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Abstract: Bayes minimax estimation is important because it provides a robust approach to statistical
estimation that considers the worst-case scenario while incorporating prior knowledge. In this paper,
Bayes minimax estimation of the mean matrix of a matrix variate normal distribution is considered
under the quadratic loss function. A large class of (proper and generalized) Bayes minimax estimators
of the mean matrix is presented. Two examples are given to illustrate the class of estimators, showing,
among other things, that the class includes classes of estimators presented by Tsukuma.
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1. Introduction

Let X =
(

xi,j
)

be a p × m matrix random variable with a matrix variate normal
distribution with mean matrix Θ =

(
θi,j
)

and covariance matrix Ip ⊗ Im, where Ik is the
k × k identity matrix and ⊗ denotes the Kronecker product.

The matrix variate normal distribution finds applications across various fields, includ-
ing multivariate statistical analysis, machine learning, and signal processing. In multivari-
ate statistical analysis, it serves as a fundamental tool for modeling covariance structures
in datasets where the observations are matrices, such as in longitudinal studies or mul-
tivariate time series analysis. In machine learning, it is utilized for modeling complex
dependencies among high-dimensional data, particularly in tasks involving matrix-valued
inputs or outputs, such as in recommender systems or tensor factorization. Moreover, in
signal processing, the matrix variate normal distribution is employed for modeling the
joint distribution of multiple correlated signals or images, enabling efficient estimation and
inference in applications such as array processing or medical imaging.

Some recent applications of the matrix variate normal distribution include analysis of
multiple vector autoregressions [1]; brain connectivity alternation detection [2]; capacity
for severely fading MIMO channels [3]; integrated principal components analysis [4]; deter-
mination of the relationship between incidence and mortality of asthma with PM2.5, ozone,
and household air pollution [5]; autism spectrum disorder identification [6]; and identifica-
tion of depression disorder using multi-view high-order brain function networks [7], to
mention just a few.

Bayesian minimax estimation is a statistical approach that combines Bayesian inference
with minimax decision theory. In traditional Bayesian inference, we use prior knowledge
and observed data to update our beliefs about the parameters of interest. Minimax decision
theory, on the other hand, focuses on minimizing the maximum possible loss (risk) that can
occur under different parameter values.

In Bayesian minimax estimation, we seek an estimator that minimizes the maximum
possible posterior expected loss, where the expectation is taken with respect to the posterior
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distribution of the parameter given the observed data. This approach is particularly useful
when there is uncertainty about the true parameter value and when it is important to
protect against worst-case scenarios.

There has not been much work on Bayesian estimation of the parameters of the matrix
variate normal distribution. Ref. [8] extended the so-called Stein effect and proposed an
empirical Bayes estimator, outperforming the maximum likelihood estimator, X, for the
case m > p + 1. Since then, many classes of minimax estimators better than the maximum
likelihood estimator have been found. Ref. [9] derived a large class of unbiased risk
estimators, including a class of minimax estimators obtained by [8]. Using the result of
Stein, ref. [10] extended the results of [11] to the multivariate case. For the case of Σ ⊗ Im,
where Σ is an unknown positive definite matrix and p > m + 1, ref. [12] introduced a class
of minimax estimators containing those of [8]. Ref. [13] derived a large class of minimax
estimators using the Stein identity and the Haff identity [14] for the case m > p + 1. For
the case of Σ = Im, Ref. [15] found orthogonally invariant hierarchical priors, resulting in
Bayes estimators that are admissible and minimax. For the case of an unknown covariance
matrix, Ref. [16] obtained a generalized Bayes class of minimax estimators of the mean
matrix for m > p + 1, p > m + 1. Ref. [17] obtained Bayes minimax estimators of the mean
for the case of common unknown variance. Ref. [18] obtained Bayes minimax estimators of
the normal mean matrix for the case of common unknown variances.

For the problem of estimating the mean matrix of an elliptically contoured distribution,
Ref. [19] derived generalized Bayes minimax estimators for the mean matrix; ref. [20] also
obtained a class of minimax estimators for the mean matrix, which was used to find a class
of proper Bayes minimax estimators of Θ.

In this paper, we derive a large class of (proper and generalized) Bayes minimax
estimators of Θ containing estimators of [15] as a special case. In fact, we extend the
results of [21] to the multivariate case. The main result, giving a large class of (proper and
generalized) Bayes minimax estimators, is developed in Section 2. Section 3 considers two
examples of classes of (proper and generalized) Bayes estimators. In particular, example 1
demonstrates a result from [15]. Some concluding remarks are given in Section 4.

Throughout this paper, let |A|, tr(A) and A′ denote, respectively, the determinant,
trace and transpose of a matrix A. Also for A and B, let B < A mean that A − B is
positive definite.

2. A Class of Bayes Minimax Estimators of the Mean Matrix

Let Np×m
(
Θ, Ip ⊗ Im

)
denote the matrix variate normal distribution with mean matrix

Θ and covariance matrix Ip ⊗ Im. Assume that X ∼ Np×m
(
Θ, Ip ⊗ Im

)
. Assume also that

Θ|Λ ∼ Np×m

(
0p×m, Λ−1(Ip − Λ

)
⊗ Im

)
, Λ ∼ |Λ|

a
2−1g

(
tr(Λ)

p

)
, 0p×p < Λ < Ip, a > −m, (1)

where Λ =
(
λi,j
)

is a p× p matrix distributed as g, and g is a differentiable positive function
on (0, 1). In addition, assume g is such that

π(Θ) = (2π)−
pm
2

∫
0p×p<Λ<Ip

g
(

tr(Λ)

p

)
|Λ|

a+m
2 −1∣∣Ip − Λ

∣∣− m
2 e−

tr
(
(Ip−Λ)−1

ΛΘΘ′
)

2 dΛ, (2)

where dΛ = ∧p
i≤jdλi,j. Note that (2) will be proper if g is integrable on its domain.

The purpose of this section is to construct generalized (and proper) Bayes minimax
estimators of Θ under the loss function

L(δ; Θ) = tr
(
(δ − Θ)(δ − Θ)′

)
. (3)

The following lemmas give sufficient conditions on g and a such that the generalized (or
proper) Bayes estimators with respect to (2) are minimax.
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Let Op be the set of orthogonal matrices of order p. Let Vm,p =
{

V ∈ Rm×p, V′V = Ip
}

,
where m ≥ p. Write X as ULV′, where U ∈ Op, V ∈ Vm,p and L = diag

(
l1, l2, . . . , lp

)
with

l1 > l2 > · · · > lp > 0.

Lemma 1. For i = 1, . . . , p, write ϕi = ϕi(F) and F = diag
(

f1, . . . , fp
)
= L2. The risk of a

shrinkage equivariant estimator δ = UL
(
Ip − Φ(F)

)
V′ is

R(δ; Θ) = mp + E

[
p

∑
i=1

{
fiϕ

2
i − 2(m − p + 1)ϕi − 4 fi

∂ϕi
∂ fi

− 4 ∑
j>i

fiϕi − f jϕj

fi − f j

}]
(4)

provided each expectation exists.

Proof. See [9].
If Φ(F) = F−1Ψ(F), where Ψ(F) = diag

(
ψ1(F), . . . , ψp(F)

)
, then by replacing ϕi by ψi

fi
,

(4) can be written as

R(δ; Θ) = mp + E

 p

∑
i=1

ψ2
i

fi
− 2(m − p − 1)

ψi
fi
− 4 fi

 ∂ψi
∂ fi

fi

− 4 ∑
j>i

ψi − ψj

fi − f j


. (5)

Using (5), we obtain Corollary 1.

Corollary 1. Suppose

δ =
(

Ip − UF−1Ψ(F)U′
)

X, (6)

where F−1 = diag
(

f−1
1 , f−1

2 , . . . , f−1
p

)
. Then, δ is minimax under (3) if

I. For any i, ψi is non-decreasing with respect to fi;
II. 0 ≤ ψp ≤ ψp−1 ≤ · · · ≤ ψ1 ≤ 2(m − p − 1).

We give conditions on g and a for obtaining generalized (proper) Bayes estima-
tors of the form (6) such that the resulting estimators satisfy the conditions of Corol-
lary 1, and hence are minimax. Note that the conditional distribution of Θ given X, Λ is
Np×m

((
Ip − Λ

)
X,
(
Ip − Λ

)
⊗ Im

)
. Therefore, the generalized Bayes estimator of Θ with

respect to (2) under (3) is (see [15])

δπ(X) = E[Θ|X ] = E[E[Θ|X, Λ]|X] =
(
Ip − E[Λ|X]

)
X. (7)

E[Λ|X] denotes expectation with respect to the posterior distribution of Λ, that is

p(Λ|X) ∝ g
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛXX′)
2 I

(
0p×p < Λ < Ip

)
, (8)

so the resulting estimator δπ(X) can be written as δπ(X) =
(
Ip − E[Λ|X]

)
X, where

E[Λ|X] =

∫
0p×p<Λ<Ip

Λg
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛXX′)
2 dΛ∫

0p×p<Λ<Ip
g
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛXX′)
2 dΛ

. (9)
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Now, using X = ULV′ and letting Λ → UΛU′,

E[Λ|X] = U

∫
0p×p<Λ<Ip

Λg
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛF)
2 dΛ

∫
0p×p<Λ<Ip

g
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛF)
2 dΛ

U′. (10)

So, we have δπ =
(
Ip − UΦ(F)U′)X, where

Φ(F) =

∫
0p×p<Λ<Ip

Λg
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛF)
2 dΛ

∫
0p×p<Λ<Ip

g
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛF)
2 dΛ

. (11)

The estimation problem discussed in this paper is invariant with respect to X → PXQ
and Θ → PΘQ for any P ∈ Op and Q ∈ Om. Also, (2) is orthogonally invariant, namely

π(Θ) = π(PΘQ). (12)

For every P ∈ Op and Q ∈ Om, according to Lemma 1 in [15], Φ(F) is a diagonal matrix,
say Φ(F) = diag

(
ϕ1(F), . . . , ϕp(F)

)
. Also, δπ =

(
Ip − UΦ(F)U′)X, where Φ = F−1Ψ(F)

and the resulting δπ is of the form (4) with Ψ(F) = diag
(
ψ1, ψ2, . . . , ψp

)
and

ψi(F) = fi

∫
0p×p<Λ<Ip

λi,ig
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛF)
2 dΛ∫

0p×p<Λ<Ip
g
(

tr(Λ)

p

)
|Λ|

a+m
2 −1e−

tr(ΛF)
2 dΛ

. (13)

Now, let λk = λk,k for k = 1, . . . , p and λk,l = γk,l
√

λk,kλl,l for k < l. The Jacobian of this
transformation is

J
((

λ1,1, . . . , λp,p, λ1,2, . . . , λp−1,p
)
→
(
λ1, . . . , λp, γ1,2, . . . , γp−1,p

))
=

p

∏
k=1

λ
p−1

2
k . (14)

It holds that |Λ| = |Γ|
p

∏
k=1

λk, where Γ = (γk,l) is a p × p positive definite matrix with

γk,k = 1. Denoting dΓ = ∧k<ldγk,l and dλ = ∧p
k=1dλk, we can write ψi as

ψi(F) = fi

∫
0p×p<Γ<Ip

∫ 1

0
· · ·

∫ 1

0
λig

(
p−1

p

∑
k=1

λk

)
|Γ|

a+m
2 −1

(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλdΓ

∫
0p×p<Γ<Ip

∫ 1

0
· · ·

∫ 1

0
g

(
p−1

p

∑
k=1

λk

)
|Γ|

a+m
2 −1

(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλdΓ

. (15)

Note that
∫

0p×p<Γ<Ip
|Γ|(

a+m
2 )−1dΓ is finite for a > −m (see, for example, Theorem 1.4.5 on

page 22 of [22]). Then, we can write

ψi(F) = fi

∫ 1

0
· · ·

∫ 1

0
λig

(
p−1

p

∑
k=1

λk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλ

∫ 1

0
· · ·

∫ 1

0
g

(
p−1

p

∑
k=1

λk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλ

. (16)
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Lemma 2 shows that 0 ≤ ψp ≤ ψp−1 ≤ · · · ≤ ψ1.

Lemma 2. If g(t) is a decreasing function in t, then 0 ≤ ψp ≤ ψp−1 ≤ · · · ≤ ψ1.

Proof. We show that ψi − ψj ≥ 0 for j > i. The proof is similar to the proof of part (iv) of

Lemma 3.1 in [20]. By using the transformation yk = λk
fk

, k = 1, . . . , p with the Jacobian

J
((

λ1, . . . , λp
)
7→
(
y1, . . . , yp

))
=

p
∏

k=1
f−1
k , (16) can be written as

ψi =

∫ f1
0 · · ·

∫ fp
0 yig

(
p−1

p
∑

k=1

yk
fk

)( p
∏

k=1
y

a+p+m−3
2

k

)
e−

p
∑

k=1
yk

2 dyp · · · dy1

∫ f1
0 · · ·

∫ fp
0 g

(
p−1

p
∑

k=1

yk
fk

)( p
∏

k=1
y

a+p+m−3
2

k

)
e−

p
∑

k=1
yk

2 dyp · · · dy1

(17)

for i = 1, . . . , p. For j > i, we can write

ψi − ψj =

∫ f1
0 · · ·

∫ fp
0
(
yi − yj

)
g
(

p−1tr
(
YF−1))|Y| a+p+m−3

2 e−
tr(Y)

2 dY∫ f1
0 · · ·

∫ fp
0 g(p−1tr(YF−1))|Y|

a+p+m−3
2 e−

tr(Y)
2 dY

, (18)

where Y = diag
(
y1, y2, . . . , yp

)
.

In order to prove ψi − ψj ≥ 0 for every j > i, without any loss of generality, it is
enough to show that the following function is non-negative

L(F) =
∫ f1

0
· · ·

∫ fp

0
(y1 − y2)g

(
p−1tr

(
YF−1

))
|Y|

a+p+m−3
2 e−

tr(Y)
2 dY. (19)

Now, let O1,2 denote the p × p permutation matrix which interchanges the first and second
rows by letting Y → O1,2Y . Let W = O1,2YO1,2. The Jacobian of the transformation is
J(Y 7→ W) = 1 because O1,2 = O′

1,2 = O−1
1,2 and W = diag

(
w1, w2, . . . , wp

)
. We can rewrite

(19) as

L(F) =
∫ f1

0
· · ·

∫ fp

0
(w2 − w1)g

(
p−1

(
w1

f2
+

w2

f1
+

p

∑
k ̸=1,2

wk
fk

))
|W|

a+p+m−3
2 e−

tr(W)
2 dW. (20)

Note that we can replace wk’s with yk’s in (20); its value does not change, meaning

L(F) =
∫ f1

0
· · ·

∫ fp

0
(y2 − y1)g

(
p−1

(
y1

f2
+

y2

f1
+

p

∑
k ̸=1,2

yk
fk

))
|W|

a+p+m−3
2 e−

tr(Y)
2 dY. (21)

Combining (19) and (21) yields

2L(F) =
∫ f1

0
· · ·

∫ fp

0
(y1 − y2)

(
g

(
p−1

p

∑
k=1

yk
fk

)
− g

(
p−1

(
y1
f2

+
y2
f1

+
p

∑
k ̸=1,2

yk
fk

)))
|Y|

a+p+m−3
2 e−

tr(Y)
2 dY. (22)

Note that we have two cases. One case is y1 ≥ y2 and the other case is y1 < y2. If y1 ≥ y2,
since f1 > f2, then

y1

(
1
f1

− 1
f2

)
≤ y2

(
1
f1

− 1
f2

)
(23)
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which implies

p−1

(
y1

f1
+

y2

f2
+

p

∑
k ̸=1,2

yk
fk

)
= p−1

(
p

∑
k=1

yk
fk

)
≤ p−1

(
y1

f2
+

y2

f1
+

p

∑
k ̸=1,2

yk
fk

)
. (24)

Since g(·) is a decreasing function,

g

(
p−1

p

∑
k=1

λk
fk

)
≥ g

(
p−1

(
λ1

f2
+

λ2

f1
+

p

∑
k ̸=1,2

λk
fk

))
, (25)

so we have

(y1 − y2)

(
g

(
p−1

p

∑
k=1

λk
fk

)
− g

(
p−1

(
λ1

f2
+

λ2

f1
+

p

∑
k ̸=1,2

λk
fk

)))
≥ 0. (26)

Hence, L(F) ≥ 0 for the case y1 ≥ y2. For the case y1 ≤ y2, we can similarly show L(F) ≥ 0.
It can be proven similarly that ψi − ψj ≥ 0 for every j > i and hence ψp ≤ ψp−1 ≤ · · · ≤ ψ1.
Clearly, ψp ≥ 0, and hence 0 ≤ ψp ≤ ψp−1 ≤ · · · ≤ ψ1.

We need Lemma 3 to continue.

Lemma 3. Let ζ denote a probability density function with respect to a σ-finite measure υ

on Rp. For any two points, λ =
(
λ1, . . . , λp

)′ and µ =
(
µ1, . . . , µp

)′, define λ ∧ µ =(
min(λ1, µ1), . . . , min

(
λp, µp

))′ and λ ∨ µ =
(
max(λ1, µ1), . . . , max

(
λp, µp

))′. Suppose
ζ satisfies

ζ(λ)ζ(µ) ≤ ζ(λ ∧ µ)ζ(λ ∨ µ). (27)

If functions f and g are non-decreasing in each argument and if f , g and f g are integrable with
respect to ζ, then∫

f (λ)g(λ)ζ(λ)dυ(λ) ≥
∫

f (λ)ζ(λ)dυ(λ)
∫

g(λ)ζ(λ)dυ(λ). (28)

Proof. See [23].

Lemma 4 gives conditions for ψi
(

f1, f2, . . . , fi−1, fi, fi+1, . . . , fp
)

to be non-decreasing
in fi, i = 1, . . . , p for fixed f1, f2, . . . , fi−1, fi+1, . . . , fp.

Lemma 4. Suppose g satisfies

I. lim
λi→0

λ
a+m+p−1

2
i g

(
p−1

p

∑
k=1

λk

)
= 0 for i = 1, . . . , p;

II. For i = 1, . . . , p,
λi g′

(
p−1

p
∑

k=1
λk

)
g
(

p−1
p
∑

k=1
λk

) is non-increasing in λj, j = 1, . . . , p;

III. For λ =
(
λ1, λ2, . . . , λp

)
and λ′ =

(
λ′

1, λ′
2, . . . , λ′

p

)
, where 0 < λi, λ′

i < 1, i = 1, . . . , p,
g(·) satisfies

g

(
p−1

p

∑
k=1

λk

)
g

(
p−1

p

∑
k=1

λ′
k

)
≤ g

(
p−1

p

∑
k=1

(
λk ∨ λ′

k
))

g

(
p−1

p

∑
k=1

(
λk ∧ λ′

k
))

. (29)

Then, for any i, ψi is non-decreasing with respect to fi.
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Proof. We can write (16) as

ψi = fi
Φ1(F)
Φ0(F)

, (30)

where

Φk(F) =
∫ 1

0
· · ·

∫ 1

0
λk

i g

(
p−1

p

∑
k=1

λk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλ (31)

for k = 0, 1. We have

∂ψi
∂ fi

=
Φ1(F)
Φ0(F)

+
fi

Φ2
0(F)

(
∂Φ1(F)

∂ fi
Φ0(F)−

∂Φ0(F)
∂ fi

Φ1(F)
)

(32)

and

∂Φk(F)
∂ fi

=
1
fi

{
C(F)−

(
k +

a + m + p − 1
2

)
Φk − Bk(F)

}
, (33)

where

C(F) =
∫ 1

0
· · ·

∫ 1

0
g

(
p−1

(
1 + ∑

k ̸=i
λk

))(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

∑
k ̸=i

λk fk

2 dλ−i (34)

and

Bk(F) =
∫ 1

0
· · ·

∫ 1

0
λk+1

i

∂g
(

p−1 ∑
p
k=1 λk

)
∂λi

(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλ. (35)

By replacing (33) with (32), we have

∂ψi
∂ fi

=
1

Φ2
0(F)

{(Φ0 − Φ1)C(F) + (B0Φ1 − B1Φ0)}. (36)

Since C(F) ≥ 0 and also Φ0 − Φ1 ≥ 0, we have (Φ0 − Φ1)C(F) ≥ 0. In order to prove
∂ψi
∂ fi

≥ 0, it suffices to show that B0(F)
Φ0

Φ1
Φ0

≥ B1(F)
Φ0

. That is,

∫ 1

0
· · ·

∫ 1

0
−

λ2
i g′
(

p−1
p

∑
k=1

λk

)

g

(
p−1

p

∑
k=1

λk

) ξ(λ)dλ

≥
∫ 1

0
· · ·

∫ 1

0
−

λig′
(

p−1
p

∑
k=1

λk

)

g

(
p−1

p

∑
k=1

λk

) ξ(λ)dλ
∫ 1

0
· · ·

∫ 1

0
λiξ(λ)dλ, (37)
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where

ξ(λ) =

g

(
p−1

p

∑
k=1

λk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2

∫ 1

0
· · ·

∫ 1

0
g

(
p−1

p

∑
k=1

λk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλ

. (38)

Using condition (III), it is easy to show that

ξ(λ)ξ
(
λ′) ≤ ξ

(
λ ∨ λ′)ξ(λ ∧ λ′) (39)

for λ =
(
λ1, λ2, . . . , λp

)
and λ′ =

(
λ′

1, λ′
2, . . . , λ′

p

)
. Because of condition (II), Lemma 3 can

be applied to prove (37), so ∂ψi
∂ fi

≥ 0 for all i = 1, . . . , p.

Lemma 5 gives conditions for determining an upper bound on ψ1.

Lemma 5. Assume that g(1−) = limt↑1 g(t) < ∞ and

lim
t→0

g(t)
eαt = c. (40)

For some α ≤ 0 and some c > 0,

lim
fp→∞

lim
fp−1→∞

· · · lim
f1→∞

ψ1(F) = a + m + p − 1. (41)

Proof. Note that g(t)
eαt is continuous in (0, 1) and has limits at the points 0 and 1. So, this

function is bounded on its domain, meaning there exists a k > 0 such that

g(t) ≤ keαt. (42)

From (16),

ψ1(F) = f1

∫ 1

0
· · ·

∫ 1

0
λ1g

(
p−1

p

∑
k=1

λk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλ

∫ 1

0
· · ·

∫ 1

0
g

(
p−1

p

∑
k=1

λk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk fk

2 dλ

. (43)

Letting λk → λk
fk

, we obtain

ψ1(F) =

∫ ∞

0
· · ·

∫ ∞

0
M1(F, λ)dλ∫ ∞

0
· · ·

∫ ∞

0
M0(F, λ)dλ

, (44)

where for i = 0, 1,

Mi(F, λ) = λi
1g

(
p−1

p

∑
k=1

λk
fk

)(
p

∏
k=1

(
λ

a+p+m−3
2

k

)
I(0 < λk < fk)

)
e−

∑
p
k=1 λk

2 . (45)
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We now bound the integrand of Mi in order to apply the Lebesgue-dominated conver-
gence theorem. First, using (42), we have∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
Mi(F, λ)dλ

=
∫ f1

0

∫ f2

0
· · ·

∫ fp

0
λi

1g

(
1
p

(
p

∑
k=1

λk
fk

))(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk

2 dλ

≤ k
∫ f1

0

∫ f2

0
· · ·

∫ fp

0
λi

1e
α
p

( p
∑

k=1

λk
fk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk

2 dλ. (46)

Since α ≤ 0, we have

∫ f1

0

∫ f2

0
· · ·

∫ fp

0
λi

1e
α
p

( p
∑

k=1

λk
fk

)(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk

2 dλ

≤
∫ f1

0

∫ f2

0
· · ·

∫ fp

0
λi

1

(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk

2 dλ. (47)

Since a > −m, we have

∫ f1

0

∫ f2

0
· · ·

∫ fp

0
λi

1

(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk

2 dλ

= 2
p(a+m+p−1)

2 +iΓp−1
(

a + p + m − 1
2

)
Γ
(

a + p + m + 2i − 1
2

)
. (48)

Thus, (46) is finite, and the Lebesgue-dominated convergence theorem can be used. Hence,

lim
fp→∞

lim
fp−1→∞

· · · lim
f1→∞

∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
Mi(F, λ)dλ

=
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
lim

fp→∞
lim

fp−1→∞
· · · lim

f1→∞
Mi(F, λ)dλ

= c
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
λi

1

(
p

∏
k=1

λ
a+p+m−3

2
k

)
e−

p
∑

k=1
λk

2 dλ

= c2
p(a+m+p−1)

2 +iΓp−1
(

a + p + m − 1
2

)
Γ
(

a + p + m + 2i − 1
2

)
. (49)

Finally, using (44) and the above limits, we have

lim
fp→∞

lim
fp−1→∞

· · · lim
f1→∞

ψ1(F) = a + m + p − 1, (50)

the desired result.
The results of Lemmas 2, 4 and 5 are our main result.

Theorem 1. (a) If the conditions of Lemmas 2, 4 and 5 hold and if a < m − 3p − 1, then the
generalized Bayes estimator δπ(X) with respect to (2) is minimax under the loss function (3).
(b) Further, if g is integrable, then the estimator δπ is proper Bayes and minimax, and hence
admissible under (3).
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3. Examples

We give two examples in this section to which our results can be applied. We also
make connections to [15].

Example 1. Assume that g(t) = 1 for 0 < t < 1. For this function g(t) = 1, the class of prior
distributions π(Θ) is the form of

π(Θ) = (2π)−
mp
2

∫
0p×p<Λ<Ip

|Λ|
a+m

2 −1∣∣Ip − Λ
∣∣− m

2 e−
tr
(
(Ip−Λ)−1ΛΘΘ′

)
2 dΛ. (51)

This is the same class of prior distributions studied by [15]. If we do the same as in Section 2
of [15], we will obtain the class of Bayes estimators of the form δπ =

(
Ip − UF−1Ψ(F)U′)X with

Ψ(F) = diag
(
ψ1(F), . . . , ψp(F)

)
, where

ψi(F) = fi

∫ 1
0 · · ·

∫ 1
0 λi

( p
∏

k=1
λ

a+p+m−3
2

k

)
e−

p
∑

k=1
λk fk

2 dλ

∫ 1
0 · · ·

∫ 1
0

( p
∏

k=1
λ

a+p+m−3
2

k

)
e−

p
∑

k=1
λk fk

2 dλ

(52)

for i = 1, . . . , p. We now show the class of Bayes estimators is minimax under the loss function (3).
It is sufficient to show that the conditions of Theorem 1 are satisfied, meaning that we should show
that g(t) = 1 for 0 < t < 1 follows the conditions stated in Lemmas 2, 4 and 5. Note that Lemma 2
states that if function g(t) is decreasing in t, then the conditions of Lemma 2 hold. Because g(t) = 1
is a constant function, it is decreasing in t. So, the conditions of Lemma 2 hold.

For a > −m+p−1
2 ,

lim
λi→0

λ
a+p+m−1

2
i = 0 (53)

for i = 1, . . . , p. Also
λi g′

(
p−1

p
∑

k=1
λk

)
g
(

p−1
p
∑

k=1
λk

) = 0 and so
λi g′

(
p−1

p
∑

k=1
λk

)
g
(

p−1
p
∑

k=1
λk

) is non-decreasing in λj,

j = 1, . . . , p. For λ =
(
λ1, λ2, . . . , λp

)
and λ′ =

(
λ′

1, λ′
2, . . . , λ′

p

)
, where 0 < λi, λ′

i < 1,
i = 1, . . . , p, the inequality

g

(
p−1

p

∑
k=1

λk

)
g

(
p−1

p

∑
k=1

λ′
k

)
≤ g

(
p−1

p

∑
k=1

(
λk ∨ λ′

k
))

g

(
p−1

p

∑
k=1

(
λk ∧ λ′

k
))

(54)

holds because g
(

p−1
p
∑

k=1
λk

)
= 1. Therefore, g(·) satisfies the conditions of Lemma 4.

Further, g
(
1−1) = lim

t↑1
g(t) = 1 < ∞ and, if we select α = 0, then

lim
λi→0

g(t)
eαt = 1. (55)

Thus, the conditions of Lemma 5 hold. Now, if a < m − 3p − 1, then based on Theorem 1,
the proper Bayes estimators δπ are minimax under loss function (3). Thus, our class of
minimax estimators include [15]’s results.
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Example 2. Another class of prior distributions π(Θ) can be constructed by taking g(·) to be

g(t) = c′e−βt, 0 < t < 1, (56)

where c′ > 0 and β > 0. Then, π(Θ) will be

π(Θ) = c′(2π)−
mp
2

∫
0p×p<Λ<Ip

e−β
tr(Λ)

p |Λ|
a+m

2 −1∣∣Ip − Λ
∣∣− m

2 e−
tr
(
(Ip−Λ)−1ΛΘΘ′

)
2 dΛ. (57)

If we follow the discussion of Section 2 in order, the Bayes estimators will be of the form
δπ =

(
Ip − UF−1Ψ(F)U′)X and Ψ(F) = diag

(
ψ1(F), . . . , ψp(F)

)
, with

ψi(F) = fi

∫ 1
0 · · ·

∫ 1
0 λi

( p
∏

k=1
λ

a+p+m−3
2

k

)
e
−

p
∑

k=1
λk

(
β
p +

fk
2

)
dλ

∫ 1
0 · · ·

∫ 1
0

( p
∏

k=1
λ

a+p+m−3
2

k

)
e
−

p
∑

k=1
λk

(
β
p +

fk
2

)
dλ

(58)

for i = 1, . . . , p. We show that this class satisfies the conditions of Theorem 1. Based on Theorem 1,
it is sufficient to show that the conditions of Lemmas 2, 4 and 5 are satisfied. Lemma 2 states that if
g(t) is decreasing in t, then Lemma 2 holds. Since c′ > 0 and β > 0, g′(t) = −c′βe−βt < 0 for
each 0 < t < 1. Therefore, the condition of Lemma 2 is satisfied.

For λ =
(
λ1, λ2, . . . , λp

)
and λ′ =

(
λ′

1, λ′
2, . . . , λ′

p

)
, where 0 < λi, λ′

i < 1, i = 1, . . . , p,

e−
β

p
∑

k=1
λk

p e−
β

p
∑

k=1
λ′k

p ≤ e−
β

p
∑

k=1
(λk∨λ′k)

p e−
β

p
∑

k=1
(λk∧λ′k)

p (59)

and so condition III of Lemma 4 holds. Also, if a > −(m + p − 1), then

lim
λi→0

λ
a+m+p−1

2
i g

(
p−1

p

∑
k=1

λk

)
= lim

λi→0
λ

a+m+p−1
2

i e
−β

(
p−1

p
∑

k=1
λk

)
= 0 (60)

for i = 1, . . . , p, so condition II of Lemma 4 holds.
λi g′

(
p−1

p
∑

k=1
λk

)
g
(

p−1
p
∑

k=1
λk

) = −c′βλi is a decreasing

function in λj for each j = 1, . . . , p, so condition I of Lemma 4 holds. We have

g
(
1−
)
= lim

t↑1
g(t) = lim

t↑1
c′e−βt = c′e−β < ∞ (61)

and, if we choose α = −β, we obtain

lim
t→0

g(t)
eαt = c′ > 0. (62)

Hence, the conditions of Lemma 5 hold. Also, if a < m − 3p − 1, then all the conditions of
Theorem 1 hold and hence the Bayes estimator δπ obtained with respect to the priors π(Θ)
is minimax under the loss function (3).

4. Concluding Remarks

The problem of estimating the mean matrix Θ of a matrix variate normal distribu-
tion with the covariance matrix Ip ⊗ Im under the loss function tr

(
(δ − Θ)(δ − Θ)′

)
has

been investigated.
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This is an invariant problem with respect to the group of orthogonal transformations.
We considered the following prior distribution which is invariant under the group of
orthogonal transformations.

π(Θ) = (2π)−
mp
2

∫
0p×p<Λ<Ip

g
(

tr(Λ)

p

)
|Λ|

a+m
2 −1∣∣Ip − Λ

∣∣− m
2 e−

tr
(
(Ip−Λ)−1ΛΘΘ′

)
2 dΛ. (63)

Using the invariant discussion, our Bayes estimators are of the form
δπ =

(
Ip − UF−1Ψ(F)U′)X, where Ψ(F) = diag

(
ψ1(F), . . . , ψp(F)

)
, with

ψi(F) = fi

∫ 1
0 · · ·

∫ 1
0 λig


p
∑

k=1
λk

p

( p
∏

k=1
λ

a+p+m−3
2

k

)
e−

p
∑

k=1
λk fk

2 dλ

∫ 1
0 · · ·

∫ 1
0 g


p
∑

k=1
λk

p

( p
∏

k=1
λ

a+p+m−3
2

k

)
e−

p
∑

k=1
λk fk

2 dλ

(64)

for i = 1, . . . , p.
In this paper, we have obtained the conditions for the continuous function g(·) such

that the resulting Bayes estimators are minimax under the given loss function. If we want
to make a comparison between the results of [15] and our results in this paper, it should
be said that the difference is only in g(·). [15] showed that if g(t) = 1, 0 < t < 1, then
the resulting Bayes estimators are minimax under the given loss function. We obtained
conditions on g(t) such that the resulting class of Bayes estimators is minimax. We also
showed that the function g obtained by [15] applies to the conditions obtained in this paper,
so the results of our paper include [15]’s results. Also, we presented another example in
such a way that if g(t) = c′e−βt, 0 < t < 1, where c′, β > 0, then the conditions obtained in
the paper are valid and the resulting Bayes estimators are minimax under (3). Hence, we
have obtained a larger class of Bayes estimators which include the class of Bayes estimators
obtained by [15].

The estimator proposed in this paper being minimax and admissible could lead to
improved inference in various application areas of the matrix variate normal distribution,
including analyses of multiple vector autoregressions; brain connectivity alternation de-
tection; capacity for severely fading MIMO channels; integrated principal components
analyses; determination of relationships between incidence and mortality of asthma and
PM2.5, ozone, and household air pollution; autism spectrum disorder identification; and
identification of depression disorder using multi-view high-order brain function networks.
We provide two examples:

Example 1 —Suppose that there are three mines in one area and the owner of all three
mines is the same. Suppose the owner wants to know how much gold, copper, zinc,
aluminum, bronze, and iron can be extracted per kilogram of ore in each mine. They
want the authorities to randomly extract one kilogram of ore from each mine in one
day n certain times and determine the amount of the metals in a laboratory:

gold copper zinc aluminum bronze iron
mine 1 X1,1 X1,2 X1,3 X1,4 X1,5 X1,6
mine 2 X2,1 X2,2 X2,3 X2,4 X2,5 X2,6
mine 3 X3,1 X3,2 X3,3 X3,4 X3,5 X3,6
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They are faced with the following matrix of variables

X =



X1,1 X2,1 X3,1
X1,2 X2,2 X3,2
X1,3 X2,3 X3,3
X1,4 X2,4 X3,4
X1,5 X2,5 X3,5
X1,6 X2,6 X3,6

.

Based on previous experience, they know that the amount of each metal extracted from
each mine is independent of other mines and the amount of other metals. They also know
that the amount of metal extracted from each kilogram of ore has a small dispersion and
that the amount of each metal from each mine has a normal distribution. Our results in this
paper can be used to estimate the means of the metals extracted.

Example 2—Suppose that a researcher wants to investigate the effect of the number of
study hours (3 or 4 h) on the progress of three students in four subjects: mathematics,
history, art, and geography. They choose four classmates at random and ask them to
spend 3 h per week studying each subject for half of a semester and 4 h per week for
the other half of the same semester. They want to observe the results per student as a
random matrix as follows:

Information of student k Mathematics score History score Art score Geography score
3 h X1,1,k X1,2,k X1,3,k X1,4,k
4 h X2,1,k X2,2,k X2,3,k X2,4,k

Suppose the numerical results are

x1 =

[
16.5 13.75 18.75 17.75
17.5 12.25 18.5 19.5

]
, x2 =

[
17.2 15.75 19.25 18.25
17 14.85 19.5 18.5

]
,

x3 =

[
15.25 15.75 17.25 18.25
16.5 15.85 17.5 18.75

]
, x4 =

[
15.25 14.75 17.25 18.75
15.5 13.85 16.5 19.25

]
.

The researcher previously performed similar tests in other schools; it was found that
the number of study hours (3 or 4) has no effect, the rates of progress in each course
are independent from each other, and each variable of this random matrix has a normal
distribution. If they want to estimate the mean of the matrix variate normal distribution,
our results can be used.

A future study could be deriving explicit expressions for moments of Θ|X . These may
be obtained using the results of [24].
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