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Abstract: In this paper, we introduce an approach to the management of infectious disease diffusion
through the formulation of a controlled compartmental SVIR (susceptible–vaccinated–infected–
recovered) model. We consider a cost functional encompassing three distinct yet interconnected
dimensions: the social cost, the disease cost, and the vaccination cost. The proposed model addresses
the pressing need for optimized strategies in disease containment, incorporating both social control
measures and vaccination campaigns. Through the utilization of advanced control theory, we identify
optimal control strategies that mitigate disease proliferation while considering the inherent trade-offs
among social interventions and vaccination efforts. Finally, we present the results from a simulation-
based study employing a numerical implementation of the optimally controlled system through
the forward–backward sweep algorithm. The baseline model considered incorporates parameters
representative of typical values observed during the recent pandemic outbreak.
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1. Introduction

Recently, numerous disease outbreaks have raised concerns about global public health.
Avian influenza, Marburg virus, measles, Lassa fever, and other infectious diseases have
highlighted their potential dangers. Organizations like the World Health Organization
(WHO) have been at the forefront of monitoring and responding to these outbreaks, recog-
nizing the urgent need for effective disease control strategies.

In the wake of the COVID-19 pandemic, the significance of robust response measures
has been underscored. The European Centre for Disease Prevention and Control has out-
lined critical lessons learned in their technical report titled “Lessons from the COVID-19 pan-
demic ” (https://www.ecdc.europa.eu/en/publications-data/lessons-covid-19-pandemic-
may-2023, accessed on 21 June 2023). The report identifies four critical components of the
response to health threats, emphasizing the pivotal role of analyzing epidemiological data
and employing epidemiological modeling to inform decision-making.

Mathematical modeling remains a crucial factor in epidemiology, offering a more
profound understanding of the fundamental mechanisms behind the propagation of newly
emerging and resurgent infectious diseases and proposing effective strategies for their
control. In such a framework, compartmental models, which originated with the Kermack
and McKendrick (1927) [1] susceptible–infectious–recovered (SIR) model and have since
undergone extensive development (see, e.g., the book by Brauer and Castillo-Chavez
2010 [2]), represent a recognized and established class of dynamic models used to depict
the progression of infectious diseases. To recall qualitative theory on compartmental
systems see [3]. Within this context, and focusing on the problem of disease containment,
we regard two main tools for its control: implementing a set of social restrictions (e.g.,
lockdown periods) and deploying vaccination campaigns. The explicit introduction of a
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vaccination compartment has been proposed by Liu et al. (2008) [4], which considers a
modified version of the SIR model, named SVIR, in which the new compartment V is added,
where the vaccines will belong before reaching immunity and, therefore, the recovered
individuals.

Notably, while the adoption of stringent lockdown measures and the availability of a
vaccine promise to curb the spread of the virus, they raise significant concerns regarding
their pronounced economic impact, thereby elevating government decision-making to
a multifaceted challenge. The optimal control theory of compartmental models offers a
solid theoretical framework to capture essential aspects of optimal disease control policies.
By representing the population as distinct compartments and modeling the dynamics of
disease transmission, optimal control theory provides a systematic approach to determining
the most effective strategies for disease control. This framework enables the exploration
of various control measures and their impact on disease spread. It allows policymakers
to optimize interventions based on desired objectives, such as minimizing infection rates,
reducing economic costs, or maximizing resource utilization.

The literature on infectious disease analyzed via optimal control (see, e.g., Lenhart
and Workman 2007 [5]) is experiencing rapid and extraordinary development. In such a
context, Behncke (2000) [6] represents one of the early endeavors to incorporate a control
methodology systematically. In preceding decades, research primarily concentrated on
selective isolation and immunization strategies. Abakuks (1973) [7] explored the optimal
separation of an infected population under the assumption of instantaneous isolation, while
Hethcote and Waltman (1973) [8] introduced optimal vaccination strategies in their work.
In more recent studies, Ledzewicz and Schattler (2011) [9] addressed an optimal control
problem within a model incorporating vaccines and treatments in a dynamically expanding
population. In a related vein, Gaff and Schaefer (2009) [10] conducted research encompass-
ing SIR/SEIR/SIRS models, focusing on control parameters that govern vaccination rates,
treatments provided to infected individuals, and the potential for quarantine measures to be
applied as well. Bolzoni et al. (2017) [11] examined time-optimal control problems concern-
ing the utilization of vaccination, isolation, and culling strategies within a linear framework.
In the work of Miclo et al. (2020) [12], the researchers investigated a deterministic SIR
model wherein a social planner exercised control over the transmission rate. This control
aimed to mitigate the transmission rate’s natural levels to prevent an undue strain on the
healthcare system. Kruse and Strack (2020), as detailed in [13], expanded the SIR model to
include a parameter subject to the planner’s control, influencing disease transmission rates.
This parameterization captured political measures such as social distancing and business
lockdowns, which, while effective in curtailing disease transmission, often incurred sub-
stantial economic and societal costs. This trade-off was modeled by introducing convex
cost functions related to the number of infected individuals and reductions in transmission
rates. Similarly, in work by La Torre et al. (2021) [14], the objective of the social planner is
to minimize the societal costs linked to the degrees of disease prevalence and the output
foregone as a consequence of the implementation of social distancing measures, within a
macroeconomic–epidemiological setup. Addressing the complex issue of epidemic man-
agement, Federico and Ferrari (2021) [15] focused on the endeavors of a policymaker to
curtail the epidemic’s spread while concurrently minimizing the associated societal costs
within a stochastic extension of the SIR model. In Alvarez et al. [16], the authors study the
optimal lockdown strategy for a planner who wants to control the fatalities of COVID-19,
and minimize the cost of the lockdown. Concurrently, Federico et al. (2024) [17] investi-
gated an optimal vaccination strategy utilizing a dynamic programming approach within
a SIRS compartmental model. Calvia et al. (2024) [18] delved into controlling epidemic
diffusion through lockdown policies within a SIRD model, employing a dynamic program-
ming framework for in-depth analysis. In Chen et al. (2022) [19], a similar compartmental
model is employed to investigate the impact of social distancing measures on mitigating
COVID-19, examining the situation from both economic and healthcare standpoints. The
study utilizes daily pandemic data, including figures for infected, recovered, and deceased



Mathematics 2024, 12, 933 3 of 17

individuals and economic indicators such as mobility and financial market instability
indices. The overarching multi-objective is to minimize the risks associated with disease
transmission and economic volatility. Dasaratha (2023) in [20] analyzes the spread of a
contagious disease when behavior responds to the disease’s prevalence, while Al-Shbeil
et al. (2023) [21] prove the disappearance of the pandemic, provided that an inequality
involving the vaccination rate is satisfied.

Applying an optimal control framework to an SVIR dynamical model has received
relatively limited attention within the existing literature. In the work of Ishikawa (2012) [22],
the focus is directed toward a stochastic version of this model, where a thorough analysis
of the corresponding stochastic optimal control problem revolves around the vaccination
strategy, featuring a quadratic cost function. Witbooi et al. (2015) [23] extended the
investigation, addressing deterministic and stochastic optimal control problems within
the SVIR model framework. Their approach considers the vaccination rate a controllable
parameter and integrates an additive cost function. Kumar and Srivastava (2017) [24]
proposed and examined a control problem within this framework, incorporating both
vaccination and treatment as control policies. Notably, they introduced a cost function
linear in state variables, quadratic in treatment measures, and quartic in vaccination policies,
respectively. Similarly, in the study by Garriga et al. (2022) [25], the deterministic optimal
control problem is explored in a pandemic characterized by two distinct phases. During
the initial phase, social restrictions serve as the sole viable containment measures for the
disease, while at a subsequent random time, the availability of a vaccine is introduced.
Optimal control strategies are thoroughly examined for both phases, utilizing one and two
control variables. These analyses also specify the cost function’s structural attributes by
incorporating a utility function.

In this paper, we extend the results obtained in [26] by adding another dimension to the
decision-making process. In our analysis, we postulate a scenario where a disease has already
disseminated at an early stage, followed by a vaccine’s availability. Hence, we employ an
SVIR dynamic model to depict the transmission of an infectious disease, which two types of
mitigation measures can influence within the purview of a social planner. These measures
aim to curtail the rate of contagion within the population to decrease the impact of the disease.
The central challenge lies in determining the optimal response by balancing the restrictions
that minimize disease prevalence, the vaccination rate, and the economic costs associated
with the strategy’s implementation. To comprehensively account for the impact of these
measures, differently from [23], we introduce an explicit cost function that distinctly factors
in the expenses associated with handling the infected population, conducting vaccination
campaigns, and the economic impact of social restrictions. By specifying the functional form
of the cost functional, we can characterize the optimal control strategy function by applying
Pontryagin’s Maximum Principle, see, e.g., Lenhart and Workman (2007) [5].

The optimally controlled SVIR dynamic and the corresponding optimal policies are an-
alyzed by implementing the forward–backward sweep algorithm, as described in Lenhart
and Workman (2007) [5]. It is a two-step procedure that proved to be a practical approach
to solving a wide range of optimal control problems by iteratively refining the control
functions based on the state–costate variables, as established by the necessary conditions
given by the maximum principle. The numerical simulations are conducted within two
main epidemiological scenarios, characterized by different basic reproduction numbers,
corresponding to disease-free and endemic equilibria of the dynamical model, respec-
tively. The main results of our empirical analysis show the consistent reduction in total
cost achieved by implementing the optimal policy, compared with the three benchmark
strategies considered.

The paper is structured as follows. Section 2 introduces the SVIR dynamical model
and the corresponding control problem, for which we characterize the functional form of
the optimal control strategies. The quantitative analysis is reported in Section 3, which
summarizes the results of the numerical simulations. In the final Section 4, we highlight
our main findings and discuss directions for future research.
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2. Problem Formulation
2.1. The SVIR Model

Liu et al. proposed the SVIR model in [4] to extend the well-known SIR model by
adding a vaccination program (continuous or impulsive) for the population under study.
The model consists of four groups: the susceptibles, S, the infected, I, the recovered, R, and
the vaccinees, V, who started the vaccination process. The fractions of the total population in
each group are denoted by S, V, R, and I, respectively. The model assumes that the disease is
transmitted at a rate β when the susceptible individuals come into contact with the infected
ones and that the infected individuals recover at a rate γ. The vaccinated individuals
acquire immunity against the disease at a rate γ1, and they can also be infected at a reduced
rate β1, which is lower than β because some immunity is gained after vaccination. The
parameter α represents the rate at which the susceptible individuals join the vaccination
program, and µ is the birth-death rate. Figure 1 illustrates how the population moves
among the four compartments S, V, I, and R.

Figure 1. The basic SVIR model graph.

The following system of first-order differential equations captures the framework of
the continuous vaccination process:

dS
dt

(t) = −βS(t)I(t)− αS(t) + µ − µS(t) S(0) = S0

dV
dt

(t) = αS(t)− β1V(t)I(t)− γ1V(t)− µV(t) V(0) = V0

dI
dt

(t) = βS(t)I(t) + β1V(t)I(t)− γI(t)− µI(t) I(0) = I0

dR
dt

(t) = γ1V(t) + γI(t)− µR(t) R(0) = R0.

(1)

Let the parameters β, β1, γ, γ1, µ be positive real numbers and α be a non-negative real
number. We also assume that the initial values S0, V0, I0, R0 are positive real numbers and
their sum is equal to 1. These assumptions are made because model (1) describes human
populations, and it can be proven that the solutions of the system remain non-negative
if the initial values are non-negative, as shown in [4]. Furthermore, we note that if we
define N(t) = S(t) + V(t) + I(t) + R(t), then we can see from (1) that dN

dt (t) = 0; therefore,
N(t) = N0 ≡ 1, for all t ≥ 0.

The state variable R does not appear in the first three equations of the system (1),
so we can analyze the properties of the system using only the variables S, V, and I. As
shown in [4], the SVIR model has a disease-free equilibrium E0 (meaning an equilibrium
E0 = (S∗, V∗, I∗) such that I∗ ≡ 0), and an endemic equilibrium E+ = (S+, V+, I+) with
I+ > 0. Furthermore, the basic reproduction number RC

0 determines its long-term behavior
(see, e.g., [27] ):
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RC
0 =

µβ

(µ + α)(µ + γ)
+

αµβ1

(µ + γ1)(µ + α)(µ + γ)
, (2)

and it is summarized in the two following theorems, which are proved in [4]:

Theorem 1. If RC
0 < 1, then the disease-free equilibrium, E0, which always exists, is locally

asymptotically stable and is unstable if RC
0 > 1. Moreover, RC

0 > 1 if and only if system (1) has a
unique positive equilibrium, E+, and it is locally asymptotically stable when it exists.

Theorem 2. If RC
0 ≤ 1, then the disease-free equilibrium, E0, is globally asymptotically stable.

And if RC
0 > 1, the endemic equilibrium, E+, is globally asymptotically stable in all the regions of

feasible model solutions, except for the constant solution identically equal to E0.

2.2. The Optimal Control Problem

This section presents the controlled SVIR model and its related deterministic optimal
control problem.

As in standard SVIR models, let S, V, I, and R represent susceptible, vaccinated,
infected, and recovered, respectively. By S, V, I, and R, we denote the percentage of the
total population belonging to each group.

We consider a vector control variable u(·) = (u0(·), u1(·)). The component u0(·) is
meant to govern the social restrictions imposed by the social planner on a population until
a specific time, T, which is the final time of government restriction, while the component
u1(·) is meant to govern the rate at which susceptible people are moving into the vaccinees
compartment via the vaccination program. The birth and death rates are assumed to be the
same and are denoted by µ.

The control variable u = (u0, u1) belongs to the admissible set U , defined as

U = {u : [0, T] → [0, u0]× [0, u1] : Lebesgue measurable, u0, u1 ∈ (0, 1]}.

The control variable u0 allows for the adjustment of the disease transmission rate.
It captures the restrictions the social planner imposes to govern the speed at which the
infection spreads, while ε quantifies the vaccine ineffectiveness (if ε ≡ 0, no vaccinated
individual is infected). The goal is to create a scenario where the infection rate β is high
without control (u0 = 0), and low with increasing controls. The function β(u0) reflects
both the infectiousness of the disease and the social planner’s measures to control the
infection spread.

The control variable u1 captures the cost of the vaccination, which we assume to be
proportional to u1S, being the flux of individuals from S to V or, equivalently, the number
of newly vaccinated individuals in a unit of time. Furthermore, we set β1 = εβ, where ε
quantifies the vaccine ineffectiveness (if ε ≡ 0 no vaccinated individual is infected), and
0 ≤ ε ≤ 1.

Thus, we have the following controlled SVIR model (see Figure 2):

Figure 2. The controlled SVIR model graph.
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dS
dt

(t) = −β(u0(t))S(t)I(t)− u1(t)S(t) + µ − µS(t) S(0) = S0

dV
dt

(t) = u1(t)S(t)− εβ(u0(t))V(t)I(t)− γ1V(t)− µV(t) V(0) = V0

dI
dt

(t) = β(u0(t))(t)S(t)I(t) + εβ(u0(t))V(t)I(t)− γI(t)− µI(t) I(0) = I0

dR
dt

(t) = γ1V(t) + γI(t)− µR(t) R(0) = R0,

(3)

where we assume that the initial data S0, V0, I0, R0 ∈ R+, and S0 + V0 + I0 + R0 = 1. The
above assumptions are stated since model (3) represents human populations, and it can be
shown that the solutions of the system are non-negative given non-negative initial values;
see [4]. As before, we immediately have from (3) that dN

dt (t) = 0: hence N(t) = N0 ≡ 1, for
all t ≥ 0.

Since the recovered people, R, do not appear in the first three equations of (3) or in the
costs of the disease, we consider the following system:

dS
dt

(t) = −β(u0(t))(t)S(t)I(t)− u1(t)S(t) + µ − µS(t) S(0) = S0

dV
dt

(t) = u1(t)S(t)− εβ(u0(t))V(t)I(t)− γ1V(t)− µV(t) V(0) = V0

dI
dt

(t) = β(u0(t))(t)S(t)I(t) + εβ(u0(t))V(t)I(t)− γI(t)− µI(t) I(0) = I0.

(4)

To specify the control problem, we must define a functional to quantify the cost
of spreading the disease. Specifically, we consider the costs due to infection and those
attributable to vaccination, with the latter assumed to be proportional to u2

1S, the rate of
individuals moving from S to V or, equivalently, the number of newly vaccinated people
per unit of time. We categorize these expenses as comprising hospitalization costs for both
inpatients, whether or not they require intensive care unit (ICU) services, and logistical
expenditures associated with the vaccination program, such as setting up and operating a
vaccination hub, along with its medical staff, among other components. We finally include
the cost of social restrictions in our framework, which we assume to be a function, c, of
the control, u0, such that c is strictly increasing and convex in u0, and that c(0) = 0. This
implies that, without control, the total costs of the disease spread are due to the infection
and the vaccination. By assuming an additive structure for the cost functional, we separate
the costs solely due to the disease from those due to the “restrictions” imposed on society.
Parameters c1, c2 ∈ R+ represent the infection cost and the vaccination cost, respectively.

Hence, the objective function is given by J : U → R such that

J(u0, u1) =
∫ T

0
[c(u0(t)) + c1 I(t) + c2u2

1(t)S(t)]dt. (5)

The aim is to find the best strategy, u∗ ∈ U, and the related state variables, S∗, V∗ and
R∗, which minimize (5),

min
u∈U

J(u) subject to (4).

To prove the existence of such a strategy, u∗, we refer to [5,24,26,28].
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Theorem 3. Let β(·) be a linear decreasing function and let c(·) be a strictly convex, twice
continuous differentiable function, such that c′ > 0 and c(0) = 0.

Then an optimal solution, u∗, for problems (4) and (5) exists, i.e., there exists an optimal
control, u∗ ∈ U , such that J(u∗) = min J(u).

Proof. First of all, notice that the right-hand side functions of system (4) are Lipschitz
continuous with respect to the state variables; hence, the Picard–Lindelöf theorem ensures
that there exist solutions to (4). By definition, the set [0, u0]× [0, u1] is compact and convex,
and since the system (4) is linear in the control variable, u, the result follows from applying
Theorem 4.1 and Corollary 4.1 pp. 68–69 in [28].

Remark 1. By choosing a continuous, convex function C(u, I, S) on [0, u0]× [0, u1] in (5), we
can obtain a similar result as in Corollary 4.1 pp. 68–69 of [28]. We use C(u, I, S) = c(u0(t)) +
c1 I(t) + c2u2

1(t)S(t) to separate the costs of social restrictions, infections, and vaccinations. This
also allows us to solve the problem numerically.

We use the control theory in [28] or [5] to solve the optimal control problem. We
define the Hamiltonian function, H, and the co-state variables, λ1(t), λ2(t), and λ3(t). We
drop the time dependence of the state variables S, V, I, the control variables u0, u1, and the
co-state variables, unless stated otherwise. The Hamiltonian function of (4) and (5) is given
by the following:

H(t, S, V, I, u0, u1, λ1, λ2, λ3) = c(u0(t)) + c1 I + c2u2
1S + λ1[−β(u0)SI − u1S + µ − µS]

+λ2[u1S − εβ(u0)VI − γ1V − µV] + λ3[β(u0)SI + εβ(u0)VI − γI − µI].
(6)

Theorem 4. Let (S∗, V∗, I∗, u∗) be an optimal solution for problems (4) and (5), then there exist
adjoint functions, λ1, λ2 and λ3, satisfying the following system of differential equations:

λ′
1 = [β(u∗

0)I∗ + u∗
1 + µ]λ1 − u∗

1λ2 − β(u∗
0)I∗λ3 − c2u2

1
∗

λ′
2 = [εβ(u∗

0)I∗ + γ1 + µ]λ2 − εβ(u∗
0)I∗λ3

λ′
3 = β(u∗

0)Sλ1 + εβ(u∗
0)V

∗λ2 − u∗
1λ2 − [β(u∗

0)S
∗ + εβ(u∗

0)V
∗ − γ − µ]λ3 − c1,

(7)

with the transversality conditions on the co-states λ1, λ1 and λ3 given by the following:

λ1(T) = 0, λ2(T) = 0, λ3(T) = 0.

The optimal restriction policy u∗ is such that

u∗(t) ∈ argminu∈[0,1]×[0,1]H(t, S∗, V∗, I∗, u, λ1, λ2, λ3). (8)

Proof. Suppose (S∗, V∗, I∗, u∗) is an optimal solution of (4) and (5). By Pontryagin’s
maximum principle, the co-state variables λ1, λ2, and λ3 satisfy (7), which is derived from
the partial derivatives of H in (6) with respect to S, V, I.

λ′
1 = −∂H

∂S

λ′
2 = −∂H

∂V

λ′
3 = −∂H

∂I
,

(9)

with the transversality conditions λ1(T) = λ2(T) = λ3(T) = 0.
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The strict convexity, with respect to the control variable, u, of the Hamiltonian function,
H, defined in (6), ensures the existence of a unique minimum; see [23]. Hence, we have
the following:

u∗(t) ∈ argminu∈[0,1]×[0,1]H(t, S∗, V∗, I∗, u, λ1, λ2, λ3).

2.3. The Solution of a Class of Optimal Control Problems

We can make the result more specific by choosing a particular form for the transmission
rate β(u0) and the cost function c(u0). For the former, we use a simple linear model,
as follows:

β(u0) = β0(1 − u0), 0 ≤ u0 ≤ 1. (10)

We assume that β0 > 0 is the specific rate at which the disease spreads. In this case, we
model the scenario when the maximum control (i.e., u0 ≡ 1) completely stops the disease
from diffusing.

For the social cost function, c(u0), we choose the following specification for our
practical application:

1. cquad(u0) = bu0
2, b > 0;

2. cexp(u0) = eku0 − 1, k > 0.

We prove the following result that gives a full description of the optimal controls.

Proposition 1. Let β(u0) = β0(1− u0) and cquad(u0) = bu0
2. Then the optimal control strategy

u∗
quad = (u∗

0 , u∗
1) for problems (4)–(5) is given by the following:

u∗
0(t) = min

{
max

[
0,

β0 I∗(t)[S∗(t)(λ3(t)− λ1(t)) + εV∗(t)(λ3(t)− λ2(t))]
2b

]
, u0

}
, (11)

and

u∗
1(t) = min

{
max

[
0,

λ1(t)− λ2(t)
2c2

]
, u1

}
. (12)

Proof. In this case, the Hamiltonian function H is defined as follows:

H(t, S, V, I, u, λ1, λ2, λ3) = bu2
0 + c1 I + c2u2

1S + λ1[−β0(1 − u0)SI − u1S + µ − µS]+

+λ2[u1S − εβ0(1 − u0)VI − γ1V − µV] + λ3[β0(1 − u0)SI + εβ0(1 − u0)VI − γI − µI],
(13)

then, imposing first-order conditions to minimize the Hamiltonian, H, at S∗, I∗, V∗

∂H
∂u0

= 2bu0 + I∗[β0S∗(λ1 − λ3) + εβ0V∗(λ2 − λ3)] = 0

∂H
∂u1

= 2c2u1S − λ1S + λ2S = 0,

(14)

we derive the optimal restriction policy, u∗
quad = (u∗

0 , u∗
1).

Corollary 1. Let β(u0) = β0(1 − u0) and cquad(u0) = bu0
2.

Then the optimal control strategy u∗
quad = (u∗

0 , u∗
1) for problems (4)–(5) satisfies

lim
b→+∞

u∗
0(t) = 0 and lim

b→0
u∗

0(t) = u0

lim
c2→+∞

u∗
1(t) = 0 and lim

c2→0
u∗

1(t) = u1.
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Proof. From the previous proposition, the dynamical system has bounded solutions for
every u ∈ U . By taking the limits in (11) and (12), we obtain the result.

We can find the solution for the exponential case in a similar way as we did for the
quadratic case above.

Proposition 2. Let β(u0) = β0(1 − u0) and cexp(u0) = eku0 − 1.
If λ3(t) > max{λ1(t), λ2(t)}, then the optimal control strategy u∗

exp(t) = (u∗
0 , u∗

1) for
problems (4)–(5) is given by

u∗
0(t) = min

{
max

[
0,

1
k

ln
β0 I∗(t)K(t)

k

]
, u0

}
, (15)

and

u∗
1(t) = min

{
max

[
0,

λ1(t)− λ2(t)
2c2

]
, u1

}
, (16)

where K(t) is defined as K(t) = S∗(t)(λ3(t)− λ1(t)) + εV∗(t)(λ3(t)− λ2(t)).

Remark 2. According to Pontryagin’s maximum principle, the optimal control is a function of
three Lagrange multipliers: λ1, λ2, and λ3. These multipliers correspond to the marginal cost of the
susceptible population, the marginal cost of the vaccinated population, and the marginal cost of the
infected population, respectively. Furthermore, the difference between λ3 and λ1 can be interpreted
as the marginal cost of having an additional susceptible person become infected, while the difference
between λ3 and λ2 can be interpreted as the marginal cost of having an additional vaccinated person
become infected. Moreover, λ1 − λ2 represents the marginal cost of having an extra susceptible
vaccinated person, thus referring to an individual who, even if vaccinated, can still be infected.

3. A Numerical Study

In this section, we present the results of a simulation study aimed at investigating the
impact of an optimal control strategy on disease dynamics and the associated costs. This
study aims to assess the effectiveness of various control measures in mitigating the spread
of the disease and reducing the economic burden. We highlight that this section serves
the purpose of presenting the outcomes of the proposed model without engaging in any
empirical investigation. In particular, no attempt has been made to fit the SVIR model to
actual data. It is important to note that while an empirical analysis of this nature would be
significant, it exceeds the scope of the current paper and is therefore left for future research.
We rely on applying the forward–backward sweep (FBS) algorithm to analyze the optimal
control strategies in alternative settings. Such an algorithm effectively solves optimal
control problems by iteratively refining the control function based on the state and costate
variables; see [5]. It consists of two main steps. Firstly, the forward state Equations (4) are
solved by utilizing an ordinary differential equation (ODE) solver. This step calculates the
state variables using the current control function, un(·). Next, the costate Equations (7) are
solved backward in time using the same ODE solver. These equations represent the adjoint
variables that provide information about the sensitivity of the cost function concerning the
state variables (see Remark 2). The control function is updated using the calculated state
and costate variables based on the optimality conditions. This process generates a new
approximation of the state, costate, and control un+1(·). These steps are repeated iteratively
until a convergence criterion is satisfied, i.e., when the algorithm reaches an acceptable
approximation of the optimal control function. See McAsey et al. (2012) [29] for a deep
analysis of the convergence properties of the FBS method.

In the initial stage, we set up the algorithm by establishing the temporal discretization
and determining the termination criterion. To be specific, we selected a fixed number of
time points, N, uniformly distributed over the time interval [0, T]. The termination criterion
was defined based on the non-decreasing behavior of the cost functional (5). Furthermore,
we incorporated a technique of weighted averaging to update the solution iteratively. This
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involved combining the new solution unew(·) and the previous one un(·) in such a way that
un+1(·) = unew(·)(1 − cn) + un(·)cn. In order to fine-tune the algorithm hyperparameters,
we ran a set of preliminary experiments on our baseline model (see Table 1 and the
description below) by changing the starting solution (no controls or full controls) and
the smoothing parameter c ∈ C, where C = {ci : ci = ci−1 + ∆c, c0 = 0, i = 1, . . . , n + 1}. In
our investigation, we found that a weighting constant value c = 0.99 provides the lowest
minimum of the cost functional (5), and ensures the smoothing properties of the resulting
solution. In contrast, no effect on the final optimal solution is observed concerning the
starting point. The description of the implemented algorithm is given in the following
Algorithm 1:

Table 1. Parameters for the baseline model.

Epidemiological/Dynamical Parameters Economic Parameters
Parameter Value Description Parameter Value Description

β0 0.220 transmission rate b 0.4 quad. cost function
γ 0.0795 recovery rate from infected k 0.0392 exp cost function
γ1 0.0714 full immunization rate c1 1 infection cost
ϵ 0.078 vaccine ineffectiveness c2 0.02 vaccination cost

ū0 1 maximum social control
ū1 0.006 maximum vaccination rate
µ 2.5 × 10−5 daily death rate

Algorithm 1 Forward–backward sweep algorithm: Let y(t) = (S(t), I(t), R(t)) and u(t) =
(u0(t), u1(t)). We denote here with ẏ(t) = F(y(t), u(t)) and λ̇(t) = G(λ(t), y(t), u(t)) the
ODE systems (4) and (7), respectively. Furthermore, the optimality conditions are written
as u∗(t) = H(y∗(t), λ∗(t)) (see Formulas (11), (12) and (15), (16)).

Initialize: u(0)(t) and J0 = J(u(0)) ▷ see Formula (5)
repeat n ≥ 0

ẏ(n+1)(t) = F(y(n+1)(t), u(n)(t)), y(n+1)(0) = y0

λ̇
(n+1)

(t) = G(λ(n+1)(t), y(n+1)(t), u(n)(t)), λ(n+1)(T) = 0

u(new)(t) = H(y(n+1)(t), λ(n+1)(t))
u(n+1)(t) = (1 − cn)u(new)(t) + cnu(n)(t)

until Jn+1 > Jn

Now, we present the results for different instances of the controlled SVIR model, in
order to show the main features of our modeling framework. The first model we consider,
named the baseline model, is an extension of the one considered in [26].

3.1. Numerical Results: The Baseline Model, RC
0 < 1

To begin, we establish a set of fundamental epidemiological parameters for the simu-
lations. The following parameters define the baseline model. We take our time unit to be
a day. In particular, we set β0 = 0.22, γ = 0.0795 and γ1 = 0.0714 (implying 1/γ ≈ 12.6
and 1/γ1 ≈ 14 days, respectively). The value of ε can be set by using an estimate of the
vaccine effectiveness, VE, which is defined as the percentage reduction in the risk of disease
among vaccinated persons relative to unvaccinated persons, implying ε ≡ (1 − VE). In
our experiments, we used the value of VE as estimated for the three available vaccines for
COVID-19 (see [30] (Table 3) ), implying ε = 0.078.

As introduced in Section 2.2, the cost functional (5) is given by the sum of three terms, each
related to a specific aspect of the problem: the cumulative “social cost” JSC(u) =

∫ T
0 c(u0(t))dt,

“infection cost” JIC(u) =
∫ T

0 c1 I(t)dt, and “vaccination cost” JVC(u) =
∫ T

0 c2u2
1(t)S(t)dt. We

chose the corresponding weights by normalizing with respect to the infection cost in such a
way that c1 = 1 and c2 = 0.02 (these values were obtained by using data from an empirical
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investigation on the costs of the COVID-19 disease outlined in Marcellusi et al. [31], as
described in Ramponi and Tessitore [26].).

In order to obtain comparable results among the cost models, we set the parameters
b = 0.04, and k = 0.03922, respectively, so that, in the given time period, the value of
the social cost with the maximum control JSC(ū0) is about the same. In particular, as a
result of a set of preliminary numerical experiments, as fully described in Ramponi and
Tessitore (2023) [26] in the case of social control only, we found that by varying the social
cost function parameter, it is possible to identify a regime in which the full-control strategy
produces lower costs than the no-control strategy. As the parameter increases, the full-
control strategy becomes increasingly costly, and at the same time, the optimal strategy
“converges” to the no-control strategy.

In the framework of our baseline model, we consider three benchmark scenarios to
compare with the optimal control. In the first scenario, the disease is neither controlled
by social restrictions nor vaccinations (no-control/no-vax). This is the case where u0(·) =
u1(·) ≡ 0. In the second scenario, we assume an uncontrolled SVIR model, i.e., u0(·) ≡ 0,
and a vaccination campaign at the highest possible rate, ū1, u1(·) ≡ ū1. The third scenario
is built by assuming full social control, i.e., u0(·) ≡ 1, and u1(·) ≡ ū1, as before. In
particular, we assume that the healthcare system is able to vaccinate about 90% of the
population in one year, which is u1(·) ≡ ū1 = 0.006 (this means that e−ū1 ≈ 0.1). Regarding
the starting conditions of the dynamic model, it is assumed that the infectious disease
has been spreading in a population for a given period before containment measures are
implemented and a vaccine is available. Hence, we set I0 = 0.04, V0 = 0, R0 = 0.12, and
S0 = 1 − I0 − V0 − R0.

The results of these experiments are reported in Figures 3–5, for the quadratic social
cost functions. The qualitative behaviors of the optimal solutions for both social cost
functions are very similar. In particular, in both instances, the optimal controls suggest
maintaining the maximum control of the transmission rate for a few days and then re-
ducing it progressively; concurrently, the vaccination campaign should be implemented
at the highest possible rate for almost the entire period. In such a scenario, the total
cost is reduced considerably compared with the three benchmark strategies, as shown in
Tables 2 and 3, and the compartment dynamic is comparable with that of the benchmark
with full control. Specifically, the observed peak in the compartment of infected individuals,
under the absence of control measures, becomes entirely mitigated upon attaining the
same population percentage within the compartment of recovered individuals, which is
approximately 89.7%, compared with the value of 97.8% observed for the uncontrolled
SVIR model. Moreover, the final percentage in the susceptible compartment is around 10%
in the case of the optimal strategy (for the no-control/no-vax and full-control benchmarks),
compared with 2% in the case of the uncontrolled SVIR model.

Table 2. Total costs, J(u), of the strategies and the corresponding social, infection, and vaccination
costs for the quadratic social cost function. In parentheses are the percentage value w.r.t. the total cost.

Contr. Strategy J(u) Social Cost Infection Cost Vaccination Cost
u0 ≡ 0, u1 ≡ 0 9.8731 0(0%) 9.8731(100%) 0(0%)
u0 ≡ 0, u1 ≡ ū1 8.1198 0(0%) 8.1198(99.99%) 0.00001(0.0003%)
u0 ≡ 1, u1 ≡ ū1 14.9033 14.4000(96.6226%) 0.5033(3.3768%) 0.0001(0.0006%)
u∗

0 , u∗
1 2.5362 1.6369(64.5393%) 0.8993(35.4573%) 0.0001(0.0034%)
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Table 3. Total costs, J(u), of the strategies and the corresponding social, infection, and vaccination
costs for the exponential social cost function. In parentheses are the percentage values w.r.t. the total
costs.

Contr. Strategy J(u) Social Cost Infection Cost Vaccination Cost
u0 ≡ 0, u1 ≡ 0 9.8732 0(0%) 9.8732(100%) 0(0%)
u0 ≡ 0, u1 ≡ ū1 8.1197 0(0%) 8.1197(99.99%) 0.00001(0.0003%)
u0 ≡ 1, u1 ≡ ū1 14.9031 14.3997(96.6225%) 0.5033(3.3769%) 0.0001(0.0006%)
u∗

0 , u∗
1 3.5498 2.6591(74.9073%) 0.8907(25.0903%) 0.0001(0.0024%)

Figure 3. Optimal controls, u∗
0 , u∗

1 , for the baseline model with quadratic social cost function.

Figure 4. Compartmental dynamics corresponding to the uncontrolled/no-vax system (u0 = u1 ≡ 0,
dash-dotted blue line), uncontrolled SVIR (u0 ≡ 0, u1 ≡ ū1, dotted yellow line), fully controlled
system (u0 ≡ 1, u1 ≡ ū1, dashed red line), and optimally controlled system (u∗

0 , u∗
1 , black line),

considered under a quadratic social cost function.
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Figure 5. Cost function values along the FBS algorithm iterations, considered under a quadratic social
cost function.

Sensitivity Analysis

The balance between cost factors that influence the function, J, affects the structure
of the optimal solution. In particular, we analyzed the impact of the constraint, ū1, in
relation to the cost of the vaccination, c2. As expected, when looking at the structure of
the optimal control, u∗

1(·), as the value of c2 decreases, with c1 and the parameter b for the
social cost function being fixed, the optimal control is "squeezed" toward the ū1 constraint
(see Figure 6).

Figure 6. Optimal strategies for different values of the vaccination cost, c2.

3.2. Numerical Results: The Case RC
0 > 1

In this section, we consider a set of epidemiological parameters, implying a value of
RC

0 > 1. As discussed in Section 2.1, such a condition implies the existence of an asymptotic
equilibrium (S+, V+, I+, R+) of the uncontrolled dynamical system for which I+ > 0.
The parameters chosen in this scenario are reported in Table 4, and they imply a value of
RC

0 = 1.6261. We set, as before, ū0 = 1, and an (unrealistically) high value for ū1 = 0.8,
so that the optimizer could determine an optimal vaccination strategy unaffected by this
constraint. The time (T) was set to 720 days.
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Table 4. Parameters for the endemic equilibrium model.

Epidemiological/Dynamical Parameters Economic Parameters
Parameter Value Description Parameter Value Description

β0 0.4 transmission rate b 0.12 quad. cost function
γ 0.002 recovery rate from infected c1 0.1 infection cost
γ1 0.009 full immunization rate c2 1 vaccination cost
ϵ 0.4 vaccine ineffectiveness
µ 2 × 10−4 daily death rate

Also, in this example, we can compare the behavior of the optimal system with bench-
mark models. In particular, we can observe how the susceptible compartment is quickly
“emptied” due to a very high vaccination rate. On the other hand, the optimal strategy
allows us to reduce the number of infected while increasing the recovered considerably,
see Figure 7. In particular, the final values of infected and recovered compartments for the
SVIR model are 24.14% and 75.47%, respectively, and 15.41% and 84.06% for the optimized
model. At the same time, costs decrease significantly, as shown in Table 5.

The optimal strategy in this example (see Figure 8) sets the maximum social control
in the initial period. This control gradually descends and simultaneously increases the
optimal vaccination rate, which remains considerably high until it rapidly declines in the
final period.

Figure 7. Compartmental dynamics corresponding to the uncontrolled/no-vax system (u0 = u1 ≡ 0,
dash-dotted blue line), uncontrolled SVIR (u0 ≡ 0, u1 ≡ ū1, dotted yellow line), fully controlled
system (u0 ≡ 1, u1 ≡ ū1, dashed red line), and optimally controlled system (u∗

0 , u∗
1 , black line),

endemic equilibrium model.

Table 5. Total costs, J(u), of the strategies and the corresponding social, infection, and vaccination
costs for the endemic equilibrium model. In parentheses are the percentage values w.r.t. the total
costs.

Contr. Strategy J(u) Social Cost Infection Cost Vaccination Cost
u0 ≡ 0, u1 ≡ 0 37.3778 0(0%) 37.3778(100%) 0(0%)
u0 ≡ 0, u1 ≡ ū1 34.8572 0(0%) 33.3195(95.5886%) 1.5377(4.4114%)
u0 ≡ 1, u1 ≡ ū1 91.6746 86.4000(94.2464%) 3.6129(3.9411%) 1.6617(1.8126%)
u∗

0 , u∗
1 26.7954 9.8912(36.9137%) 15.7871(58.9170%) 1.1172(4.1694%)
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Figure 8. Optimal controls u∗
0 , u∗

1 for the endemic equilibrium model.

4. Conclusions

In this paper, we consider a controlled SVIR compartmental model used to characterize
the dynamics of infectious diseases. This model aids in the development of a mathematical
framework to analyze effective strategies for disease management, helping policymakers
and public health authorities in their decision-making processes. The model incorporates
two distinct control mechanisms: (i) social containment measures, encompassing a range
of interventions such as lockdowns, curfews, school and university closures, and the
cessation of commercial activities. These actions curb disease spread by lowering the
transmission rate but come at the expense of a social cost. (ii) Vaccination campaign: The
rate and efficiency of the vaccination campaign play a pivotal role in disease management.
Vaccination reduces the spread of the disease and incurs its own cost.

We explicitly consider the cost of the disease as the sum of three distinct terms.
(i) Social cost: arising from implementing social containment measures, including eco-
nomic and societal disruptions. (ii) Infectious cost: encompassing the toll exacted by the
disease in terms of morbidity, mortality, and healthcare burdens. (iii) Vaccination cost:
reflecting the expenses incurred in the vaccination campaign. Using the Pontryagin maxi-
mum principle, under some conditions on the functional form of these costs, we could find
the explicit structure of the optimal controls.

To assess the effectiveness of the proposed strategies, the optimally controlled system
is simulated through the utilization of the forward–backward sweep algorithm. This
simulation approach facilitates a deeper understanding of the dynamics of infectious
diseases and allows for evaluating the proposed control measures in practical scenarios.

Our numerical experiment compares the system under the optimal strategy with three
benchmark strategies: no controls/no vax, no social control/vax at the maximum rate, and
maximum social control/maximum vax rate. In our simulation, we observe that, in the
disease-free scenario (RC < 1), the optimally controlled system significantly reduces the
overall cost while keeping the final compartment values nearly identical to those of the
fully controlled system. Conversely, the total cost is also reduced in the endemic scenario
(RC > 1). However, the final compartmental values fall between those achieved by the
fully controlled system and those observed with other benchmark control strategies.

Finally, in future research, there is potential to explore various aspects of the SVIR
compartmental model and its optimal control strategies. From an economic perspective,
researchers may consider providing a more detailed description of the social cost function,
which could involve investigating its relationship with financial and social indices and
refining the characterization of infectious costs, including distinctions between costs related
to hospitalization with or without ICU care. From a dynamic point of view, future studies
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could expand the model by introducing additional compartments, such as “Quarantined”
and “Dead”. Incorporating these compartments would lead to significant changes in the
dynamics of the compartmental ODE system, providing new insights into the disease dy-
namics and control strategies. Finally, calibrating this family of models using observed data
related to relevant epidemic phenomena, such as in the case of Al’os et al. [32] concerning
the recent COVID-19 pandemic, presents a highly relevant and significant challenge.
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