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Abstract: Asymptotic synchronization requires continuous external control of the system, which
is unrealistic considering the cost of control. Adaptive control methods have strong robustness to
uncertainties such as disturbances and unknowns. On the other hand, for finite-time synchronization,
if the initial value of the system is unknown, the synchronization time of the finite-time synchroniza-
tion cannot be estimated. This paper explores the finite-time adaptive synchronization (FTAS) and
fixed-time synchronization (FDTS) of fractional-order memristive cellular neural networks (FMC-
NNs) with time-varying delays (TVD). Utilizing the properties and principles of fractional order,
we introduce a novel lemma. Based on this lemma and various analysis techniques, we establish
new criteria to guarantee FTAS and FDTS of FMCNNs with TVD through the implementation of
a delay-dependent feedback controller and fractional-order adaptive controller. Additionally, we
estimate the upper bound of the synchronization setting time. Finally, numerical simulations are
conducted to confirm the validity of the finite-time and fixed-time stability theorems.

Keywords: finite-time adaptive synchronization; fixed-time synchronization; fractional-order
memristive cellular neural networks; time-varying delays

MSC: 68T07

1. Introduction

Memristive neural networks (MNNs) have garnered significant research interest due to
their applications in various fields, including image processing, combinatorial optimization,
and artificial intelligence (see [1–3]). Differing from traditional neural networks, MNNs are
an enhanced version where conventional resistors are substituted with memristors. It is
well established that a memristor is a type of resistor possessing memory capabilities, and it
can memorize the route through an electric charge [4]. This category of dynamical systems
is characterized by state-dependent switched discontinuous systems, which can readily
result in complex behaviors and switching uncertainties. Therefore, the dynamical analysis
of MNNs is a crucial area of study in both theoretical and applied contexts (see [5,6]). It is
widely acknowledged that fractional-order neural networks possess numerous advantages
over their integer-order counterparts. Subsequently, fractional-order neural networks have
garnered significant interest from researchers, leading to a wealth of insightful findings
regarding their dynamical behaviors (see [7–9]).

Cellular neural networks (CNNs) are large-scale nonlinear analog circuits that process
signals in real time. CNNs are composed of regularly spaced cells. However, as the
number of cells in the CNNs increases, the circuit structure of the CNNs becomes complex,
which can make it inconvenient to update the weight templates. If memristors are used
to implement synaptic connections within the CNNs, it can reduce area consumption and
power consumption, and the conditions for updating weights become simpler. Due to the
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inherent memory characteristics of memristors, the information processing capabilities of
the memristor cellular neural networks (MCNNs) are enhanced (see [10,11]).

Fractional calculus is an extension of integer calculus. It is characterized by taking into
account the current state and all previous states, exhibiting a memory property. It is widely
used as a mathematical tool in fields such as pattern recognition, information processing,
robot control, physics, statistics, and more. In practical applications, the fractional order is
often used to establish neural network models (see [12–16]).

In the practical application of neural networks, the processing and transmission of
signals between neurons are limited by the switching speed of amplifiers. A time delay
is inevitable, which affects the stability of the neural network and leads to divergence,
instability, and oscillation of the network system. Delays include constant delays and time-
varying delays, which are considered more effective than constant delays in establishing
neural network systems. Neural networks with TVD are more capable of solving complex
practical problems (see [17–20]).

Synchronization refers to the dynamic behavior wherein a system, through processes
of driving and responding, achieves a state of congruence after a specified duration. Syn-
chronous technology, with its potential applications in medicine, information science,
optimization computing, and automatic control, has garnered significant attention in re-
cent years. It assumes multiple forms, for instance, asymptotical synchronization [21,22],
exponential synchronization [23,24], robust synchronization [25], finite-time synchroniza-
tion [26–31], fixed-time synchronization [32–35], and so on. In practical applications, due
to objective constraints, we usually hope to achieve synchronization of the neural network
drive response within a limited time. Furthermore, the finite-time and fixed-time con-
trol techniques have also demonstrated superior interference suppression performance
and robustness.

In recent years, there have been significant advancements in the study of finite-time
synchronization (FTS) for memristive neural network systems. For instance, see [36–43].
Li et al. [36] investigated FTS for a class of drive-response FMNNs with discontinuous
activation functions. Li et al. [37] explored the FTS and FDTS of coupled MNNs with
discontinuous feedback functions. Li et al. [38] discussed the FTAS and FTS of MNNs
with discontinuous activation functions and mixed time-varying delays. Zhang et al. [39]
studied the FTS of fractional-order complex-valued MNNs with delay. Guo et al. [40]
proposed FTS of drive-response inertial MNNs with time delay. Wei et al. [41], utilizing
interval-matrix-based methods, investigated the FTS/FTDS of delayed inertial MNNs.
Gong et al. [42] focused on the FTS problem of fuzzy MNNs with time delay. Zhao
et al. [43] investigated FTS for a class of FOMFNNs with leakage and transmission delays.

However, independent of initial conditions, finite-time synchronous control meth-
ods cannot ensure the system’s convergence within a predetermined time frame. When
the initial state information is unknown, the application of these methods becomes re-
stricted by the lack of initial conditions. Researchers have initiated investigations into the
issue of the FDTS control problem and have attained preliminary findings. For instance,
Arslan et al. [44] investigated the controller design problem for FTDS of fractional-order
memristive complex-valued BAM neural networks. Wang et al. [45], utilizing a fractional-
order sliding-mode control method, investigated the FDTS control problem of MNNs.
Xiao et al. [46] discussed the FDTS control problem of memristive neural networks with
delay. Wang et al. [47], utilizing impulsive effects via the novel fixed-time stability theo-
rem, investigated the FDTS control problem of memristive neural networks with delay.
Although MNNs have achieved good results in finite-time synchronization and fixed-time
synchronization, there is still a lack of research on finite-time and fixed-time synchroniza-
tion of FMNNs, especially for FMNNs with mixed time-varying delays, which has driven
our investigation.

As far as the author knows, the FTAS and FDTS of FMCNNs with TVD have not been
fully studied. The main contributions of this article are summarized as follows:
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• For the first time, the FTAS and FDTS of FMCNNs with TVD are studied. In prac-
tical applications, FTAS and FDTS are more general and practical than finite-time
synchronization and asymptotic synchronization;

• By constructing a nonlinear feedback controller and choosing a simple Lyapunov
function, some sufficient conditions which are easy to verify are obtained to ensure
the finite-time and fixed-time stability of FMCNNs and the FTAS and FDTS of the
drive-response FMCNNs systems;

• The theoretical results obtained are more general and can improve or supplement
previous results effectively. Moreover, the existing FMCNNs model with no fuzzy
logic, no time-varying delay, and no memristor can all be regarded as the special case
of our model;

• The settling time in this paper is easy to estimate. In addition, compared with the
classical results, the estimation bound of the settling time given in our paper is more
accurate and effective. Numerical examples are given to demonstrate the effectiveness
of the proposed approaches.

This study examines the FTAS and FTS of FMCNNs with TVD. By harnessing the
properties and principles inherent to fractional-order systems, a novel lemma is introduced.
Building upon this lemma and employing various analytical techniques, new criteria are
formulated to ensure FTAS and FTS of FMCNNs with TVD. This is achieved through the
application of a feedback controller and a fractional-order adaptive controller. Furthermore,
an estimation of the upper bound for the synchronization setting time is provided.

The rest of this paper is organized as follows. Several preliminaries will be provided in
Section 2, and theoretical results will be derived in Sections 3 and 4. In Section 5, numerical
simulations will be given to verify the obtained theoretical results. A conclusion will be
presented in Section 6.

Notations: In this paper, the symbols can be elucidated as follows: R represents the
set of real numbers; N represents the set of natural numbers; Z+ represents a set of positive
integers; Rm denotes a m-dimensional vector space; Cm[a, b] is used to denote the set of
continuous functions with an n-th-order derivative on the interval [a, b].

2. Preliminaries and Model Description

In this article, the system model is defined by the Caputo fractional order. Some basic
definitions, lemmas, and assumptions about fractional calculus are introduced.

Definition 1 ([48]). The Caputo fractional integral of the function χ(t) is defined as follows:

C
t0

D−ωχ(t) =
1

Γ(ω)

∫ t

t0

(t − v)ω−1χ(v)dv, (1)

where ω > 0, t > t0, Γ(·) is the gamma function.

Definition 2 ([48]). The Caputo fractional derivative of the function χ(t) is defined as follows:

C
t0

Dωχ(t) =
1

Γ(n − ω)

∫ t

t0

(t − v)n−ω−1χ(n)(v)dv, (2)

where t > t0, ω ∈ (n − 1, n], n ∈ Z+. If ω ∈ (0, 1]. Then,

C
t0

Dωχ(t) =
1

Γ(1 − ω)

∫ t

t0

χ
′
(v)

(t − v)ω
dv.

Lemma 1 ([49]). If ω ≥ γ ≥ 0, the following equation always holds:

C
t0

DωD−γχ(t) =C
t0

Dω−γχ(t) (3)
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When ω = γ,
C
t0

DωD−γχ(t) = χ(t)

Lemma 2 ([49]). Denote m = [ω] + 1 for ω ̸∈ N or n = ω for ω ∈ N. If χ(t) ∈ Cm[a, b], then
Equation(4) holds.

C
t0

D−ωDωχ(t) = χ(t)−
n−1

∑
k=0

χk(ω)

k!
(χ(t)− ω)k (4)

Obviously, if 0 < ω < 1 and χ(t) ∈ C1[a, b], then

C
t0

D−ωDωχ(t) = χ(t)− χ(ω)

Lemma 3 ([50]). If χ(t) ∈ C1[t0, ∞], 0 < ω ≤ 1, then Equation (5) holds.

C
t0

Dω |χ(t)| ≤ sign(χ(t))C
t0

Dωχ(t) (5)

Lemma 4 ([51]). For ∀β ∈ R. If χ(t) ∈ C1[t0, ∞], 0 < ω ≤ 1, Equation (6) holds.

C
t0

Dω(χ(t)− β)2 ≤ 2(χ(t)− β)C
t0

Dωχ(t) (6)

Lemma 5 ([52]). If α1, α2, . . . , αM ≥ 0, 0 < ν ≤ 1, µ > 1, then Equation (7) holds.

M

∑
k=1

α
µ
k ≥ M1−µ

( M

∑
k=1

ak

)µ

,
M

∑
k=1

αν
k ≥

( M

∑
k=1

αk

)ν

. (7)

Lemma 6 ([9]). If there exists a positive-definite function V(∆(t)) : Rm → R which satisfies the
inequality

C
t0

DωV(∆(t)) ≤ −γ (8)

where γ > 0 is a constant, then the origin is finite-time stable for all t ≥ Tmax. Tmax is given by:

Tmax = t0 + (
Γ(1 + ω)V(∆(t0))

γ
)

1
ω (9)

Lemma 7 ([35]). If there exists a positive-definite function V(∆(t)) : Rm → R which satisfies the
inequality

V̇(∆(t)) ≤ −
(

aVδ(∆(t)) + b
)k

, ∆(t) ∈ Rm \ 0 (10)

where a, b, δ, k > 0 are constants and δk > 1, then the origin is fixed-time stable for all t ≥ Tmax.
Tmax is given by:

Tmax =
1
bk

(
b
a

) 1
δ
(

1 +
1

δk − 1

)
(11)

Next, we consider an FMCNN with mixed time-varying delays as follows:

C
t0

Dω pi(t) =− αi pi(t) +
M

∑
r=1

ϕir(pi(t)) fr(pr(t))

+
M

∑
r=1

ψir(pi(t)) fr(pr(t − τ(t))) + ε
M

∑
r=1

dirgr(qr(t)) + Ii

pi(υ) =ζi(υ), υ ∈ [−τ, t0], i = 1, · · · , M,

(12)

where pi(t) represents the corresponding state. αi > 0 denotes the self-feedback connection
weight. ε represents the interaction weight. dir represents the interaction structure. fr(·) is
the activation function. gr(·) is an interaction function. τ(t) denotes time-varying delay,
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and τ(t) ∈ [0, τ], ϕir(pi(t)), and ψir(pi(t)) represent the memristive connection weights. Ii
represents the bias value, and

ϕir(pi(t)) =
Fir
Ci

× sir, ψir(pi(t)) =
F∗

ir
Ci

× sir, sir =

{
1, i ̸= r

−1, i = r

where Fir, F∗
ir represent the memory resistance value of the memristors Eir, E∗

ir, respectively.
Here, Eir, E∗

ir indicate the memristor between fr(pr(t)) and pi(t) and fr(pr(t − τ(t))) and
pi(t), respectively. Based on the characteristics of the memristor, we set the following
values for the memristor’s jumps:

ϕir(pi(t)) =

{
ϕ
′
ir, |pi(t)| ≤ Γi

ϕ
′′
ir, |pi(t)| > Γi

ψir(pi(t)) =

{
ψ

′
ir, |pi(t)| ≤ Γi

ψ
′′
ir, |pi(t)| > Γi

where Γi > 0 is the switching jump value of the memristor, and ϕ
′
ir, ϕ

′′
ir, ψ

′
ir, ψ

′′
ir are known

constants. ζi(υ) represents the initial values of system (12).

The response system is described as follows:

C
t0

Dωqi(t) = −αiqi(t) +
M

∑
r=1

ϕir(qi(t)) fr(qr(t))

+
M

∑
r=1

ψir(qi(t)) fr(qr(t − τ(t))) + ε
M

∑
r=1

d̂irgr(pr(t)) + Ii + ui(t)

qi(υ) =ξi(υ), υ ∈ [−τ, t0], i = 1, · · · , M,

(13)

where d̂ represents the interaction structure. ui(t) is the control input, and

ϕir(qi(t)) =

{
ϕ
′
ir, |qi(t)| ≤ Γi

ϕ
′′
ir, |qi(t)| > Γi

ψir(qi(t)) =

{
ψ

′
ir, |qi(t)| ≤ Γi

ψ
′′
ir, |qi(t)| > Γi

where ξi(υ) represents the initial values of system (13).
Let ∆i(t) = qi(t) − pi(t) be the synchronization error. Then, the error system is

described as follows:{
C
t0

Dω
0 ∆i(t) =− αi∆i(t) + Gi(t) + ui(t)

∆i(υ) =ξi(υ)− ζi(υ), υ ∈ [−τ, t0], i = 1, 2, . . . , M.
(14)

where

Gi(t) =
M

∑
r=1

ϕir(qi(t)) fr(qr(t))−
M

∑
r=1

ϕir(pi(t)) fr(pr(t))

+
M

∑
r=1

ψir(qi(t)) fr(qr(t − τ(t)))−
M

∑
r=1

ψir(pi(t)) fr(pr(t − τ(t)))

Assumption 1. For ∀µ, υ ∈ R, there exists constants Qr, Q
′
r > 0 such that

| fr(µ)− fr(υ)| ≤ Qr|µ − υ|, |gr(µ)− gr(υ)| ≤ Q
′
r|µ − υ|, r = 1, 2, . . . , M.
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Assumption 2. There exists constants Sr, S
′
r > 0, such that | fr(·)| ≤ Sr, |gr(·)| ≤ S

′
r, r =

1, 2, . . . , M.

Lemma 8. If Assumptions 1 and 2 satisfy, then Equation (15) holds.

|Gi(t)| ≤
M

∑
r=1

[
(ϕ̃irQr + εd̃irQ

′
r)|∆r(t)|+ |ϕ′

ir − ϕ
′′
ir|Sr + ψ̃irQr|∆r(t − τ(t))|

+ |ψ′
ir − ψ

′′
ir|Sr + ε|d̂ir − dir|S

′
r

] (15)

where ϕ̃ir = max{|ϕ′
ir|, |ϕ

′′
ir|}, ψ̃ir = max{|ψ′

ir|, |ψ
′′
ir|}, d̃ir = max{|d̂ir|, |dir|}, i, r = 1, 2, . . . , M.

Proof.

Gi(t) =
M

∑
r=1

ϕir(qi(t)) fr(qr(t))−
M

∑
r=1

ϕir(qi(t)) fr(pr(t))

+
M

∑
r=1

ϕir(qi(t)) fr(pr(t))−
M

∑
r=1

ϕir(pi(t)) fr(pr(t))

+
M

∑
r=1

ψir(qi(t)) fr(qr(t − τ(t)))−
M

∑
r=1

ψir(qi(t)) fr(pr(t − τ(t)))

+
M

∑
r=1

ψir(qi(t)) fr(pr(t − τ(t)))−
M

∑
r=1

ψir(pi(t)) fr(pr(t − τ(t)))

+ ε
M

∑
r=1

d̂irgr(pr(t))− ε
M

∑
r=1

dirgr(qr(t))

=
M

∑
r=1

ϕir(qi(t))
[

fr(qr(t))− fr(pr(t))
]
+

M

∑
r=1

[
ϕir(qi(t))− ϕir(pi(t))

]
fr(pr(t))

+
M

∑
r=1

ψir(qi(t))
[

fr(qr(t − τ(t)))− fr(pr(t − τ(t)))
]

+
M

∑
r=1

[
ψir(qi(t))− ψir(pi(t))

]
fr(pr(t − τ(t))) + ε

[ M

∑
r=1

d̂irgr(pr(t))−
M

∑
r=1

dirgr(qr(t))
]

due to

M

∑
r=1

d̂irgr(pr(t))−
M

∑
r=1

dijgr(qr(t)) =
M

∑
r=1

d̂ijgr(pr(t))−
M

∑
r=1

dirgr(pr(t))

+
M

∑
r=1

dirgr(pr(t))−
M

∑
r=1

dirgr(qr(t))

or
M

∑
r=1

d̂irgr(pr(t))−
M

∑
r=1

dirgr(qr(t)) =
M

∑
r=1

d̂irgr(pr(t))−
M

∑
r=1

d̂irgr(qr(t))

+
M

∑
r=1

d̂irgr(qr(t))−
M

∑
r=1

dirgr(qr(t))
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Based on Assumptions 1 and 2, we can obtain the following:

|Gi(t)| ≤
M

∑
r=1

[
ϕ̃irQr|∆r(t)|+ |ϕ′

ir − ϕ
′′
ir|Sr + ψ̃irQr|∆r(t − τ(t))|

+ |ψ′
ir − ψ

′′
ir|Sr + ε|d̂ir − dir|S

′
r + εd̃irQ

′
r|∆r(t)|

]
=

M

∑
r=1

[
(ϕ̃irQr + εd̃irQ

′
r)|∆r(t)|+ |ϕ′

ir − ϕ
′′
ir|Sr + ψ̃irQr|∆r(t − τ(t))|

+ |ψ′
ir − ψ

′′
ir|Sr + ε|d̂ir − dir|S

′
r

]
This completes the proof.

3. Finite-Time Adaptive Synchronization Control

In this section, we discuss the finite-time synchronization of FMCNNs (12) and (13).
To achieve the finite-time synchronization between (12) and (13), the controller is designed
as:

ui(t) = −κi∆i(t)− sign(∆i(t))
M

∑
r=1

θir|∆r(t − τ(t))| − δisign(∆i(t)) (16)

and 

ui(t) =− κi(t)∆i(t)− sign(∆i(t))
M

∑
r=1

θir(t)|∆r(t − τ(t))| − δisign(∆i(t))

C
t0

Dωκi(t) = λi|∆i(t)| −
1
2
(κi(t)− κ̂i)

C
t0

Dωθir(t) = ρi|∆i(t − τ(t))| − 1
2
(θir(t)− θ̂ir)

(17)

where κi > 0, δi > 0, θir > 0, λi > 0, ρi > 0, κ̂i, θ̂ir are adaptive constants. κi(t), θir(t) are the
adaptive control gains. sign(·) is the symbolic function.

Remark 1. The feedback controller (16) and adaptive controller (17) are different. The controller
(17) has fractional derivative behavior and can reduce control costs by using state information. In
(16) and (17), the terms with time-varying delays are to remove the time delays, and the control gain
δi can improve the fast response. When δi is greater, the system synchronization error will oscillate.

Theorem 1. If Assumptions 1 and 2 hold, and control gains κi, θir, δi satisfy κi ≥ −αi +

∑M
r=1(ϕ̃riQr + εd̃riQ

′
r), θir ≥ ψ̃irQr, δi > ∑M

r=1(|ϕ
′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r), i,

r = 1, 2, . . . , M, then FMCNNs (12) and (13) can realize finite-time synchronization under the
feedback controller (16). Furthermore, the upper bound time for synchronization is calculated by (18).

Tmax = t0 +

(
Γ(1 + ω)V(t0)

∑M
i=1 min1≤i≤M{ci}

) 1
ω

. (18)

Proof. Consider the Lyapunov function:

V(∆i(t)) =
M

∑
i=1

|∆i(t)| (19)
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Using Lemma 3, we calculate the fractional derivative of (18).

C
t0

DωV(∆(t)) =
M

∑
i=1

C
t0

Dω |∆i(t)| ≤
M

∑
i=1

sign(∆i(t))C
t0

Dω∆i(t)

=
M

∑
i=1

sign(∆i(t))
[
− α∆i(t) + Gi(t) + ui(t)

]

=−
M

∑
i=1

αi|∆i(t)|+
M

∑
i=1

sign(∆i(t))Gi(t) +
M

∑
i=1

sign(∆i(t))ui(t)

≤−
M

∑
i=1

αi|∆i(t)|+
M

∑
i=1

|Gi(t)|+
M

∑
i=1

sign(∆i(t))ui(t)

Using Lemma 8, we obtain

C
t0

DωV(∆(t)) ≤−
M

∑
i=1

αi|∆i(t)|+
M

∑
i=1

M

∑
r=1

(ϕ̃irQr + εd̃irQ
′
r)|∆r(t)| −

M

∑
i=1

κi|∆i(t)|

−
M

∑
i=1

|sign(∆i(t))|
M

∑
r=1

θir|∆r(t − τ(t))|

−
M

∑
i=1

δi|sign(∆i(t))|+
M

∑
i=1

M

∑
r=1

[
|ϕ′

ir − ϕ
′′
ir|Sr

+ ψ̃irQr|∆r(t − τ(t))|+ |ψ′
ir − ψ

′′
ir|Sr + ε|d̂ir − dir|S

′
r

]
=

M

∑
i=1

(
− αi +

M

∑
r=1

(ϕ̃riQr + εd̃riQ
′
r)− κi

)
|∆i(t)|

+
M

∑
i=1

M

∑
r=1

(ψ̃irQr − θir)|∆r(t − τ(t))|

+
M

∑
i=1

[ M

∑
r=1

(|ϕ′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr) + ε|d̂ri − dri|S

′
r − δi

]

(20)

While 

κi ≥ −αi +
M

∑
r=1

(ϕ̃riQr + εd̃riQ
′
r),

θir ≥ ψ̃irQr,

δi >
M

∑
r=1

(|ϕ′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r),

we obtain
C
t0

DωV(∆(t)) ≤ −
M

∑
i=1

ci|sign(∆i(t))| ≤ −
M

∑
i=1

min
1≤i≤M

{ci} (21)

where ci = δi − ∑M
r=1(|ϕ

′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r) > 0. According to

Lemma 6, we obtain Equation (18). This completes the proof.

Remark 2. The feedback controller (16) includes two parts: ui1(t) = −κi∆i(t)− sign(∆i(t))
∑M

r=1 θir|∆r(t − τ(t))| and ui2(t) = −δisign(∆i(t)). Here, the feedback controller ui1(t) can
realize synchronization of FMCNNs (12) and (13); however, we cannot estimate the upper bound
time for synchronization by the controller ui1(t). To realize the FMCNNs (12) and (13), we need
the controller ui2(t).
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Remark 3. In fact, the adaptive control method has strong robustness to external interference and
unknown uncertainties and can identify the unknown parameters in the model according to the
input and output data. In the control scheme (16), the feedback control parameters −κi and θir
are not easy to choose, so the following considers the use of adaptive control to achieve finite-time
synchronization of the driving response system.

Theorem 2. If Assumptions 1 and 2 hold, and control gains κ̂i, θ̂ir, δi satisfy κ̂i ≥ −αi +

∑M
r=1(ϕ̃riQr + εd̃riQ

′
r), θir ≥ ψ̃irQr, θ̂ir ≥ ψ̃irQr, δi > ∑M

r=1(|ϕ
′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr +

ε|d̂ri − dri|S
′
r), i, r = 1, 2, . . . , M, then FMCNNs (12) and (13) can realize finite-time synchroniza-

tion under the adaptive controller (17). Furthermore, the upper bound time for synchronization is
calculated by (18).

Proof. Consider the Lyapunov function:

V(∆i(t)) =
M

∑
i=1

|∆i(t)|+
M

∑
i=1

1
2λi

(κi(t)− κ̂i)
2 +

M

∑
i=1

M

∑
r=1

1
2ρi

(θir(t)− θ̂ir)
2 (22)

Using Lemmas 3, 4, and 8, we calculate the fractional derivative of (22).

C
t0

DωV(∆(t)) ≤
M

∑
i=1

sign(∆i(t))C
t0

Dω∆i(t)

+
M

∑
i=1

1
λi
(κi(t)− κ̂i)

C
t0

Dωκi(t) +
M

∑
i=1

M

∑
r=1

1
ρi
(θir(t)− θ̂ir)

C
t0

Dωθir(t)

(23)

Combining (16), (20), and (23), one can obtain:

C
t0

DωV(∆(t)) ≤
M

∑
i=1

(
− αi +

M

∑
r=1

(ϕ̃riQr + εd̃irQ
′
r)− κ̂i

)
|∆i(t)|

+
M

∑
i=1

M

∑
r=1

(ψ̃irQr − θ̂ir)|∆r(t − τ(t))|

+
M

∑
i=1

[ M

∑
r=1

(|ϕ′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r − δi)

]

−
M

∑
i=1

1
2λi

(κi(t)− κ̂i)
2 −

M

∑
i=1

M

∑
r=1

1
2ρi

(θir(t)− θ̂ir)
2

(24)

While 

κ̂i ≥ −αi +
M

∑
r=1

(ϕ̃riQr + εd̃riQ
′
r),

θ̂ir ≥ ψ̃irQr,

δi >
M

∑
r=1

(|ϕ′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r)

we obtain

C
t0

DωV(∆(t)) ≤ −
M

∑
r=1

[
(|ϕ′

ri − ϕ
′′

ri|Sr + |ψ′

ri − ψ
′′

ri|Sr + ε|d̂ri − dri|S
′
r)

]
≤ −

M

∑
i=1

min
1≤i≤M

{ci} (25)

where ci = δi − ∑M
r=1(|ϕ

′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r) > 0. According to

Lemma 6, we obtain Equation (18). This completes the proof.
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Remark 4. It is worth noting that, theoretically, the upper bound Tmax can be obtained based on
Equation (17) in Theorem 1 or Theorem 2. One can see that Tmax depends not only on the relevant
initial state V(t0), but also on the fractional order ω and control gain δi.

Remark 5. It should be noted that, for finite-time synchronization, if the initial value of the system
is unknown, the synchronization time of finite-time synchronization cannot be estimated. However,
for fixed-time synchronization, even if the initial value of the system is unknown, the upper bound
of the synchronization time can still be estimated. Therefore, we will study FMCNN fixed-time
synchronization next.

4. Fixed-Time Synchronization Control

In this section, we discuss the fixed-time synchronization of FMCNNs (12) and (13). To
achieve the fixed-time synchronization between (12) and (13), the controller is designed as:

ui(t) = −κi∆i(t)− sign(∆i(t))
(

δi +
M

∑
r=1

θir|∆r(t − τ(t))|+ ηi
(C

t0
Dω−1|∆i(t)|

)ι
)

(26)

where κi > 0, δi > 0, θir > 0, ηi > 0, ι > 1, and sign(·) is the symbolic function.

Theorem 3. If Assumptions 1 and 2 hold, and control gains κi, δi, θir satisfy κi ≥ −αi +

∑M
r=1 ϕ̃irQi, δi > ∑M

r=1(|ϕ
′
ir − ϕ

′′
ir|Sr + |ψ′

ir − ψ
′′
ir|Sr), θir ≥ ψ̃irQr, i, r = 1, 2, . . . , M, then FMC-

NNs (12) and (13) can realize fixed-time synchronization under controller (26). Furthermore, the
settling time can be calculated by:

T∗ ≤ Tmax =
1

Θ(ι − 1)

(
Θ

ΛMι−l

) 1
ι

(27)

where Λ = min1≤i≤M ηi, Θ = ∑M
i=1 min1≤i≤M{ci}, ι > 1.

Proof. Consider the Lyapunov function:

V(∆(t)) =
M

∑
i=1

C
t0

Dω−1|∆i(t)| (28)

Obviously, V(∆(t)) ≥ 0 and V(∆(t)) = 0 if and only if ∆(t) = 0.
Using Lemmas 1 and 2, we calculate the derivative of (28).

V̇(∆(t)) = C
t0

Dω
(

C
t0

D1−ωV(∆(t))
)
= C

t0
Dω

(
C
t0

D1−ω
M

∑
i=1

C
t0

Dω−1|∆i(t)|
)

= C
t0

Dω

(
C
t0

D1−ω

(
C
t0

Dω−1
M

∑
i=1

|∆i(t)|
))

=
M

∑
i=1

C
t0

Dω |∆i(t)| ≤
M

∑
i=1

sign(∆i(t))C
t0

Dω∆i(t)

Similar to in the proof of Theorem 1, we choose to meet the conditions

κi ≥ −αi +
M

∑
r=1

(ϕ̃riQr + εd̃riQ
′
r),

θir ≥ ψ̃irQr,

δi >
M

∑
r=1

(|ϕ′

ri − ϕ
′′

ri|Sr + |ψ′

ri − ψ
′′

ri|Sr + ε|d̂ri − dri|S
′
r),



Mathematics 2024, 12, 1108 11 of 22

and, according to Lemma 5, we obtain the following inequality:

V̇(∆(t)) ≤ −
M

∑
i=1

min
1≤i≤M

{ci} −
M

∑
i=1

ηi

(
C
t0

Dω−1|∆i(t)|
)ι

where ci = δi − ∑M
r=1(|ϕ

′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r) > 0.

When Λ = min1≤i≤M ηi, Θ = ∑M
i=1 min1≤i≤M{ci}, we obtain:

V̇(∆(t)) ≤ −Θ − ΛM1−ι(V(∆i(t)))ι

Let k = 1 in Lemma 7. It is known that the origin is fixed-time stable, and the settling
time T∗ can be calculated by:

T∗ ≤ Tmax =
1

Θ(ι − 1)

(
Θ

ΛM1−ι

) 1
ι

Remark 6. In this paper, the settling time T∗ is calculated based on Lemma 7, and the algorithm of
Lemma 7 itself is an optimization result. Actually, the estimation of time T∗ is determined by the
following equation:

T∗ ≤
∫ +∞

0

1
(αxµ + β)k dx =

∫ r

0

1
(αxµ + β)k dx

+
∫ +∞

r

1
(αxµ + β)k dx

≤
∫ r

0

1
βk dx +

∫ +∞

r

1
αkxµk dx

=
r

βk +
1

αk(µk − 1)
r1−µk

where r represents an arbitrary positive number. Let

W(r) =
r

βk +
1

αk(µk − 1)
r1−µk

Then,

Ẇ(r) =
1
βk +

1
αk(µk − 1)

r−µk

which indicates that W(r) can reach its minimum value, which can be calculated by the following
formula:

Ŵ =
1
βk

(
β

α

) 1
µ
(

1 +
1

µk − 1

)
In order to refine the estimation of the settling time, it is imperative to select appropriate

parameters α, β, k, µ in applications. Actually, if α > β and µ =
ln β

α

ln β
α +1

, the estimated value of T∗

can be obtained using the following formula:

T∗ ≤ Tmax =
ln β

α

β

(
β

α

)1+ 1

ln β
alpha .

5. Numerical Simulations

To validate the obtained theoretical results, some numerical simulations will be pro-
vided next.
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Example 1. Consider the drive system:

C
t0

Dω pi(t) = −αi pi(t) +
3

∑
r=1

ϕir(pi(t)) fr(pr(t))

+
3

∑
r=1

ψir(pi(t)) fr(pr(t − τ(t))) + ε
3

∑
r=1

dirgr(qr(t)) + Ii, i = 1, 2, 3,

(29)

The system parameter selection is as follows:

Γ1 = Γ2 = Γ3 = 1, α1 = α2 = α3 = 1, ε = 0.2, ω = 0.95

ϕ
′
11 = 2.0, ϕ

′
12 = −1, ϕ

′
13 = 1.8, ϕ

′
21 = 0.8, ϕ

′
22 = 1.5, ϕ

′
23 = −1.0,

ϕ
′
31 = −1.1, ϕ

′
32 = 2.0, ϕ

′
33 = 1.5, ϕ

′′
11 = 2.2, ϕ

′′
12 = −1.2, ϕ

′′
13 = 2.0,

ϕ
′′
21 = 1.0, ϕ

′′
22 = 1.8, ϕ

′′
23 = −1.5, ϕ

′′
31 = −1.0, ϕ

′′
32 = 1.7, ϕ

′′
33 = 2.0

ψ
′
11 = −2.0, ψ

′
12 = −0.5, ψ

′
13 = 1.5, ψ

′
21 = 2.5, ψ

′
22 = 5.0, ψ

′
23 = −2.5

ψ
′
31 = 2.4, ψ

′
32 = −2.0, ψ

′
33 = 4.5, ψ

′′
11 = −1.5, ψ

′′
12 = −1.0, ψ

′′
13 = 2.0

ψ
′′
21 = 2.2, ψ

′′
22 = 4.5, ψ

′′
23 = −3.0, ψ

′′
31 = 2.0, ψ

′′
32 = −18, ψ

′′
33 = 5

d11 = 1.0, d12 = 2.0, d13 = 1.5, d21 = 2.0, d22 = 1.0, d23 = 0.5

d31 = 0.5, d32 = 2.0, d33 = 1.0, d̂11 = 1.0, d̂12 = 1.0, d̂13 = 1.0

d̂21 = 1.0, d̂22 = 1.0, d̂23 = 1.0, d̂31 = 1.0, d̂32 = 1.0, d̂33 = 1.0

(30)

Let fi(p(t)) = tanh(|p(t)|) − 1, gi(p(t)) = tanh(p(t)), Ii = 0.1, Si = S′
i = 1, Qi =

Q′
i = 1, i = 1, 2, 3. τ(t) = et

1+et . The initial values of system (29) are ζ1(υ) = 0.3, ζ2(υ) =

0.6, ζ3(υ) = −0.3, υ ∈ [−τ(t), 0].
The response system is:

C
t0

Dωqi(t) = −αiqi(t) +
3

∑
r=1

ϕir(qi(t)) fr(qr(t))

+
3

∑
r=1

ψir(qi(t)) fr(qr(t − τ(t))) + ε
3

∑
r=1

d̂irgr(pr(t)) + Ii + ui(t), i = 1, 2, 3.

(31)

The parameters are the same as in the system (29). The initial values of system (31) are
ξ1(υ) = 0.3, ξ2(υ) = −0.6, ξ3(υ) = 0.3, υ ∈ [−τ(t), 0].

According to Theorem 1, control parameters κi, δi, θir, i, r = 1, 2, 3 should satisfy

κi ≥ −αi +
M

∑
r=1

(ϕ̃riQr + εd̃riQ
′
r),

θir ≥ ψ̃irQr,

δi >
M

∑
r=1

(|ϕ′

ri − ϕ
′′

ri|Sr + |ψ′

ri − ψ
′′

ri|Sr + ε|d̂ri − dri|S
′
r),

Here, we choose 

κ1 = 5.5, κ2 = 6.2, κ3 = 6.7,

δ1 = 3.0, δ2 = 2.5, δ3 = 3.5

θ11 = 3.0, θ12 = 1.3, θ13 = 2.5,

θ21 = 2.6, θ22 = 5.2, θ23 = 3.1,

θ31 = 2.5, θ32 = 2.1, θ33 = 5.1,

(32)

Figure 1 illustrates the phase trajectories of system (29) in two-dimensional state space
without controller. Figure 2 show the state trajectories of systems (29) and (31) without
controller. Figure 2 indicates that they have not reached synchronization without controller.
Figure 3 show the state trajectories of systems (29) and (31) with controller. Figure 3 shows



Mathematics 2024, 12, 1108 13 of 22

the state trajectories of the error system with controller. Figure 3 indicates that they can
achieve synchronization within a finite time under this controller (16). Furthermore, ac-
cording to Theorem 1, Tmax = 4.2117 can be computed using Formula (18). This sufficiently
confirms that Theorem 2 is effective.
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Figure 1. Phase trajectories of (29) in two–dimensional spaces.
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Figure 2. State trajectories of pi(t), qi(t), and ∆i(t) without controller.
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Figure 3. State trajectories of pi(t), qi(t), and ∆i(t) with controller.

Example 2. For system (29), the system parameter selection is as follows:

Γ1 = Γ2 = Γ3 = 1, α1 = α2 = α3 = 1, ε = 0.2, ω = 0.9

ϕ
′
11 = 1.8, ϕ

′
12 = −1, ϕ

′
13 = 1.6, ϕ

′
21 = 0.8, ϕ

′
22 = 1.1, ϕ

′
23 = −1.0,

ϕ
′
31 = −1.1, ϕ

′
32 = 2.0, ϕ

′
33 = 1.5, ϕ

′′
11 = 2.0, ϕ

′′
12 = −0.9, ϕ

′′
13 = 1.8,

ϕ
′′
21 = 1.1, ϕ

′′
22 = 1.2, ϕ

′′
23 = −1.3, ϕ

′′
31 = −1.2, ϕ

′′
32 = 1.7, ϕ

′′
33 = 2.1

ψ
′
11 = −1.1, ψ

′
12 = −0.5, ψ

′
13 = 0.8, ψ

′
21 = 1.4, ψ

′
22 = 1.5, ψ

′
23 = −0.5

ψ
′
31 = 1.4, ψ

′
32 = −1.0, ψ

′
33 = 1.2, ψ

′′
11 = −0.8, ψ

′′
12 = −0.7, ψ

′′
13 = 1.2

ψ
′′
21 = 1.1, ψ

′′
22 = 0.5, ψ

′′
23 = −0.6, ψ

′′
31 = 1.7, ψ

′′
32 = −1.2, ψ

′′
33 = 1.5

d11 = 1.0, d12 = 2.0, d13 = 1, d21 = 1.5, d22 = 1.0, d23 = 0.5

d31 = 0.5, d32 = 1, d33 = 1.0, d̂11 = 0.5, d̂12 = 0.5, d̂13 = 0.5

d̂21 = 0.5, d̂22 = 0.5, d̂23 = 0.5, d̂31 = 0.5, d̂32 = 0.5, d̂33 = 0.5

(33)

Let fi(p(t)) = tanh(|p(t)|) − 1, gi(p(t)) = tanh(p(t)), Ii = 0.1, Si = S′
i = 1, Qi =

Q′
i = 1, i = 1, 2, 3. τ(t) = et

1+et . The initial values of system (29) are ζ1(υ) = 1, ζ2(υ) =

0.6, ζ3(υ) = −0.2, υ ∈ [−τ(t), 0].
The parameters of response system (31) are the same as in system (29). The initial values of

system (31) are ξ1(υ) = −1, ξ2(υ) = −0.6, ξ3(υ) = 0.8, υ ∈ [−τ(t), 0].
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According to Theorem 2, control gains κi, δi, θir, λi, ρi, i, r = 1, 2, 3 should satisfy

κ̂i ≥ −αi +
M

∑
r=1

(ϕ̃riQr + εd̃riQ
′
r),

θ̂ir ≥ ψ̃irQr,

δi >
M

∑
r=1

(|ϕ′
ri − ϕ

′′
ri|Sr + |ψ′

ri − ψ
′′
ri|Sr + ε|d̂ri − dri|S

′
r)

Here, we choose 

κ̂1 = 4.4, κ̂2 = 5.8, κ̂3 = 6.5,

θ̂11 = 2.0, θ̂12 = 1.0, θ̂13 = 2.3,

θ̂21 = 1.5, θ̂22 = 4.8, θ̂23 = 4.0,

θ̂31 = 3.6, θ̂32 = 2.8, θ̂33 = 5.2,

δ1 = 2.8, δ2 = 3.0, δ3 = 3.5,

λ1 = λ2 = λ3 = 1, ρ1 = ρ2 = ρ3 = 1

(34)

Let κi(0) = 1, θir(0) = 0.1, i, r = 1, 2, 3.
Figure 4 illustrates the phase trajectories of system (29) in two-dimensional state

space without controller. Figure 5 show the state trajectories of systems (29) and (31)
without controller. Figure 5 indicates that they have not reached synchronization without
controller. Figure 6 show the state trajectories of systems (29) and (31) with controller.
Figure 6 shows the state trajectories of the error system with controller. Figure 6 indicates
that they can achieve synchronization within a finite time under this controller (17). Fur-
thermore, according to Theorem 2, Tmax = 4.8839 can be computed using Formula (18).
Figures 7 and 8 indicate the time response trajectory of the adaptive control gains κi(t)
and θir(t),(i, r = 1, 2, 3). This clearly indicates that the adaptive control gains κi(t), θir(t)
converge to some values within a finite time. This sufficiently confirms that Theorem 2
is effective.
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Figure 5. State trajectories of pi(t), qi(t), and ∆i(t) without controller.
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Example 3. For system (29), the system parameter selection is as follows:

Γ1 = Γ2 = Γ3 = 1, α1 = α2 = α3 = 1, ε = 0.2, ω = 0.95

ϕ
′
11 = 2.5, ϕ

′
12 = −2, ϕ

′
13 = −3, ϕ

′
21 = 2.2, ϕ

′
22 = −1.8, ϕ

′
23 = 2.4,

ϕ
′
31 = 2.2, ϕ

′
32 = −2.4, ϕ

′
33 = 3.6, ϕ

′′
11 = 2.6, ϕ

′′
12 = −2.2, ϕ

′′
13 = −3.4,

ϕ
′′
21 = 2.6, ϕ

′′
22 = −2.2, ϕ

′′
23 = 2.2, ϕ

′′
31 = 2.8, ϕ

′′
32 = −2.2, ϕ

′′
33 = 3.2

ψ
′
11 = −2.0, ψ

′
12 = −0.5, ψ

′
13 = 1.5, ψ

′
21 = 2.5, ψ

′
22 = 5.0, ψ

′
23 = −2.5

ψ
′
31 = 2.4, ψ

′
32 = −2.0, ψ

′
33 = 4.5, ψ

′′
11 = −1.5, ψ

′′
12 = −1.0, ψ

′′
13 = 2.0

ψ
′′
21 = 2.2, ψ

′′
22 = 4.5, ψ

′′
23 = −3.0, ψ

′′
31 = 2.0, ψ

′′
32 = −18, ψ

′′
33 = 5.0

d11 = 1.0, d12 = 2.0, d13 = 1.5, d21 = 2.0, d22 = 1.0, d23 = 0.5

d31 = 0.5, d32 = 2, d33 = 1.0, d̂11 = 1.0, d̂12 = 1.0, d̂13 = 1.0

d̂21 = 1.0, d̂22 = 1.0, d̂23 = 1.0, d̂31 = 1.0, d̂32 = 1.0, d̂33 = 1.0

(35)

Let fi(p(t)) = tanh(|p(t)|)− 1, gi(p(t)) = tanh(p(t)), Ii = 0.1. τ(t) = et

1+et . The initial
values of system (29) are ζ1(υ) = 0.2, ζ2(υ) = −0.4, ζ3(υ) = 0.6, υ ∈ [−τ(t), 0].

The parameters of response system (31) are the same as in system (29). The initial values of
system (31) are ξ1(υ) = −0.2, ξ2(υ) = 0.4, ξ3(υ) = −0.6, υ ∈ [−τ(t), 0].
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According to Theorem 3, control gains κi, δi, θir, ηi, i, r = 1, 2, 3 should satisfy

κi ≥ −αi +
M

∑
r=1

(ϕ̃riQr + εd̃riQ
′
r),

θir ≥ ψ̃irQr,

δi >
M

∑
r=1

(|ϕ′

ri − ϕ
′′

ri|Sr + |ψ′

ri − ψ
′′

ri|Sr + ε|d̂ri − dri|S
′
r),

Here, we choose 

κ1 = 5.5, κ2 = 6.2, κ3 = 6.7,

δ1 = 2.5, δ2 = 2.6, δ3 = 3.5

θ11 = 2.5, θ12 = 1.5, θ13 = 2.5,

θ21 = 2.6, θ22 = 5.4, θ23 = 3.2,

θ31 = 2.8, θ32 = 2.2, θ33 = 5.2,

η1 = η2 = η3 = 0.5, ι = 1.5

(36)

Figure 9 illustrates the phase trajectories of system (29) in two-dimensional state
space without controller. Figure 10 show the state trajectories of systems (29) and (31)
without controller. Figure 10 indicates that they have not reached synchronization without
controller. Figure 11 show the state trajectories of systems (29) and (31) with controller.
Figure 11 shows the state trajectories of the error system with controller. Figure 11 indicates
that they can achieve synchronization before a fixed time point under this controller (26).
Furthermore, according to Theorem 3, Tmax = 4.7425 can be computed using Formula (27).
This sufficiently confirms that Theorem 3 is effective.
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Figure 9. Phase trajectories of (29) in two-dimensional spaces.
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Figure 10. State trajectories of pi(t), qi(t), and ∆i(t) without controller.
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Figure 11. State trajectories of pi(t), qi(t), and ∆i(t) with controller.

6. Conclusions

This paper explores the finite-time adaptive synchronization and fixed-time synchro-
nization of FMCNNs with TVD. Utilizing the properties and principles of fractional order,
we introduce a novel lemma. Based on this lemma and various analysis techniques, we
establish new criteria to guarantee FTAS and FDTS of FMCNNs with TVD through the
implementation of a delay-dependent feedback controller and fractional-order adaptive
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controller. Additionally, we estimate the upper bound of the synchronization setting time.
Finally, numerical simulations are conducted to confirm the validity of the finite-time and
fixed-time stability theorems. The results of the numerical simulations substantiate the
validity of the conclusions presented in this paper. In future work, based on the research
results of this article, we will further study the synchronization problem of discrete-time
FMCNNs with TVD.

Author Contributions: Conceptualization, methodology, writing—original draft preparation, Y.L.
and Y.S.; writing—review and editing, numerical simulation, Y.L.; project administration, Y.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the Natural Science Foundation of Anhui Province
(2008085MF200), the Program for Innovative Research Team in Universities of Anhui Province
(2022AH010085), the University Natural Science Foundation of Anhui Province (KJ2021A0970), the
National Natural Science Foundation of China (61403157), and the Research and Development Plan
Project Foundation of Huainan (2021A248).

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors would like to thank the anonymous referees and reviewers for their
helpful comments, which have significantly improved the quality of the presentation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yang, X.; Ho, D.W. Synchronization of delayed memristive neural networks: Robust analysis approach. IEEE Trans. Cybern. 2015,

46, 3377–3387. [CrossRef]
2. Wen, S.; Zeng, Z.; Huang, T.; Zhang, Y. Exponential adaptive lag synchronization of memristive neural networks via fuzzy

method and applications in pseudorandom number generators. IEEE Trans. Fuzzy Syst. 2013, 22, 1704–1713. [CrossRef]
3. Hu, X.; Feng, G.; Duan, S.; Liu, L. A memristive multilayer cellular neural network with applications to image processing. IEEE

Trans. Neural Netw. Learn. Syst. 2016, 28, 1889–1901. [CrossRef]
4. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
5. Ali, M.S.; Hymavathi, M.; Senan, S.; Shekher, V.; Arik, S. Global asymptotic synchronization of impulsive fractional-order

complex-valued memristor-based neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simul. 2019,
78, 104869.

6. Li, N.; Zheng, W.X. Synchronization criteria for inertial memristor-based neural networks with linear coupling. Neural Netw. 2018,
106, 260–270. [CrossRef]

7. Wu, K.; Jian, J. Non-reduced order strategies for global dissipativity of memristive neutral-type inertial neural networks with
mixed time-varying delays. Neurocomputing 2021, 436, 174–183. [CrossRef]

8. Zhang, T.; Jian, J. New results on synchronization for second-order fuzzy memristive neural networks with time-varying and
infinite distributed delays. Knowl.-Based Syst. 2021, 230, 107397. [CrossRef]

9. Sun, Y.; Liu, Y.; Liu, L. Asymptotic and finite-time synchronization of fractional-order memristor-based inertial neural networks
with time-varying delay. Fractal Fract. 2022, 6, 350. [CrossRef]

10. Zhang, X.; Jiang, W. Construction of flux-controlled memristor and circuit simulation based on smooth cellular neural networks
module. IET Circuits Devices Syst. 2018, 12, 263–270. [CrossRef]

11. Ascoli, A.; Messaris, I.; Tetzlaff, R.; Chua, L.O. Theoretical foundations of memristor cellular nonlinear networks: Stability
analysis with dynamic memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 67, 1389–1401. [CrossRef]

12. Song, C.; Cao, J. Dynamics in fractional-order neural networks. Neurocomputing 2014, 142, 494-498. [CrossRef]
13. Wang, H.; Yu, Y.; Wen, G. Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw. 2014, 55,

98–109. [CrossRef]
14. Ma, Z.; Ma, H. Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear

systems. IEEE Trans. Fuzzy Syst. 2020, 28, 122–133. [CrossRef]
15. Zhang, Q.; Lu, J. Bounded real lemmas for singular fractional-order systems: The 1 < α < 2 case. IEEE Trans. Circuits Syst. II

Express Briefs 2021, 68, 732–736.
16. Shafiya, M.; Nagamani, G.; Dafik, D. Global synchronization of uncertain fractional-order BAM neural networks with time delay

via improved fractional-order integral inequality. Math. Comput. Simul. 2022, 191, 168–186. [CrossRef]
17. Yan, S.; Gu, Z.; Nguang, S. Memory-event-triggered H∞ output control of neural networks with mixed delays. IEEE Trans. Neural

Netw. Learn. Syst. 2022, 33, 6905–6915. [CrossRef] [PubMed]
18. Jian, J.; Duan, L. Finite-time synchronization for fuzzy neutral-type inertial neural networks with time-varying coefficients and

proportional delays. Fuzzy Sets Syst. 2020, 381, 51–67. [CrossRef]

http://doi.org/10.1109/TCYB.2015.2505903
http://dx.doi.org/10.1109/TFUZZ.2013.2294855
http://dx.doi.org/10.1109/TNNLS.2016.2552640
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1016/j.neunet.2018.06.014
http://dx.doi.org/10.1016/j.neucom.2020.12.120
http://dx.doi.org/10.1016/j.knosys.2021.107397
http://dx.doi.org/10.3390/fractalfract6070350
http://dx.doi.org/10.1049/iet-cds.2017.0052
http://dx.doi.org/10.1109/TCSI.2019.2957813
http://dx.doi.org/10.1016/j.neucom.2014.03.047
http://dx.doi.org/10.1016/j.neunet.2014.03.012
http://dx.doi.org/10.1109/TFUZZ.2019.2900602
http://dx.doi.org/10.1016/j.matcom.2021.08.001
http://dx.doi.org/10.1109/TNNLS.2021.3083898
http://www.ncbi.nlm.nih.gov/pubmed/34086585
http://dx.doi.org/10.1016/j.fss.2019.04.004


Mathematics 2024, 12, 1108 21 of 22

19. Li, H.L.; Zhang, L.; Hu, C.; Jiang, H.; Cao, J. Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued
neural networks: Direct quaternion approach. Appl. Math. Comput. 2020, 373, 125020. [CrossRef]

20. Zhang, H.; Cheng, J.; Zhang, H.; Zhang, W.; Cao, J. Quasi-uniform synchronization of Caputo type fractional neural networks
with leakage and discrete delays. Chaos Solitons Fractals 2021, 152, 111432. [CrossRef]

21. Tong, D.; Zhang, L.; Zhou, W.; Zhou, J.; Xu, Y. Asymptotical synchronization for delayed stochastic neural networks with
uncertainty via adaptive control. Int. J. Control Autom. Syst. 2016, 14, 706–712. [CrossRef]

22. Xiong, X.; Zhang, Z. Asymptotic synchronization of conformable fractional-order neural networks by L’Hopital’s rule. Chaos
Solitons Fractals 2023, 173, 113665. [CrossRef]

23. Guo, Z.; Gong, S.; Yang, S.; Huang, T. Global exponential synchronization of multiple coupled inertial memristive neural networks
with time-varying delay via nonlinear coupling. Neural Netw. 2018, 108, 260–271. [CrossRef]

24. Zhang, T.; Jian, J. Quantized intermittent control tactics for exponential synchronization of quaternion-valued memristive delayed
neural networks. ISA Trans. 2022, 126, 288–299. [CrossRef] [PubMed]

25. Zheng, C.; Cao, J. Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent
pinning control. Neurocomputing 2014, 141, 153–159. [CrossRef]

26. Duan, L.; Wei, H.; Huang, L. Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations.
Fuzzy Sets Syst. 2019, 361, 56–70. [CrossRef]

27. Li, H.L.; Cao, J.; Jiang, H.; Alsaedi, A. Graph theory-based finite-time synchronization of fractional-order complex dynamical
networks. J. Frankl. Inst. 2018, 355, 5771–5789. [CrossRef]

28. Lu, J.; Guo, Y.; Ji, Y.; Fan, S. Finite-time synchronization for different dimensional fractional-order complex dynamical networks.
Chaos Solitons Fractals 2020, 130, 109433. [CrossRef]

29. Shanmugam, S.; Narayanan, G.; Rajagopal, K.; Ali, M.S. Finite-time synchronization of complex-valued neural networks with
reaction-diffusion terms: An adaptive intermittent control approach. Neural Comput. Appl. 2024, 36, 7389–7404. [CrossRef]

30. He, X.; Wang, Y.; Li, T.; Kang, R.; Zhao, Y. Novel Controller Design for Finite-Time Synchronization of Fractional-Order
Nonidentical Complex Dynamical Networks under Uncertain Parameters. Fractal Fract. 2024, 8, 155. [CrossRef]

31. Xiao, J.; Wu, L.; Wu, A.; Zeng, Z.; Zhang, Z. Novel controller design for finite-time synchronization of fractional-order memristive
neural networks. Neurocomputing 2022, 512, 494–502. [CrossRef]

32. Duan, L.; Li, J. Fixed-time synchronization of fuzzy neutral-type BAM memristive inertial neural networks with proportional
delays. Inf. Sci. 2021, 576, 522–541. [CrossRef]

33. Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2011, 57,
2106–2110. [CrossRef]

34. Cheng, Y.; Hu, T.; Xu, W.; Zhang, X.; Zhong, S. Fixed-time synchronization of fractional-order complex-valued neural networks
with time-varying delay via sliding mode control. Neurocomputing 2022, 505, 339–352. [CrossRef]

35. Sun, Y.; Liu, Y. Fixed-time synchronization of delayed fractional-order memristor-based fuzzy cellular neural networks. IEEE
Access 2020, 8, 165951–165962. [CrossRef]

36. Li, X.; Fang, J.A.; Zhang, W.; Li, H. Finite-time synchronization of fractional-order memristive recurrent neural networks with
discontinuous activation functions. Neurocomputing 2018, 316, 284–293. [CrossRef]

37. Li, J.; Jiang, H.; Hu, C.; Alsaedi, A. Finite/fixed-time synchronization control of coupled memristive neural networks. J. Frankl.
Inst. 2019, 356, 9928–9952. [CrossRef]

38. Li, X.; Zhang, W.; Fang, J. Finite-time synchronization of memristive neural networks with discontinuous activation functions
and mixed time-varying delays. Neurocomputing 2019, 340, 99–109. [CrossRef]

39. Zhang, Y.; Deng, S. Finite-time projective synchronization of fractional-order complex-value d memristor-base d neural networks
with delay. Chaos Solitons Fractals 2019, 128, 176–190. [CrossRef]

40. Guo, Z. Finite-time synchronization of inertial memristive neural networks with time delay via delay-dependent control.
Neurocomputing 2018, 293, 100–107. [CrossRef]

41. Wei, F.; Chen, G.; Zeng, Z.; Gunasekaran, N. Finite/fixed-time synchronization of inertial memristive neural networks by interval
matrix method for secure communication. Neural Netw. 2023, 167, 168–182. [CrossRef] [PubMed]

42. Gong, S.; Guo, Z.; Wen, S. Finite-time synchronization of TS fuzzy memristive neural networks with time delay. Fuzzy Sets Syst.
2023, 459, 67–81. [CrossRef]

43. Zhao, F.; Jian, J.; Wang, B. Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks. Fuzzy Sets
Syst. 2023, 467, 108578. [CrossRef]

44. Arslan, E.; Narayanan, G.; Ali, M.S.; Arik, S.; Saroha, S. Controller design for finite-time and fixed-time stabilization of fractional-
order memristive complex-valued BAM neural networks with uncertain parameters and time-varying delays. Neural Netw. 2020,
130, 60–74. [CrossRef] [PubMed]

45. Wang, W.; Jia, X.; Wang, Z.; Luo, X.; Li, L.; Kurths, J.; Yuan, M. Fixed-time synchronization of fractional order memristive MAM
neural networks by sliding mode control. Neurocomputing 2020, 401, 364–376. [CrossRef]

46. Xiao, J.; Hu, Y.; Zeng, Z.; Wu, A.; Wen, S. Fixed/predefined-time synchronization of memristive neural networks based on state
variable index coefficient. Neurocomputing 2023, 560, 126849. [CrossRef]

47. Wang, D.; Li, L. Fixed-time synchronization of delayed memristive neural networks with impulsive effects via novel fixed-time
stability theorem. Neural Netw. 2023, 163, 75–85. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2019.125020
http://dx.doi.org/10.1016/j.chaos.2021.111432
http://dx.doi.org/10.1007/s12555-015-0077-0
http://dx.doi.org/10.1016/j.chaos.2023.113665
http://dx.doi.org/10.1016/j.neunet.2018.08.020
http://dx.doi.org/10.1016/j.isatra.2021.07.029
http://www.ncbi.nlm.nih.gov/pubmed/34330433
http://dx.doi.org/10.1016/j.neucom.2014.03.042
http://dx.doi.org/10.1016/j.fss.2018.04.017
http://dx.doi.org/10.1016/j.jfranklin.2018.05.039
http://dx.doi.org/10.1016/j.chaos.2019.109433
http://dx.doi.org/10.1007/s00521-024-09467-7
http://dx.doi.org/10.3390/fractalfract8030155
http://dx.doi.org/10.1016/j.neucom.2022.09.118
http://dx.doi.org/10.1016/j.ins.2021.06.093
http://dx.doi.org/10.1109/TAC.2011.2179869
http://dx.doi.org/10.1016/j.neucom.2022.07.015
http://dx.doi.org/10.1109/ACCESS.2020.3022928
http://dx.doi.org/10.1016/j.neucom.2018.08.003
http://dx.doi.org/10.1016/j.jfranklin.2019.09.015
http://dx.doi.org/10.1016/j.neucom.2019.02.051
http://dx.doi.org/10.1016/j.chaos.2019.07.043
http://dx.doi.org/10.1016/j.neucom.2018.03.004
http://dx.doi.org/10.1016/j.neunet.2023.08.015
http://www.ncbi.nlm.nih.gov/pubmed/37659114
http://dx.doi.org/10.1016/j.fss.2022.10.013
http://dx.doi.org/10.1016/j.fss.2023.108578
http://dx.doi.org/10.1016/j.neunet.2020.06.021
http://www.ncbi.nlm.nih.gov/pubmed/32650151
http://dx.doi.org/10.1016/j.neucom.2020.03.043
http://dx.doi.org/10.1016/j.neucom.2023.126849
http://dx.doi.org/10.1016/j.neunet.2023.03.036


Mathematics 2024, 12, 1108 22 of 22

48. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
49. Lakshmikantham, V.; Vatsala, A. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [CrossRef]
50. Zhang, S.; Yu, Y.; Wang, H. Mittag-Leffler stability of fractional-order hopfield neural networks. Nonlin. Anal. Hybrid Syst. 2015,

16, 104–121. [CrossRef]
51. Yu, J.; Hu, C.; Jiang, H. Corrigendum to Projective synchronization for fractional neural networks. Neural Netw. 2015, 67, 152–154.

[CrossRef]
52. Kong, F.; Zhu, Q.; Sakthivel, R. Finite-time and fixed-time synchronization analysis of fuzzy Cohen-Grossberg neural networks

with piecewise activations and parameter uncertainties. Eur. J. Control 2020, 56, 179–190. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.na.2007.08.042
http://dx.doi.org/10.1016/j.nahs.2014.10.001
http://dx.doi.org/10.1016/j.neunet.2015.02.007
http://dx.doi.org/10.1016/j.ejcon.2020.03.003

	Introduction
	Preliminaries and Model Description 
	Finite-Time Adaptive Synchronization Control 
	Fixed-Time Synchronization Control 
	Numerical Simulations 
	Conclusions 
	References 

