is a segment with ends at a and b (a < b).
P obviously represents a perfect set, which is the closure of the set {x(i)j }.

At the point x(i)j let us set the function f (x) equal to A(i)
j for j = 1, 2, . . . , 2i, i = 1, 2, . . . ;

at the limit points of the set {x(i)j } x we define f (x) as the supremum of the numbers A(i)
j

for some x(i)j < x.

From the monotonicity of A(i)
1 , A(i)

2 , . . . , A(i)
2i , it follows that f (x) is monotonically

increasing and continuous on P.
Let us prove that f (x) satisfies the required conditions. Let [a, b] be an arbitrary

segment located at [0, 1] and containing the points P.
Let i be sufficiently large and let [x(i)2k−1; x(i)2k ] ⊆ [a, b]. Since f (x(i)2k ) − f (x(i)2k−1) =

µ(2i+1) and x(i)2k − x(i)2k−1 = δi, then

ωa,b(δi) ≥ µ(2i+1).
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Now let δ be an arbitrary, sufficiently small number. Let us choose i so that

δi+1 < δ ≤ δi.

Obviously, based on (6.2) we have

ωa,b(δ) ≥ ωa,b(δi+1) ≥ µ(2i+2) > ω(δi) ≥ ω(δ),

i.e.,
ωa,b(δ) > ω(δ), δ ≤ δ(a, b).

Now, let x be an arbitrary point of P, i > 0 be an arbitrary integer, k be determined
from the condition x ∈ [x(i)2k−1; x(i)2k ]. Due to the monotonicity of f (x) we have

| f (x)− f (x(i)2k−1)| ≤ ψ(2i+2), |x − x(i)2k−1| ≤ δi.

But since
Pi−1(x(i−1)

k ) = f (x(i−1)
k ), k = 1, . . . , 2i,

| f (x)−Pi−1(x)| ≤ | f (x)− f (x(i+1)
2k−1 )|+

+|Pi−1(x)−Pi−1(x(i)2k−1)|+ |Pi−1(x(i)2k )−Pi−i(x(i−1)
k )| ≤ ψ(2i+1), (ψ(x) ≡ µ(x)).

Hence,
ρ(2i) < ψ(2i+1).

Let n > 0 be an arbitrary integer and 2i < n ≤ 2i+1. We have

ρ(n) ≤ ρ(2i) < ψ(2i+1) < ψ(n),

that is, the theorem is proven.

The above two qualitative results determine the formulation of the problem of studying
the best approximation on closed sets depending on the properties of these sets and on the
behavior of the approximated functions on them.

Without dwelling here on all sorts of problems in this direction, let us consider one
of them.

According to a well-known classical result, if P is a segment or closed domain and the
function f (z) can be approached with a progression rate on P, i.e.,

ρn( f ;P) < qn, 0 < q < 1,

then f (z) is analytic at every point of P.
Let us consider the question for which, more generally, set P the previous result

continues to be valid.

Theorem 6.3. Suppose the set P is perfect, with the connected complement, and for any function
φ(z) continuous on P, there exists a function u(z) harmonic on the complement of P, taking at the
point P value φ(z). If for some function f (z) defined on P

ρ(n) < qn, 0 < q < 1, n = 1, 2, 3, . . . , (6.4)

then f (z) is analytic at every point of P.

Remark 6.1. Theorem 6.3 can also be formulated in local form: if a given point z0 is regular (in the
sense of the Dirichlet problem), then (6.4) implies the analyticity of f (z) at this point.
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Remark 6.2. Thus, the possibility of extending the above-mentioned classical result to a more
general type of set is influenced not by the measure (linear or flat), but by a more subtle characteristic
of the set—its capacity.

Proof of Theorem 6.3. Let Pn(z) denote a polynomial of degree n whose maximum modu-
lus on P is M. Taking into account the fact that ln |Pn(z)| − ln M is a subharmonic function,
non-positive on P and behaving at infinity as n ln |z|, we obtain

|Pn(z)| ≤ M enG(z),

where G(z) is the Green’s function of the complement to P, which vanishes, according to
the regularity criterion for the Bouligan point, on the set P.

For any ε > 0 we denote by Gε an open set containing P and such that

max
z∈Gε

|G(z)| ≤ ε.

Thus,
max
z∈Gε

|Pn(z)| < M (1 + ε)n.

Taking into account (6.4), we have

max
z∈Gε

|Pn(z)−Pn−1(z)| < 2qn−1(1 + ε)n.

Choosing ε so that q(1 + ε) < 1, we notice that the series

P0(z) +
∞

∑
1
[Pn(z)−Pn−1(z)]

converges uniformly on Gε, i.e., f (z) is analytic on the set P.

In the case where P has only one limit point, the capacity of P is zero; hence, the
previous theorem says nothing.

Theorem 6.4. For any positive function φ(n) satisfying the condition

lim
n→∞

ln φ(n)
n

= −∞, (6.5)

there exists a countable set E on [0; 1], having only one limit point and such that if the inequality

ρ(n) < φ(n)

holds for some function f (x) defined on E, it follows that f (x) takes its values from some entire
function F(z).

Proof. Let us denote ln = 2 n
√

φ(n), ωn(x) =
n
∏
i=0

(x − i
n ln),

Mn = max
|z|≤2,0≤i≤n

|ωn(z)|∣∣∣z − i
n ln
∣∣∣∣∣∣ω′

n(
i
n ln)

∣∣∣ .
We denote the set of points { φ(n)

Mnn k} (k = 0, 1, 2, . . . , [ nMn
φ(n) ln]) and { ln

n k} (k = 0, 1, 2, . . . , n)
by En. Let us show that the set

E =
∞

∑
1

En
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is what we are looking for.
Indeed, from (6.5) it follows that E has only one limit point x = 0. In addition,

if by Pn(z) we denote the polynomial of best approximation f (z) of degree n on E, then,
representing the difference Pn(z)−Pn−1(z) in the form of an interpolation polynomial
with nodes at points

0,
ln
n

,
2ln
n

, . . . , ln,

we find
max
|z|≤1

|P′
n(z)−P′

n−1(z)| ≤ Mnn.

But ∣∣∣∣Pn

(
φ(n)
Mnn

k
)
−Pn−1

(
φ(n)
Mnn

k
)∣∣∣∣ < 2φ(n − 1), k = 0, 1, 2, . . . ,

[
Mnn
φ(n)

ln

]
.

The distance of any point on the segment [0; ln] to E does not exceed φ(n)
Mnn ; therefore,

max
0≤x≤ln

|Pn(x)−Pn−1(x)| ≤ 3φ(n − 1).

Let z be any point in the plane, and let Zq be the level line of the complement of [0; ln]
passing through z (z /∈ [0; ln]).

It is easy to see that q = q(n; z) < C(z)
ln

, where C(z) depends only on z.
It follows from this that

|Pn(z)−Pn−1(z)| <
3C(z)

ln n φ(n) <
C1(z)

2n ,

that is, the series

P0(z) +
∞

∑
1
[Pn(z)−Pn−1(z)]

converges in the entire plane, and its sum is an entire function coinciding on E with f (x),
i.e., the theorem is proven.
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